Practice problems

19th February 2006

Differentiate the following functions:

1.
$$y = 5x^2 + \frac{3}{\sqrt{x}} + \sqrt{x^5}$$
.

2.
$$y = x^{2/5} + 7x^{-8/3}$$
.

$$3. \ y = e^x \cdot x^5.$$

4.
$$y = \ln x \cdot \cos x$$
.

5.
$$y = e^{5\sqrt{x}}$$
.

6.
$$y = \cos(\tan(x))$$
.

7.
$$y = \frac{\ln x}{\sqrt{x^2 - 5}}$$
.

8.
$$y = x^2 \cdot \cos(e^x)$$
.

9.
$$y = \sqrt{x^2 - 1} \cdot e^{\cos(\sqrt{x})}.$$

10.
$$y = \frac{x^2 - 3}{5^x}$$
.

Find the derivative of an implicit function:

1.
$$x^2 + y^2 = 2xy$$
.

2.
$$y^2x = x^3 + 3e^x$$
.

3.
$$x^{2/3} + y^{2/3} = \ln x$$
.

4.
$$e^y x = e^x$$
.

Find the derivative of the inverse function if f(x) is given by

1.
$$f(x) = x^2 - 3$$
.

2.
$$f(x) = 3e^{2x}$$
.

Find the derivative $\frac{d}{dx}f^{-1}(a)$ for the following f(x) and a:

- 1. $f(x) = xe^x$ and $a = 2e^2$.
- 2. $f(x) = x \sqrt{x} \text{ and } a = 2.$
- 3. $f(x) = x^2 \cos x$ and $a = (2\pi)^2$.

Use logarithmic differentiation to find the derivatives of the following functions:

- 1. $x^{\ln x}$.
- $2. (\cos x)^{\cos(x)}.$
- 3. $(\sin x)^{\sqrt{x}}$.
- 4. $(\sqrt{x})^{e^x}$.

Use linear approximations to find the approximate values of the following expressions:

- 1. $\sqrt{48}$.
- 2. ln(1.1e).
- 3. $\cos(\pi/2 + 0.5)$.
- 4. $(0.99)^{25}$.

Approximate f(x) by a linear approximation:

- 1. $f(x) = e^{2x+1}$ at a = -1/2.
- 2. $f(x) = \ln(1+2x)$ at a = 0.

Some other problems:

- 1. Given that $\lim_{h\to 0}\frac{e^h-1}{h}=1$, find the limit $\lim_{h\to 0}\frac{e^{ah}-c}{bh}$, where a,b,c are some numbers.
- 2. Given that $f'(x) = 3x 7 \ln x$, compute the derivative $\frac{d}{dx} f(\cos(x))$. (*Hint*: use the chain rule).