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Abstract

The simplest of questions that arise in the study of links turn out to be the
most difficult. Perhaps the most immediate of these questions is whether there
exists a computable method for determining equivalence among links. After all,
it seems intuitive that such a method should exist. While no such method is
currently known, we can at least, in some cases, conclude that two links are
inequivalent. In this paper we will explore some properties of the enhanced
linking number and its relation to the standard linking number, and how they
relate to this fundamental question.

1 The Conway Polynomial

In this section we see how the Conway polynomial is used to construct the en-
hanced linking number function, from which we derive a defining relation.

The Conway polynomial C(z) is a polynomial in one variable (conventionally
z). It is succinctly defined by the following relations (the first relation is called
a skein relation):

C
( )

− C
( )

= zC
( )

(1)

C
( )

= 1 (2)

One may associate to each link (or a knot, which is really just a special
case of a link), such a polynomial C(z). By Conway’s work, any two equivalent
(ambient isotopic) links have the same associated Conway polynomial.

In particular, we see that each coefficient in the Conway polynomial is also
invariant. We may therefore define another invariant as follows.

Let L = (K, J) be a link of two components, K and J , and let C(L) =
c0 + c1z+ c2z

2 + . . . be the Conway polynomial of L. We define λ to be the real
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valued function given by the relation (where c1(L) denotes the c1 coefficient of
C(L), and so on)

λ(L) = c3(L)− c1(L)(c2(K) + c2(J)). (3)

We know that λ is a real-valued function since (2) is real (Note that (1) is
used to reduce any link to terms involving (2)).

It turns out that λ may also be defined in terms of a skein relation. In order
to derive this relation we will need to know some simple results regarding the
Conway polynomial.

Theorem 1.1. For a knot K, c0(K) = 1.
Proof. If K is the unknot, then (2) gives us the result trivially. Otherwise,

K = , (we picture only a part of K relevant to the argument, but keep in

mind that this really represents an entire knot). Note that c0 for the right-hand

side of (1) is zero (because of the z). So we have that c0

( )
= c0

( )
.

This tells us that c0 for a knot is invariant under crossing changes. Using the
fact that a knot may transformed into the unknot through crossing changes,

and c0

( )
= 1, it follows that c0(K) = 1.

We denote the linking number function by lk. It’s simply defined as half of
the sum of the signs of all non-self crossings.

Theorem 1.2. For a two-component link L, we have c1(L) = lk(L).
Proof. (1) implies the relation

c1

( )
− c1

( )
= c0

( )
(4)

If the crossing pictured in the leftmost link in (4) is not a self-crossing, then the
link pictured on the right side becomes a one-component link, and by Theorem
1.1, the right side of (4) is 1. If the crossing is a self-crossing, then the right

side represents a three-component link (remember that represents a two

component link, so splicing to make adds one component). Looking at

(1) for a three-component link, we note that it takes at least two splicings to
obtain the first nonzero component (since C(z) for any unlink with two or more
components is zero - see Theorem 2.1), which is the unknot. Since in each
splicing we multiplied by z, the end result will have lowest power z2, so that
c0 = c1 = 0. We conclude that the right side of the equation in (4) is 0. We
see that this is exactly the behavior of the linking number. (A self-crossing
change does not change the value, and a crossing change between two different
components changes the value of the linking number by ±1). Using the fact

that c0

( )
= 0 we obtain the result.

Similarly we may prove the following
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Theorem 1.3. For a three-component link L = (A,B,C) we have

c2(L) = lk(A,B)lk(A,C) + lk(B,A)lk(B,C) + lk(C,A)lk(C,B)

The proof of this theorem is lengthy and involves considering many more cases
than was done in Theorem 1.2, so it is not given here.

Theorem 1.4. Let L = (K, J) =
(

, J
)

, L′ = (K ′, J) =
(

, J
)

be

two links of two components. Then the function λ defined above satisfies

λ
(

, J
)
− λ
(

, J
)

= lk
(

, J
)
lk
(

, J
)
. (5)

It is crucial that the crossing changes are self-crossing changes, which is
clearly indicated by the notation.

Proof. Clearly lk(L) = lk(L′) = lk
(

, J
)

+ lk
(

, J
)

. Let lk(L) = n. Then

λ
(

, J
)
− λ
(

, J
)

= (6)

c3(L)− c1(L)(c2(K) + c2(J))−
[
c3(L′)− c1(L′)(c2(K ′) + c2(J))

]
= (7)

c3(L)− n(c2(K) + c2(J))−
[
c3(L′)− n(c2(K ′) + c2(J))

]
= (8)

c3

(
, J
)
− c3

(
, J
)
− n(c2

( )
− c2

( )
) = (9)

c2

(
, J
)
− n(c1

( )
) = (10)

c2

(
, J
)
− (lk( , J) + lk( , J))(lk( )) = (11)

lk( , J)lk( , J) (12)

Application of (3) results in (7). Cancellation of nc2(J) gives (10). By the
principle in (4) we obtain (11). We get (12) because for a three-component
link L = (A,B,C) we have c2(L) = lk(A,B)lk(A,C) + lk(B,A)lk(B,C) +
lk(C,A)lk(C,B). The proof of this is similar to Theorem 1.2 but but involves
considering many more cases, so it will not be proved in detail.

Using this skein relation (5) we can compute the value of λ for any two-
component link, as we shall see in Section 4. We will still need, however, the
values of λ on two simple links.

2 The Unlink and the Hopf Link

It is instructive to compute the values of λ on some simple links, which will be
needed for the proofs in Section 3.

Theorem 2.1. For any unlinked two-component link L, λ(L) = 0.
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Note: By unlinked we mean that the diagram consists of two disjoint dia-
grams.

Proof. Any two unlinked knots K1,K2 can be viewed as the smoothed com-
ponent in (1), where the two arcs are from separate components. Then joining
the two components, we obtain two knots where the one can be transformed
into the other through two “large” Reidemeister type-1 moves as pictured in
Figure 1. The circled K1, K2 represent arbitrary knots, and the point on K2 is
used to indicate how K2 is rotated.

↔ ↔

Figure 1: The “Large” Reidemister 1 move.

So C(K1) − C(K2) = 0 = zC(L). So in particular c1(L) = c3(L) = 0 and
from (3), we conclude that λ(L) = 0.

Theorem 2.2. For the Hopf links H+, H− with linking numbers 1 and −1,
respectively, λ = 0.

Proof. Using (1) and (2) we compute C(H+) = z, C(H−) = −z. Application
of (3) gives the result.

3 The Standard Form

The links pictured in Figure 2 have linking number 5. We denote them by T+
5

and T ′+5 . (Also let T−5 , T ′−5 , denote the same links but where the orientation
on the unknot is switched so that the linking number becomes −5, see Figure
4). It turns out that any two component link with linking number 5 can be put
into either form in Figure 2, and any two component link with linking number
-5 into a form in Figure 4. Let T+

n and T ′+n be links like those in Figure 2
(where n = 5), in which one component is the unlink and the other component
wraps monotonically around the first, such that this component produces n local
maxima. The following generalization then holds:

Theorem 3.1. An oriented two-component link with linking number n
(n = 1, 2, . . . ) can be transformed by self-crossing changes into T+

n (and also

Figure 2: The standard links T+
5 and T ′+5 (respectively).
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into T ′+n ).
Note that the Hopf link results when n = 1, the Whitehead for n = 2, and

that T0 is not defined.
Because the proof is long and technical, a complete proof will not be pre-

sented. However the idea behind the proof is simple enough. First we need to
show that one component can be transformed by self-crossing changes into the
unknot without changing any crossings between the two components. Then need
to show that the other may be wound monotonically around the first.

Theorem 3.1 has an obvious analog involving T− and T ′−. The statement
of this theorem is left to the reader as a simple exercise.

It follows that for any two-component links with the same linking number,
one of them may be transformed into the other through self-crossing changes.
(First transform both to the standard form, and then do the reverse transforma-
tion but on different components.) The following corollary is not pertinent to
our current discussion but because it simplifies the calculation of the standard
linking number lk it is nonetheless included.

Corollary. The linking number for a two component link may be computed
by counting only the signs on which one component crosses over the other
component. This is clear because it is true for the link in the standard form,
into which any link may be transformed in some number of steps that preserve
the linking number (self-crossing changes do not affect the value of the linking
number).

Theorem 3.2. For all nonzero integers n,m, we have λ(T+
n ) = λ(T+

m).
Proof. The main idea of this proof is that splicing at the crossing pictured

in Figure 3 will result in the unknot, and the crossing change here results in
T+
n−1. The details are as follows.

Figure 3: T+
5 where a crossing is marked.

Because each of the components in standard form is the unknot, a quick
glance at (2) shows that the c2 will be zero. Thus λ (as computed in (3)) for
any link in the standard form is completely determined by c3. Smoothing using
(1) at one of the crossings will result in the unknot (for which another glance at
(2) shows that c2 is zero), so that the third Conway coefficient is equal for the
link and the link whose linking number is one less. So for all n,m, T+

n = T+
m .

Theorem 3.3. For all nonzero integers n,m, we have λ(T ′−n ) = λ(T ′−m ).
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Proof. The argument is identical with that in Theorem 3.2. Here T ′ becomes
the unknot after splicing, and not T , as in Theorem 3.2.

Figure 4: The standard links T−5 and T ′−5 (respectively).

4 An Algorithm for λ

The recursive property (5) of λ can be used to calculate the value of λ for all
two-component links (except for those outlined in Section 2) without explicit
reference to the definition in (3). To do so we need the following result, which
follows immediately from Theorems 3.2 and 3.3.

Theorem 4.1. For all n, λ(T+
n ) = 0 and λ(T ′−n ) = 0.

Proof. Both T+
1 and T ′−1 are Hopf links, for which by Theorem 2.2, we have

λ = 0.
Theorem 4.2. We can use the skein relation of λ to compute λ for any

two-component oriented link.
Proof. We give an algorithm for computing λ. Let L = (K0, J0) be our link.

Assume lk(L) = n > 0 (the case n < 0 proceeds similarly). By Theorem 3.1
there exists some sequence of k self-crossing changes transformingK into the un-
knot. Write the states in this transformation of L as {(K0, J0), (K1, J0), (K2, J0), . . . , (Kk, J0)}.
Then, there is a sequence (denoted {(Kk, J0), (Kk, J1), (Kk, J2), . . . , (Kk, Jj)})
of j self-crossing changes on J so that J wraps monotonically (as in Theorem
3.1) around Kk. Then the skein relation (5) tells us that

λ(Ki, J0) = λ(Ki+1, J0)± ai (13)

λ(Kk, Ji) = λ(Kk, Ji+1)± bi, (14)

where

ai = ±lk
(

, J
)
lk
(

, J
)

(15)

and
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bi = ±lk
(
Kk

)
lk
(
Kk,

)
. (16)

The segments in (15) and (16) are the splicings at the ith and jth crossings
where crossing changes were made. Clearly if the ith crossing change results in
a positive crossing, we obtain a negative sign (and otherwise a positive sign).
We then obtain the following computations

λ(K0, J0) = λ(Kk, J0) +

k−1∑

i=0

±ai, (17)

λ(Kk, J0) = λ(Kk, Jj) +

j−1∑

i=0

±bi (18)

so that finally

λ(K0, J0) =

k−1∑

i=0

±ai +

j−1∑

i=0

±bi (19)

since (Kk, Jj) is T+
n , for which λ = 0 (Theorem 3.2). The ai and bi are real

so we have the result.
Having shown that (5) may be used to calculate λ, we have the following
Theorem 4.3. Let λ′ be the real valued function defined by the skein

relation in (5), and such that λ′(H+) = λ′(H−) = λ′
( )

= 0. (where H+

and H− are the standard oriented Hopf links). Then λ′ is equivalent to the λ
defined in (3).

This is clear from Theorems 4.2 and 2.2.

5 Examples

Consider the Whitehead link in Figure 5:
This is in fact T−2 . We apply Theroem 4.2, noting that it takes only one

crossing change to obtain T ′−2 .

λ(T−2 ) = λ(T ′−2 )− lk(T−1 )lk(T−1 ) = (−1)(−1) = 1 (20)

Theorem 4.2 requires that we find a sequence of self-crossing changes on each
component to bring the link into a standard form. While we are guranteed that
such a sequence exists, it is still unknown if there exists a procedure to discover
it. We shall explore this issue in some detail.
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Figure 5: The Whitehead link.

Figure 6: Reversing the roles of components.

A consequence of Theorem 3.1 is that it is always possible to switch the role
of the component that winds with the one that is the unknot.

This example shows that the role of the components may be switched. Since
the rightmost diagram is symmetric with respect to a 90 degree rotation, per-
forming this rotation followed by execution of the moves going in the leftward
direction results in an identical standard link, but where the role of the two
components is reversed.

Although this is a simple example, it follows from Theroem 3.1 that a role-
reversal may be performed on any link. In practice, however, it may be very
difficult to do this.

In some cases it makes no difference as to which component is chosen to
deform into the unknot. The link in Figure 7 is symmetric; the role of the two
components can be interchanged by a 180 degree rotation. Yet to bring this link
into the standard form proves quite difficult. Here the recursive relation (5) for
computing λ may not be of much help.

Figure 7: A link for which computing λ as outlined in Theorem 4.2 is difficult.
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6 Special Links, Indistinguishables

We now return to the original question: how can λ be used to distinguish links
(in particular, a given link from the unlink)?

Figure 8: Another Whitehead link.

The link in Figure 8 is a nontrivial link with linking number zero. It is readily
seen that one self-crossing change creates the unlink. So λ for the pictured link
is simply −lk(H+)lk(H−) = 1. So λ is quite useful for the simplest examples
of nontrivial links with linking number zero.

Recall that λ for the other Whitehead link in Figure 5 had the same value.
Because the Conway polynomial fails to distinguish all links, λ fails to dis-

tinguish links. Figure 9 below gives an example of two inequivalent links with
the same Conway polynomial and the same value of λ

Figure 9: These two prime links (72
7 and 42

1 respectively), have the same Conway
polynomial 2z + z3.

However, as we have seen, for the simplest link, the Hopf link, λ = 0. So
where the linking number fails to distinguish some simple links from the unlink,
λ has the same failings.

There are also links for which both lk and λ are zero. The first nontrivial
prime link for which this is true is 82

10.

Figure 10: 82
10, for which λ and lk are zero.
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7 Going Further

How some questions that arise might be answered.
There are many practical problems in computing λ for a link. While it

may always be computed through the Conway polynomial, doing that is not
an easy task. A procedure for choosing the component to be transformed into
the unknot and for choosing the subsequent self-crossings to have the other
component monotonically winding around it would be provide a powerful tool
for investigating linking. Also, since λ depends on c1, c2, c3, such a method
would also shed light on the behavior of the Conway polynomial.
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