
Braids, the Artin Group, and the Jones

Polynomial

Jordan Fassler

March 17, 2005

Abstract

This paper is about Braids and the Artin braid group Bn. After

some initial definitions and examples, I proceed to show how the Jones

polynomial can be derived through a representation of the braid group

by the Temperley-Lieb Algebra, an approach similar to Jones’ original

construction.

1 Braids, An Introduction

Perhaps the most obvious place to start is with the definition [3] of a braid:

Definition 1 Consider two parallel planes A and B in R
3, each containing

n distinct points {ai} and {bi} respectively. Then an n-strand braid is a

collection of n curves {xi} such that:

1. Each xi has one endpoint at an ai and an endpoint at a bi.

2. All the xi are pairwise disjoint.

3. Every plane parallel to A and B intersects each of the xi at one point

or not at all.
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Figure 1: A braid in R
3

There are several ways to think of braids. Perhaps the most intuitive is

by imagining a number of strings attached at even intervals to a pole, then

pulled out in a given direction and woven about one another. This follows

our definition closely (and should seem natural to anyone who has braided

long hair). Alternatively, one can imagine the paths traversed by n particles

in a plane. To be more specific, suppose n particles are initially positioned

at the points (0, 1, 0), (0, 2, 0), . . . , (0, n, 0) in R
3, and let them move around

along the trajectories

a1(t), a2(t), . . . , an(t), ai(t) ∈ R
3

A braid then is the trace of these trajectories a = (a1(t), a2(t), . . . , an(t)), 0 ≤

t ≤ 1 with the conditions that the particles do not collide (ie ai(t1) 6= aj(t2) if

i 6= j for any t1, t2), that they end at the points (1, 1, 0), (1, 2, 0), . . . , (1, n, 0),

and they do not move in the negative direction along the x-axis. For sim-

plicity we can assume that they end at x = 1 with the y coordinates possibly

permuted, so that we have the following:

ai(0) = (0, i), ai(1) = (1, j(i)) where j(i) ∈ {1, 2, . . . , n}

and j(i) 6= j(i′) for i 6= i′.

See Figure 2a for an example of such particle trajectories.
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Figure 2: a. A braid as trajectories, b. Typical braid diagrams

We will make use of both of the above approaches to braids. In general

we will just consider simple diagrams like the one in figure 2b in our study

of braids. Now that we have a definition of our basic object of study, we

will discuss a few basic properties of braids, such as what it means for two

braids to be equivalent. We will then show that braids form a group under

the operation of concatenation. This group is called the Artin braid group.

It can be defined using simple generators and relations and has many inter-

esting algebraic properties. Once we have described the braid group we will

construct a correspondence between braids and knots and demonstrate how

the Jones polynomial for knots can be derived from a representation of the

corresponding braid group.

1.1 The Artin Braid Group

As with knots, we say that two braids, b and b′ are equivalent if they are

ambient isotopic. For braids, this means that if we keep the end-points of

the braid b fixed we can continuously deform b into b′ without breaking any

of the strands. Again this is similar to the case of knots and the deformation

can be described using the Reidemeister moves (see figure 3a) and planar

isotopies of braid diagrams. However, for braids we have no use for R1 type

moves, since we don’t allow our strands to loop backwards. See Figure 3b

for an example of two equivalent braids.
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Figure 3: a. Reidemester moves for braids, b. Equivalent braids

As was mentioned, if we consider the operation of concatenation of braids,

we obtain a group structure. The elements of the group are equivalence

classes of braids under the equivalence defined above. Given two n-strand

braids a and b we form their product ab by joining b to the end of a (see

Figure 4a). Clearly ab again forms an n-strand braid. The identity with

respect to this operation is the unbraid, represented by n parallel strands

(Figure 4b). This operation is associative. Finally, braids, unlike knots, have

inverses. The easiest way to see this is with a picture (Figure 4c). Essentially

to get the inverse, given a diagram, you take the mirror image of the braid

with respect to the axis formed by drawing a line intersecting each strand at

its endpoint as shown in the drawing. Thus equivalence classes of n-strand

braids with the operation of concatenation satisfy all the axioms of a group.

We call the group formed by n-strand braids the Artin Braid Group, denoted

Bn.

In order to make our studies easier and to save a lot of picture drawing, it is

convenient to notice the fact that every braid can be written as a product of

the following generators. Let σi be the n-braid in which the ith strand passes
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Figure 4: a. Concatenation of braids, b. The identity element in, c. Inverse

braid

under the (i + 1)th strand and let σ−1
i be the n-braid in which the ith strand

passes over the (i + 1)th strand. Thus we get the generators σ1, σ2, . . . , σn−1

and their inverses σ−1
1 , σ−1

2 , . . . , σ−1
n−1. This gives a convenient way to describe

the weaving patterns of braids, see Figure 5 below for a couple of examples.

Figure 5: The generators of Bn and an example braid.

With these generators it then becomes easier to determine when braids are

equivalent. The braid group Bn is described by the above generators and the
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following relations:

σiσ
−1
i = 1, i = 1, . . . , n − 1. (1)

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n − 2. (2)

σiσj = σjσi, |i − j| > 1. (3)

It is easy to see that these relations describe equivalences between braids.

The first relation is just a version of a type II Reidemeister move (Figure 6a).

The second relation is a type III Reidemeister move (Figure 6b). The third is

easily understood with a diagram (Figure 6c). Essentially, what it means is

that if two consecutive crossings occur on two disjoint sets of strands, the the

first crossing can be slid further down along the braid than the second. With

these relations we are ready to construct the Jones polynomial for braids.

Figure 6: The relations of Bn

1.2 The Braid-Knot Connection

Before we construct the Jones Polynomial we need to make a few connections

between knots and braids. Constructing a link from a braid is an easy task:

Definition 2 Let b be a braid, the closure, b̄, of b is formed by connecting

the starting points with its endpoints by parallel, non-weaving lines (Figure

7).
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Figure 7: The closure of a braid

Clearly the closure of a braid is a knot or a link. It will be convenient to

notice that if you orient the strands of your braid so that they all point

in the same direction, when you make the closure, the link then circles in

one direction around the axis of the closure (in figure 7, the axis is the line

through x perpendicular to the plane of the picture). On the other hand,

every link can be obtained from a braid by taking its closure:

Theorem 1 (Alexander’s Theorem) Every knot or link in R
3 is ambient

isotopic to a closed braid.

The proof of this theorem is quite involved (see [1]), however it is a very

algorithmic process and we can get an idea of how it is done through an

example. The first step is to put an orientation on your knot, then choose

a proposed braid axis. Once you have chosen your axis, pick a point on the

knot and follow the orientation around the axis (see Figure 8 step i). The

idea is to have the knot to wind around the axis in one direction (clockwise

or counterclockwise). If the knot begins to circle the axis incorrectly (as in

step ii of Figure 8) you throw the strand over the axis so that it is winding

in the right direction (step iii of Figure 8). Repeating this process as you

traverse the knot we will eventually arrive in a position so that all the strands

are winding around the axis in the same direction. It is easy to see in this

situation that, after some planar isotopy, we have a closed braid (step iiii).
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Figure 8: An example of Alexander’s Theorem

With Alexander’s Theorem, we can move easily between knots and braids.

However, we see from the following diagram, taking the same knot as above,

that if we choose a different axis, the construction of a closed braid from a

knot does not produce a unique closed braid.

In order to effectively study knots using the braid group we need to under-

stand how many different closed braids can represent a given knot. Further-

more, we would like to understand how we can modify our braids to produce

ambient isotopic knots.

There are two basic moves that can be used to modify braids so that their

closures produce ambient isotopic knots:
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1. Markov Move: If b is a braid in Bn and if we add a strand to b to

make it an (n + 1)-strand braid, the braids bσn and bσ−1
n in Bn+1 have

closures ambient isotopic to b̄. Essentially, this tells us how we affect

the braid b when we do a Reidemeister move one on the closed braid.

2. Conjugate Braid: Let a and b be braids in Bn. If we take the con-

jugate braid aba−1 then it can happen that when we take the closure

aba−1, the terms a and a−1 cancel each other out through the closure

strands, thus producing a link which is ambient isotopic to b.

With these two moves we have the following theorem which relates equiva-

lence in braids with ambient isotopy in links or knots.

Theorem 2 (Markov’s Theorem) Let βn ∈ Bn and β′
m ∈ Bm be two

braids in the braid groups Bn and Bm respectively. Then the links (closures

of the braids βn, β′
m) L = βn and L′ = β′

m are ambient isotopic if and only

if β′
m can be obtained from βn by a series of

1. Equivalences in a given braid group.
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2. Conjugation in a given braid group.

3. Markov Moves: replacing β ∈ Bn by βσ±1
n ∈ Bn+1 or the inverse of this

operation, replacing βσ±1
n ∈ Bn+1 by β ∈ Bn if β has no occurrences of

σn.

For a proof of this theorem see [1]. To understand it intuitively, we recall

that two knots, L and L′ are ambient isotopic if we can derive the diagram

of L from the diagram of L′ by a sequence of Reidemeister moves. Markov’s

Theorem tells us how the three Reidemeister moves affect the corresponding

braids: we have equivalency in the braid group for the R2 and R3 moves, and

Markov moves for the R1 move. Braid conjugation is just one extra thing we

need to be aware of that can give us seemingly different braid representations.

2 The Jones Polynomial

The Markov Theorem gives us a direct relationship between knots/links and

braids. With this theorem we can now use the braid group to better under-

stand knots and links. In particular, we can now derive knot invariants such

as the Jones Polynomial using the braid group. In order to derive the Jones

polynomial, we will construct a representation (see section 2.2) from the

braid group Bn into the Temperley-Lieb Algebra (see section 2.1) and show

that this gives us a version of the bracket polynomial for braids, which we

can extend to the original bracket polynomial for knots. Markov’s theorem

will then guarantee that this is, in fact, an invariant for knots.

2.1 The Temperley-Lieb Algebra

As mentioned above, we will construct a representation of the braid group

into the Temperley-Lieb Algebra.

Recall that an algebra over a commutative ring R, is a ring A such that:
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1. (A, +) is an R-Module, and

2. r(ab) = (ra)b = a(rb) for all r ∈ R and a, b ∈ A.

In other words, an algebra is essentially a module (or a vector space if R

is a field) with multiplication of the module elements, satisfying condition 2

above. For example, C is an algebra over the field R.

The Temperley-Lieb (TL) Algebra An is an algebra over the ring Z[A,A−1],

of polynomials in A and A−1 with integer coefficients. To understand the TL

algebra we will construct it in much the same way we did with the braid

group. We consider elements of An to be diagrams similar to braids. An

element of An can be represented as follows: take n points each on a left

plane and a right plane in R
3 with strings connected to them. However,

unlike in the case of braids the strings are allowed to loop backwards and

don’t necessarily have to move from one side to the other. As usual, this is

much easier to understand with a diagram. The following are some typical

elements of the Temperley-Lieb Algebra:

We can think of these elements as “tangle” diagrams. Now we define An to

be the set of all tangles under the following equivalence relations:
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Where K is an element of An. The first relation allows us to replace a tangle

with a crossing by a linear combination of two tangles with the crossing

resolved. The second relation allows us to remove any unconnected loop in

the diagram, multiplying the resulting tangle by δ = −A2−A−2. Using these

relations, it is possible to write all tangles in An as linear combinations of

tangles with no crossings and no closed curves.

Just as we did with braids, we can multiply elements in An by concatena-

tion. The identity element 1n ∈ An is identical to the identity of Bn. It is

easy to check that this construction gives us an algebra over Z[A,A−1].

As we did with the braid group, we can describe the TL algebra with

generators and relations. We have the following generators U1, U2, . . . , Un−1

given by

The relations in An are as follows:

UiUi±1Ui = Ui,

U2
i = δUi, where δ = −A2 − A−2,

UiUj = UjUi, if |i − j| > 1.

Here are several examples of diagrams representing these relations:
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Finally, we will be interested in the closure of tangles. If we reduce our

tangle to have no crossings and no additional loops and take its closure (by

a process similar to the closure of braids), then we will be have a diagram

of an unlink. We define ‖U‖ to be the number of components in the unlink

minus 1. For example:

2.2 Representations

Recall that a linear representation of a group G is a homomorphism φ : G →

GLn(R), where GLn(R) is the group of invertible n×n matrices over the real

numbers. For example, the map φ : Z/2Z → GL1(R) given by φ(0)v = v and

φ(1)v = −v, for v ∈ R is a representation of Z/2Z in GL1(R). The study

of group representations is a very big subject which we won’t go into very

deeply here. More generally one can consider a representation of a group to

be a homomorphism of the group into some other algebraic object such as

another group, a ring, a module or an algebra.

We are now in a position to give our representation of the braid group by

the Termperley-Lieb algebra. We define the following homomorphism ρn:

ρn : Bn → An

by the formulas:

ρn(σi) = A(1n) + A−1Ui,

ρn(σ−1
i ) = A−1(1n) + AUi.

Note: we will generally omit the 1n.
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Proposition 1 ρn : Bn → An is a representation of the Artin Braid Group.

Proof: We must verify that ρn preserves the relations on the generators

of the braid group. In other words we must show that ρn(σi)ρn(σ−1
i ) = 1,

ρn(σiσi+1σi) = ρn(σi+1σiσi+1), and that ρn(σiσj) = ρn(σjσi) for |i − j| > 1.

For ρn(σi)ρn(σ−1
i ) = 1 :

ρn(σi)ρn(σ−1
i ) = (A + A−1Ui)(A

−1 + AUi)

= 1 + (A−2 + A2)Ui + U2
i

= 1 + (A−2 + A2)Ui + δUi

= 1 + (A−2 + A2)Ui + (−A−2 + −A2)Ui

= 1

For ρn(σiσi+1σi) = ρn(σi+1σiσi+1) :

ρn(σiσi+1σi) = (A + A−1Ui)(A + A−1Ui+1)(A + A−1Ui)

= (A2 + Ui+1 + Ui + A−2UiUi+1)(A + A−1Ui)

= A3 + AUi+1 + AUi + A−1UiUi+1 + A−1U2
i + AUi

+A−1Ui+1Ui + A−3UiUi+1Ui

= A3 + AUi+1 + (A−1δ + 2A)Ui + A−1(UiUi+1 + Ui+1Ui)

+A−3Ui

= A3 + AUi+1 + (A−1(−A2 − A−2) + 2A + A−3)Ui

+A−1(UiUi+1 + Ui+1Ui)

= A3 + A(Ui+1 + Ui) + A−1(UiUi+1 + Ui+1Ui)

And it is clear that this final equation is symmetric in i and i + 1 which

implies that ρ(σiσi+1σi) = ρn(σi+1σiσi+1).

Finally, given that |i − j| > 1, we need ρn(σiσj) = ρn(σjσi) :

ρn(σiσj) = ρn(σi)ρ(σj)

= (A + A−1Ui)(A + A−1Uj)

= (A + A−1Uj)(A + A−1Ui) [UiUj = UjUi if |i − j| > 1]

= ρn(σjσi).
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Since all the relations of the group generators are satisfied, ρn is a represen-

tation of the braid group. �

The best way to understand ρn is to think of it as a function that resolves

the crossings of the braid. Each σi in the braid group represents a crossing

of the strands in a braid. When we take ρn of it, we get the sum of the

two possible resolutions of the crossing with the coefficients of A or A−1

depending on which type of crossing we are resolving. Understood this way,

the representation ρn is clearly suggestive of the bracket polynomial for knots.

2.3 The Bracket Polynomial

Recall that the bracket polynomial for knots was defined as a sum over all

states of a knot with the crossings resolved. We have seen that the bracket

polynomial is closely related to the Jones Polynomial. We shall now see

that we can easily derive the bracket polynomial from our representation ρn.

Given a braid β = σa1

i1
σa2

i2
· · ·σas

is
∈ Bn we plug it into ρ and get a product in

An:

ρn(β) = (A + A−1Ui1)
a1 · · · (A + A−1Uis)

as .

We define 〈β|t〉 to be the coefficient of the Ut in the expanded expression of

ρn(β). Thus we see that:

ρn(β) =
∑

t

〈β|t〉Ut,

where t indexes all the terms in the sum. As we discussed above, ρn(β)

essentially resolves all the crossings of β. Furthermore, the Ut represent the

resolved states of the braids. We define the bracket for the resolved states

by

〈Ut〉 = 〈Ut〉 = δ‖U‖

and we can conclude that the bracket for the closed braid β is

〈β〉 =
∑

t

〈β|t〉δ‖U‖.
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We will see a few calculations of these techniques in section 2.4. However,

we must first fill in some gaps in our construction.

We have shown how we can use a representation of the braid group to

construct the bracket polynomial for knots. However our construction is

not quite complete. Recall that in order for our bracket polynomial to be

an invariant for knots, Markov’s theorem tells us that it must be invariant

under the three moves listed in Markov’s theorem. It is easily checked that

the above bracket polynomial fails to be invariant under Markov moves. To

correct this we introduce a new factor. We define the writhe of a braid,

w(β) to be the sum of exponents of the generators in the braid:

w(β) =
s∑

t=1

at for a braid β = σa1

i1
σa2

i2
· · ·σas

is
∈ Bn

And finally, we define the normalized bracket for a closed braid β as

follows:

〈β〉 = (−A3)−w(β)
∑

t

〈β|t〉δ‖U‖.

Proposition 2 The normalized bracket 〈K〉 is an invariant of ambient iso-

topy for knots. That is, if K ≈ K ′, then 〈K〉 = 〈K ′〉 for two knots K and

K ′

Proof: Suppose, by Alexander’s Theorem, that K ≈ β and K ′ ≈ β′ for

β, β′ ∈ Bn. Since K and K ′ are ambient isotopic, Markov’s theorem tells us

that that β and β′ are ambient isotopic and thus β′ can be obtained from β

by a sequence of Markov moves of type 1, 2, and 3 (from the theorem). So

it suffices to show that the bracket is invariant under these three moves.

1. The first possibility is equivalences in a given braid group. The invari-

ance under these equivalencies follows directly from our construction

of ρn and the fact that it was a representation of the braid group, thus

invariant under equivalences.
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2. The second move is conjugation in a given braid group. So we must

show that 〈β〉 = 〈αβα−1〉 for some α ∈ Bn. It will be simpler and

sufficient to show that ρ(β) = ρ(αβα−1). Since ρ is a homomorphism,

it is sufficient to show that ρ(β) = ρ(σiβσ−1
i ):

ρ(σiβσ−1
i ) = (A + A−1Ui)ρ(β)(A−1 + AUi)

= (Aρ(β) + A−1Uiρ(β))(A−1 + AUi)

= ρ(β) + (A−2 + A2)Uiρ(β) + U2
i ρ(β)

= ρ(β) + (A−2 + A2)Uiρ(β) + (−A−2 − A2)Uiρ(β)

= ρ(β)

3. Finally, we must check that the bracket is invariant under Markov

moves. We must show 〈βσn〉 = 〈β〉. First note that w(βσn) = w(β)+1.

Thus:

〈βσn〉 = (−A3)w(β)+1(
∑

t

〈β|t〉δ‖U‖)(A + A−1〈Ui〉)

= 〈β〉(−A3(A + A−1〈Un〉)

= 〈β〉(−A4 − A2〈Un〉)

= 〈β〉(−A4 − A2(−A2 − A−2))

= 〈β〉(−A4 + 1 + A4)

= 〈β〉

And we conclude that the normalized bracket is an invariant of ambient

isotopy for knots. �

2.4 Examples

Let’s see how we can compute brackets with the braid group:

1. Trefoil First we need the closed representation braid of the trefoil:
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And we see that the trefoil is ambient isotopic to σ3
1. Now let’s compute

the bracket polynomial. First we resolve crossings using ρ:

ρ(σ3
1) = (A + A−1Ui)

3

= A3 + 3AU1 + 3A−1U2
1 + A−3U3

1

We note that writhe w(σ3
1) = 3. Now we can compute the bracket:

〈σ3
1〉 = (−A3)−3(A3〈12〉 + 3A〈U1〉 + 3A−1〈U2

1 〉 + A−3〈U3
1 〉).

The following diagram gives us our loops counts:

We see that:

〈12〉 = δ,

〈U1〉 = 1,

〈U2
1 〉 = δ,

〈U3
1 〉 = δ2.

Substituting for 〈U〉 we get:

〈σ3
1〉 = (−A3)−3(A3δ + 3A + 3A−1δ + A−3δ2)

= (−A3)−3(A3(−A2 − A−2) + 3A + 3A−1(−A2 − A−2) + A−3(−A2 − A−2)2)

= (−A3)−3(A−7 − A−3 − A5)

= A−4 + A−10 − A−16
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Which is exactly the polynomial which we have calculated for the stan-

dard bracket of the trefoil.

2. Hopf Link Again we start by finding the braid corresponding to the

Hopf Link:

So the Hopf link is ambient isotopic to σ2
1. Now let’s compute the

bracket polynomial. First we resolve crossings using ρ:

ρ(σ3
1) = (A + A−1Ui)

2

= A2 + 2U1 + A−2U2
1 .

The writhe for the Hopf Link is w(σ2
1) = 2, and we have the loop counts

from the diagram above, so putting it all together we get:

〈σ2
1〉 = (−A3)−2(A2〈12〉 + 2〈U1〉 + A−2〈U2

1 〉)

= (−A3)−2(A2δ + 2 + A−2δ)

= (−A3)−2(A2(−A2 − A−2) + 2 + A−2(−A2 − A−2))

= (−A3)−2(−A4 − 1 + 2 − 1 − A−4)

= −A−2 − A−10.

And again we verify that we get the same bracket polynomial we calculated

directly with the state expansions.

As we have seen, braids can be very useful in the study of knots and links.

Besides the representation of the braid group by the Termperley-Lieb algebra

which we’ve seen here, there are several other representations, such as the

Burau representation, of the braid group which lead to other polynomials and
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invariants of knots. There are, however, some limitations to this approach.

For example, the representations we have seen here are not faithful for all

braid groups Bn, in other words the maps are not injective for all n. This

means that unequivalent braids can be mapped to the same element in our

algebra, and thus the representations do not provide complete invariants

for knots. Despite this deficiency, braid group representations have spurred

much activity in the study of knots and provide a great deal of insight.
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