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Abstract: This paper will provide a chronological description of the
development of Knot Theory. It will show how Knot Theory originated from
early attempts to apply the study of knots to other disciplines, and over time has
emerged as a promising field of mathematical exploration in its own right. The
paper will enumerate the prominent mathematicians and scientists whose
observations and discoveries developed Knot Theory from the 18" century to the
present. Our exploration of the history of Knot Theory will conclude with a
discussion of current conjecture regarding possible applications and the direction

of the future of Knot Theory.

I. Imtroduction

Knot Theory as we know it first gained prominence as a physicist’s
erroneous concept of a model for the atom. It was kept alive by the efforts of a
few diligent physicists until the twentieth century when mathematicians took up
the challenge. Today, mathematical theories regarding knots are being applied to
the fields of physics, biclogy, and chemistry.

II. Early Work Related to Knots
Perhaps the first reference to knots from a mathematical perspective
comes from 18" century French mathematician Alexandre-Theophile
Vandermonde (1735-1796). In 1771, he opened a paper titled “Remarques sur les
problemes de situation,” with this statement:
Whatever the twists and turns of a system of threads in space, one can
always obtain an expression for the calculation of its dimensions, but this
expression will be of little use in practice. The craftsman who fashions a
braid, a net, or some knots will be concerned, not with questions of

measurement, but with those of position: what he sees there is the



manner in which the threads are interlaced. [13]

The Work of Gauss; The Gauss Linking Number

While there was much conjecture among certain 18" century
mathematicians that knots could be viewed as mathematical entities, it was not
until the 19" century that Carl Friedrich Gauss (1777-1855) made the first
inroads toward the study of what we now refer to as Knot Theory. One of the
oldest notes found among Gauss’ belongings was a collection of knot drawings
dated 1794. Gauss created a method for the tabulation of knots in which he
drew the universe of the knot, labeled the crossings, then chronicled the sequence
of letters one would encounter if one were to travel from an arbitrary starting
point on the knot, around each are and back to the starting point. A knot with
n crossings would be classified by a sequence of 2n letters, called the “scheme of
the knot.” For example, the trefoil would be recorded as “ABCABC” [17].
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It appears as though Gauss was intrigued by the study of knots, but it was not
until his later work with electrodynamics, that he was actually able to apply
mathematical concepts to knots, and to derive an important early result in Knot
Theory. In 1833, Gauss wanted to know how much work was done on a
magnetic pole moving along a closed curve in the presence of a loop of current.
He considered two non-intersecting loops, a and B. On January 22, 1833, he
answered his question, and in the process discovered what is now referred to as
the “Gauss Linking Number” [10].

In his derivation of the Linking Number, he compared two alternate
approaches to the magnitude of the magnetic field produced by a current flowing
through a closed loop of wire. Gauss began with the magnetic field, B, produced
by a current, I, passing through a closed loop of wire, A, expressed using

Ampere’s Law:



dB-dl = g1,
A

in which g, is the permeability of free space [4,10]. This formula is based on the

assumption that the current carrying wire passes through the enclosed surface

!

exactly once, as in the diagram.

l

Using Ampere’s Law to obtain the magnetic field for a solenoid, Gauss generated

a formula for the magnetic field in a system in which the current carrying wire
passes through the enclosed surface m times:

4B -dl = yyml,

A

for some integer m. For example, in the diagram below, one can assume that the
coil continues out of the scale of the diagram, so that it crosses the plane of the

paper m times [4,10].
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Gauss then derived the magnetic field in an identical system using a different

technique. This method, called the Biot-Savart Law, states that
B = ,u“I dl X T .

dr 1’

in which dB is the contribution of the total magnetic field due to an infinitesimal
length, dl, along the current carrying wire, and I is the unit vector along the

direction of the displacement vector from dl to the point of reference [4,10]. He



considered a closed loop of wire, C”, carrying a current, I. Integrating around C’

he obtained that

}

B(r) = =Ty, I{r—r'}xdl'

dr 5 |r-r7
in which r and r* are displacement vectors from the differential element, dl’ to
the point of reference [10]. Gauss then considered the effect if he introduced a
second, non-current carrying loop, C, to the system, such that C and €' are non-

intersecting. For example, consider the Hopf link, shown below:
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To caleulate the magnetic field induced in this second loop, Gauss again used the
Biot-Savart Law, this time integrating over the second loop, C, to obtain
-1 r—r')x dl 'dl
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Combining the formulas he obtained using Ampere s Law and the Biot-Savart
Law, Gauss arrived at the following relation:

r- r‘xdl-dl
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Gauss realized that this formula shows that the integer m is actually the Linking
Number of the loops C and C’ [2,10]. He wrote, “A main task (that lies) on the
border between geometria situs and geometria magnitudinis is to count the
windings of two closed or infinite lines. . . m is the number of windings. This
value is shared, i.e., it remains the same if the lines are interchanged,” [10]. He
was intrigued by this discovery, and went on to prove that the Gauss Linking
Number does not change under smooth deformation of loops o and . The Gauss

Linking Number is therefore unchanging under ambient isotopy; it became the



earliest discovered link invariant. The Gauss Linking Number was a critical
discovery, as it was the first method developed to distinguish two non-equivalent
links from each other [2,10].
The Work of Listing

Gauss’ work inspired other mathematicians to pursue Knot Theory.
Johann Benedict Listing (1808-1882) studied under Gauss at Gottingen in the
1830’s, and became interested in knots during his study of topology. Listing’s
interests were varied; he is credited with the first usage of the term “topologie” in
1836, and was the first to observe and document the properties of the “Mobius
band,” four years before August Ferdinand Mébius [13]. In pursuing his own
studies, Listing modified Gauss’ knot notation. He colored each region on a knot
diagram black or white, then logged the number of regions of each color bounded
by different numbers of arcs. It later became clear that this notation was
unsound, as one is unable to construct a unique diagram from Listing’s knot
notation [17]. In 1847, Listing published “Vorstudien zur Topologie,” a paper
partially devoted to the study of knots. Listing’s specific interest was the
chirality of knots, or the equivalence of a knot to its mirror image. The
significant result included in his paper was the statement that the right and left
trefoil are not equivalent, or not amphichiral, although this was not actually
proven until 1914 by Max Dehn (1878-1952) using newly published information
about the knot group. Later, Listing stated that the figure eight knot and its
mirror image are equivalent, or amphichiral [13].
The Work of Thomson

Knot Theory was attracting the attention of physicists as well as
mathematicians. The most prominent of these was English physicist, Sir William
~ Thomson (Lord Kelvin) (1824-1907). During the 1860’s, the scientific world was
divided into two groups: those who supported “corpuscular theory,” (the theory
that matter is composed of atoms), and those who supported the theory that
matter consisted of waves. Thomson was attempting to develop a new theory
that combined these two ideas [13,16].

The work of physicist Hermann von Helmholtz (1821-1894) presented a
foundation for what would be Thomson’s Theory of Vortex Atoms. In 1858, a



paper had been written by Helmholtz titled “On the Integrals of Hydrodynamic
Equations to Which Vortex Motions Conform,” involving, among other concepts,
the idea that there exists an all permeating medium which he called the “ether.”
Helmholtz analyzed the idea of this theoretical ether, and concluded that the
vortices of ether, an ideal fluid, were stable. It followed that these stable vortices
could become knotted and still retain their original identities [3,4].

Building upon this foundation, Thomson theorized that matter is
composed of “vortex atoms,” or three-dimensional knotted tubes of ether. He
proposed that different twisting and crossing formations corresponded to different
elements. Atoms could be classified by the knots that they resembled, and the
representative knot would help to establish some physiochemical properties of the
atom. These vortex atoms existed at different energy levels determined by their
frequency of vibration. According to the vortex atom theory, molecules could be
thought of as intertwined vortex atoms, which would resemble links [13,14,16].
The Work of Maxwell

A friend of Thomson, physicist James Clerk Maxwell (1831-1879), was
interested in the idea that knots could be used in the study of electricity and
magnetism. He wrote “A Treatise on Electricity and Magnetism”™ in 1873,
employing the ideas of Gauss in relating knots to physics. He also wrote several
(unpublished) papers devoted to the study of knots and links, and in the course
of his work, rediscovered the Gauss Linking Number integral. He created knot
diagrams in which he specified over and under crossings, and then considered
how one could change the diagram without affecting the knot. Maxwell analyzed
a region bounded by three arcs, and wrote, “In the first case any one curve can
be moved past the intersection of the other two without disturbing them. In the
second case this cannot be done and the intersection of two curves is a bar to the
motion of the third in that direction,” [11]. Maxwell defined the three
Reidemeister moves that would be named in the 1920°s. Despite the impressive
volume of work he did and the numerous attempts by his close friend Peter Tait
to convince Maxwell to submit his writings to the Royal Society of Edinburgh,
Maxwell's papers were not published until more than a century later [11].

The Works of Tait, Kirkman, and Little



With Thomson’s theory of vortex atoms came the need for a system of
classification of knots. Physicist Peter Guthrie Tait (1831-1901) began making
the first table of knots in 1867. Tait was quoted as saying, “I was led to the
consideration of the form of knots by Sir W. Thomson’s Theory of Vortex Atoms,
and consequently the point of view which, at least at first, I adopted was that of

classifying knots by the number of their crossings...”. Later, in a report to the
British Association for the Advancement of Science, Tait wrote, “The
development of this subject promises absolutely endless work - but work of a very
interesting and useful kind - because it is intimately connected with the theory of
knots, which (especially as applied in Sir W. Thomson’s Theory of Vortex
Atoms) is likely soon to become an important branch of mathematics,” [13].
Although Tait is often recognized for his early tabulation of knots, it was
mathematician Thomas Kirkman (1806-1895) who made the first major
contribution to the task of classifying knots.

Thomas Kirkman was almost solely interested in knot tabulation for
alternating knots, and made a table of diagrams for alternating knots with up to
eleven crossings. While some duplicate diagrams were discovered by Tait, this
was still a significant early development. During his quest to classify different
knots, Kirkman realized that he would have to reduce his knot diagrams in order
to minimize the number of duplicates, so he devised a method that involved an
operation similar to the second Reidemeister move to simplify his diagrams, thus
resulting in a more accurate table of knots [12,17].

Tait partnered with Charles Newton Little (1858-1923), a professor at the
State University of Nebraska, to continue Kirkman’s work in the tabulation of
knots. They experimented with the different methods of notation, including
Listing’s notation and Gauss’ “scheme of the knot,” and eventually decided on a
slightly different version of Listing’s notation which they altered to eliminate
ambiguity. Since there was no way to tell if the knots were equivalent, except by
visual examination, their task was difficult. Tait wrote, “... though 1 have
grouped together many widely different but equivalent forms, I cannot be
absolutely certain that all those groups are essentially different from one

another,” [17]. Tait and Little eventually discovered some repeated knots in



Kirkman’s table, and after some meodification to the knot diagrams, they
published the first official table of alternating knots with up to ten crossings
[16,17].

After his collaboration with Tait produced the table of alternating knots,
Little began attempting to classify non-alternating knots. Although non-
alternating knots do not exist with fewer than eight crossings, this endeavor
would prove to be much more challenging than the tabulation of alternating
knots because of the sheer number of non-alternating diagrams that can be
produced. A given knot projection with n crossings has two possible alternating
diagrams: one can be obtained by selecting a crossing and designating it an over-
crossing, then completing the diagram such that the crossings alternate; the other
can be obtained by the same process, designating the chosen crossing an under-
crossing. Meanwhile, the same n-crossing knot projection has 2"-2 possible non-
alternating diagrams. During his work with the tabulation of non-alternating
knots, Little developed what he assumed, incorrectly, was a knot invariant
girnilar to the absolute value of the writhe. In 1899, after six vears of work,
Little published a table of forty-three ten-crossing, non-alternating knots,
including 551 variations of the already classified diagrams [13,16,17].
Tait's Conjectures

Of the early knot theorists, Tait's contributions were varied and
significant. He was curious about the “beknottedness” of a knot, or the existence
of the invariant that we now know ag the unknotting number; he also created a
list of all the amphicheiral knots up to ten crossings. As a result of his work with
Little on classifications of knots, Tait became interested in the properties of
reduced knot diagrams, and how to obtain them. He defined a “nugatory”
crossing as a crossing that divided a diagram into two non-intersecting parts, as

in the diagram:
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Thait stated that a nugatory crossing could be added or removed from a diagram
by a twist, what we now know as the first Reidemeister move, also shown in the
diagram above. Tait’s three conjectures are as follows:
1. “An alternating diagram with no nugatory crossings, of an alternating
link realizes the minimal number of crossings among all diagrams
representing the link,” [13].
He “proved” this first conjecture simply by showing that the removal of a
nugatory crossing was possible, and that it reduced the number of crossings in
the diagram. Tait's second conjecture followed from his first, and states that,
2. “Two alternating diagrams, with no nugatory crossings, of the same

oriented link have the same Tail (or writhe) number, i.e. the signed sum of

all erossings of the diagram with the convention that s +1 and 5
4, )

Tait’s third conjecture states that
3. “Two alternating diagrams, with no nugatory crossings, of the same
link are related by a sequence of flypes,” [13].

A flype is defined as the knot transformation shown in the figure [18]:

X

Tait provided non-rigorous proofs for his conjectures, which were only recently
proven in the 1980°s following the discovery of the Jones polynomial. Tait
published his findings over the course of nine years in three papers titled “On
Knots I,” “On Knots II,” and “On Knots III” [13].

The Virtual Demise of Early Knot Theory

Mathematicians were quickly becoming interested in Knot Theory as a



new area of study, but it was still considered significant primarily due to its
applications to Thomson’s Theory of Vortex Atoms. Physicists were interested
in developing this concept; however, some experimental results did not support
Thomson'’s theory. A. A. Michelson and E. W. Morley hypothesized that the
velocity of the ether with respect to the Earth would cause a slight, but
measurable, shift in the speed of light. They designed an experiment using an
interferometer placed in varying orientations to measure this shift. But, contrary
to the physicists’ expectations, the Michelson-Morley experiment found no shift
in the speed of light. This contradicted the concept of the ether, therefore
causing skepticism about Thomson’s theory [4]. During the years that Tait and
Thomson were developing the Theory of Vortex Atomns, another researcher was
also looking for a theory on the structure of matter. Dimitri Mendeleev (1834-
1907) based his theory on the assumed existence of atoms as well; he analyzed
the arithmetic relationship between the elements atomic masses, and in 1869 put
together a table based on similarities and patterns he observed between chemical
properties of certain elements. Mendeleev published the Periodic Table of the
Elements in 1872, which was widely accepted by the scientific community [19].
This resulted in Thomson’s Theory of Vortex Atoms becoming almost
immediately obsolete, and Knot Theory was virtually forgotten as well. Almost
twenty years later, the theory of knots was reconsidered, by mathematicians this

time, and Knot Theory took a very different direction.

III. Development of Knot Theory as a Viable Field of Study
Braid Theory

In the 1920’s, a mathematician was interested in applying Knot Theory to
another area of study, but this time it was a purely mathematical concept. Braid
Theory was developed by Emil Artin in the early 1920's. The applications of
Braid Theory ranged from quantum mechanics to combinatorics to the textile
industry, and soon Knot Theory would be added to this list as well. A braid is
defined as “a set of n strings, all of which are attached to a horizontal bar at the
top and at the bottom . . . [such| that each string intersects any horizontal plane

between the two bars exactly once,” [1]. Artin declared that the arrangement of
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the strands of a braid can be altered to achieve two representations of the same
braid. He classified braids using the “braid word,” a sequence of generators
which could be used to construct the braid, as in the following figure. To
construct the braid word of an n-stranded braid, begin by defining the two

25
generators, %7 and @i as in the figure (a). The braid word is the list of

generators necessary to construct the given braid, beginning from the top bar,

and traveling down to the bottom bar. For example, the braid word for the

4 = -1
figure (b) is Z2% 9391 Y192 [1,7,16].
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Artin defined the composition of two braids as the process of placing two

¥
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Using the definition of braid composition, Artin identified an n-stranded identity
braid, I, as the braid that satisfies the relation BI =B. He proved the existence
of a braid inverse, B' which has the property B'B=I=BB"’, and proved

associativity of braids, which ultimately revealed that an n-stranded braids form

b 2 7

braids end to end, as in the figure [1].

a group [1,16,18].
Of Artin’s discoveries, possibly the most closely related to Knot Theory

was Artin’s comparison of braids by a method he called “combing.” Artin

11



published a theorem stating that “T'wo braids are isotopic if and only if the word
representing one of them can be transformed into the word representing the other

by a sequence of admissible calculations,” [18]. These “admissible calculations”

include, for example, eliminating both o) and ¥ o, from the given braid
word [1]. Later, it will become clear that these operations are similar to the
second Reidemeister move for a knot.

The Work of Alexander; The Alexonder Polynomsial

It is clear that if the ends of the n strands of a braid are connected
resulting in an operation called “closure,” a knot or a link could result. Artin
defined the braid index as the fewest number of strands required to create a
closed braid corresponding to the given knot. One mathematician interested in
knot theory noticed a potential connection between knots and braids. James
Waddell Alexander (1888-1971) wanted to know which knots and links can be
obtained by the closure of a braid. In 1923, he proved that every link can be
represented as a closed braid. A corollary of this result is that every knot can be
represented as a closed braid. Alexander’s theorem caused many mathematicians
to ask another (still unanswered) question: Can the classification of braids be
used to classify knots? [16]

Alexander discovered a polynomial knot invariant in 1928, which allowed
him to perform valuable, formerly impossible computations, and to distinguish
many non-isotopic knots from one another [1,5,6]. He based his polynomial on
Artin’s concept of the braid group, as well as newly published information
contained in the first book written on Knot Theory, entitled Knottentheorie, by
Kurt Reidemeister (1893-1971) [6]. Alexander’s polynomial was the first

discovered polynomial invariant in Knot Theory, and it remained the only

polynomial invariant until the Jones polynomial was discovered in 1984.
Alexander began by defining the Alexander matrix of a given knot or link

diagram. To obtain the Alexander matrix of an oriented diagram, label the

universe of the link in the following way (a):
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(a)

Notice that a knot with n crossings creates (n+2) regions in the plane of the

diagram. Let R, denote the kth region created by a given knot diagram, and let
the crossing in diagram (b) above represent the labeling at the ith crossing. The
Alexander matrix for a diagram with n crossings will be an n x (n+2) matrix
with entries as follows:
0 if R, does not touch vertex 4
A, =B, W,U, or D, if R, touches vertex 1 in that corner

B, +W, or U, + D, if R, touches 2 corners at vertex 1

in which B, W,, U,, and D, correspond to the regions as labeled in the diagram
(b) above. To find the reduced Alexander matrix, the last two rows are erased to
form an n x n matrix. This reduced matrix, A (), can then be used to
calculate the Alexander polynomial of the knot. The Alexander polynomial is

defined as

Ag(t) = det(Ag (£)),
where = represents equality up to factors of the form *t" [5]. For example, the
Alexander polynomial of the trefoil knot can be computed in the following way:

begin by labeling regions and crossings as in the figure

where € denotes the ith crossing, and R, denotes the ith region. Given this

labeling, the Alexander matrix associated with the trefoil knot is:

13



R R, R, R, K
Y = P
c, |-t &t 1 1 =1
& =t & & & -

The last two columns of the Alexander matrix are removed, and the reduced

Alexander matrix becomes:

=i 1 0
Aarcfoﬁ{ﬂ: = % 13

-t } ¢

Then, to obtain the Alexander polynomial, compute the determinant of the
reduced Alexander matrix:
dﬂt(ﬁhnﬁ-:!{:t:’) =1 + ti b

Since the Alexander polynomial is equal up to factors of the form *t" | a t can be
factored out of the determinant to obtain the final polynomial:
‘ﬁwfniﬂ(t} ="+t -1

Alexander’s proof of his polynomial’s invariance used algebraic topology,
linear algebra, and Reidemeister moves [5,6]. Alexander’s polynomial was a
major discovery in Knot Theory, although it was not a complete invariant.
There exist non-isotopic knots with equal Alexander polynomials. In particular,
there are non-trivial knots with A() =1 [17]. In addition, the Alexander
polynomial is unable to distinguish the chirality of knots. In the 1960’s, John
Conway normalized the Alexander polynomial, making it unique, (as opposed to
the Alexander polynomial, which is only unique up to factors of the form "),
and able to distinguish chirality in some cases [5].
The Work of Reidemeister

Kurt Reidemeister became interested in Knot Theory in the 1920’s, and
his work on the subject pertained largely to planar diagrams of knots. Initially,
Reidemeister struggled to create a new method of knot classification. He
evaluated several techniques, including an endeavor to represent knots with

equations. When neither an analytic nor a combinatorial approach provided
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adequate information to create a diagram of the knot or manipulate the knot,
Reidemeister turned to the method of classification by diagram [16].
Reidemeister, using knot diagrams similar to those published by Tait, Little, and
Kirkman, (in which over and under crossings are specified) proved that “Two
knots K, K’ with diagrams D, I)' are equivalent if and only if their diagrams are
related by a finite sequence D=Dn: D, ..., D =D’ of intermediate diagrams such
that each differs from its predecessor by one of the following three ...

Reidemeister moves,” [15].

/’” "“\

_/(l' ..... "R'

Reidemeister’s theorem required a complicated proof, and provided knot theorists
with an essential result that would assist in the establishment of knot invariants.
Reidemeister began with the assumption that two knots, K and K’ are
equivalent, each having an equivalent diagram, I} and D)’ respectively. Knowing
that one can obtain K’ from K using ambient isotopy, it follows that one can
obtain D’ from D using a finite number of operations. Reidemeister showed that
one is able to divide each diagram into parts such that each part contained either
a single arc or a single crossing. From this point, he analyzed all of the possible
operations which could be performed on these diagram fragments, and ultimately
proved that the only possibilities were the three Reidemeister moves [15].

Reidemeister showed that three operations were sufficient to represent
ambient isotopy, although it was demonstrated later that in certain instances the
first Reidemeister move is actually not necessary. (The relation defined by using
only the second and third Reidemeister moves is referred to as “Regular
Isotopy™) [6,16]. Interestingly, the moves that Reidemeister used had been
defined several years previously by Maxwell. The significant element of

Reidemeister’s work was not the proof that one could transform one knot into
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another equivalent knot using Reidemeister moves, but the proof that these three
moves were the only three needed to illustrate the equivalence of two knots. This
would become a vital factor in the impending development of certain knot
invariants.
The Work of Schubert

In the 1940’s, mathematician Horst Schubert also approached knots from
an arithmetic perspective. His studies produced several important findings, one
of which was the invariant called the “bridge number,” which is defined as “The
least number of unknotted ares lying above the plane in any projection,” [18].

The bridge number of the figure eight knot, shown in the figure below, is two [1].
|

z

Note that the only knot associated with bridge number one is the unknot.
Schubert defined the bridge number, and showed its additivity. Schubert’s most
critical contribution to Knot Theory was his proof, using the bridge number, that
every knot can be uniquely decomposed into prime knots [16]. Schubert proved

in 1954 that
K #K,)=b(K,)+bK,)-1,
where K #K, represents the connected sum of two knots K and K, as illustrated

in the diagram below, and b(K) is the bridge number of a knot K.
& -G

The knots which have bridge number two, such as the figure eight knot, are
known as fwo-bridge knots. Schubert used the bridge number of the connected
sum to show that all two-bridge numbers are prime.

Knot Theory was beginning to attract significant attention and would

continue to be at the center of a growing body of research.
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IV. Discovery of Knot Invariants

Knot Theory had certainly advanced since the 18" century, when
mathematicians first speculated that mathematical concepts could be applied to
knots. But one primary question still burdened mathematicians: How can one
confirm that two knots are undoubtedly different? Mathematicians wanted to
find knot invariants which would remain unchanged under ambient isotopy.
These invariants would allow one to identify two equivalent knots given
isotopically different diagrams. The first known knot invariants are the
aforementioned Linking Number, discovered by Gauss, the Alexander
Polynomial, and Schubert’s bridge number. Reidemeister’s proof that the
Reidemeister moves were sufficient to transform one knot into another if the two
are equivalent made the forthcoming invariants easier to identify.
The Work of Conway; The Conway Polynomial

In the 1960’s, English mathematician John Conway (1937- ) developed a
new method for knot notation, and during his study of knots, rediscovered and
normalized the Alexander polynomial. Conway’s knot notation begins with his
definition of a “tangle,” identified by W. B. R. Lickorish. A tangle can be
defined as “A region in a knot or link projection plane surrounded by a circle
such that the knot or link crosses the circle exactly four times,” [18]. The
crossings occur in the four compass directions: NE, NW, SE, SW. The most

basic examples are the so-tangle and the O-tangle, as shown in the figure.
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Two tangles are said to be equivalent if it is possible to transform one into
another using a series of Reidemeister moves while keeping the endpoints fixed.
A tangle consisting of +n twists, (which can be thought of as the tangle obtained
by applying the first Reidemeister move +n times, resulting in +n crossings), is

called a £n-tangle, with the sign used to indicate the direction of the twists, as in

the examples below [1]. Conway’s knot notation is obtained by connecting the
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ends of appropriate tangles to form the specified knot, then listing the tangles.
(b)

(a) (c)
Figures (a) and (b) show 3-tangles, and figure (¢) shows a tangle consisting of a
J-tangle and a 2-tangle, denoted “3, 2.” Conway’s knot notation became widely
accepted, as it provides a simpler method of documentation for knots up to
eleven crossings [1,17].

Although Alexander had employed these operations years before, Conway
defined a “flip” as the process of “transforming the chosen crossing (on the
planar representation of the knot) into the opposite crossing,” and “smoothing”

as the process of resolving the chosen crossing, as in the figure.

e T

(flip) (smoothing)

Conway was searching for a way to be certain that two inequivalent knots are
different, and what he found was actually a modified version of the Alexander
polynomial. Conway defined three axioms for the Conway polynomial, Viz).
1. Invariance: K ~ K'= V(K)=V(K").
2. Normalization: V(O)=1.
3. Skein Relation: V(K )-V(K )=2zV(K,).
Conway’s skein relation uses the following notation: given three knot diagrams

which are identical with the exception of one crossing, denote the diagrams as

X %

Conway’s polynomial is related to Alexander’s polynomial as follows:

follows
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Conway used Reidemeister moves to prove the invariance of his polynomial.
However, Conway's polynomial is not a complete invariant of knots. There are
non-isotopic knots having the same Conway polynomial. However, the Conway
polynomial can distinguish the chirality of a knot in some cases, which the
Alexander polynomial cannot [6]. Sinee Conway’s polynomial is incomplete, knot
theorists were still in search of a more sensitive polynomial.
The Work of Jones; The Jones Polynomial

In May of 1984, Vaughan Jones (1952 - } found a correspondence to Braid
Theory during his study of von Neumann algebras. He wrote, “In my work on
von Neumann algebras, I had been astonished to discover expressions that bore a
strong resemblance to the algebraic expression of certain topological relations
among braids. [ was hoping that the techniques I had been using would prove
valuable in knot theory. Maybe I could even deduce some new facts about the
Alexander polynomial,™ [13].

The Jones polynomial is a polynomial in ¢ which satisfies the following
three axioms:

1. Invariance: L ~L'= V,(t)=V,(t).

2. Normalization: V,(t)=1.

3. Skein Relation: t'llf’KI -tV = [\E—%J Vi, -

Jones proved the invariance of his polynomial under ambient isotopy; the Jones
polynomial could now be used to distinguish two inequivalent knots from one
ancther. This was the only polynomial invariant discovered since the Alexander
polynomial, and it would prove to be very powerful.

The Jones polynomial proved to be a more sensitive invariant than that of
Alexander, even after Conway’s normalization. After its discovery, the Jones
polynomial was calculated for knots up to thirteen crossings. All of these knots
were assoclated with unique polynomials, with the exception of two knots, each
with eleven crossings. Meticulous examination of these two knots revealed that

they were equivalent, and the knot table was corrected [16].
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The discovery of the Jones polynomial was critical to Knot Theory. It was
the first polynomial invariant able to distinguish a knot’s handedness. In
particular, it distinguishes the right trefoil from the left trefoil, a discrimination
which was impossible with the Alexander or Conway polynomials. As mentioned
in Section II, the Jones polynomial was used in the first rigorous proof of the Tait
Conjectures. While the Jones polynomial is a sensitive invariant, it is not a
complete invariant. There exist nonisotopic knots which have the same Jones
polynomial. Since its discovery, the Jones polynomial has been derived using
several different methods, and has been found in fields seemingly unrelated to
Knot Theory, such as statistical mechanies, which will be mentioned in Section
e

The Jones polynomial can be simplified to obtain an invariant called the
Arf invariant, which always has a value of zero or one. In 1965, Raymond
Robertello was studying ribbon knots, which can be defined as knots which bound
a disk containing self intersections of the type illustrated in the figure (a) below

[8,18]. Figure (b) is an example of a ribbon knot.

(a) (b)
Robertello used pass equivalence classes to distinguish ribbon knots from those

* which can be

which are not ribbon. Given an operation known as a “pass move,’
defined as “A change in a knot projection such that a pair of oppositely oriented
strands are passed through another pair of oppositely oriented strands,” [18]

Robertello found that all knots fall into two distinet pass equivalence classes: the

pass equivalence class of the unknot, or that of the trefoil.
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-4 &

(Examples of pass moves)

Since all ribbon knots fall into the same pass equivalence class as the unknot, he
proved that those knots which are pass equivalent to the trefoil are not ribbon.
Using the fact that every knot bounds an orientable surface, or Seifert surface,
Robertello found that the standard Arf invariant of quadratic forms, when
computed on the quadratic form associated to a Seifert surface of a knot,
distinguishes the pass equivalence class of a knot. The Arf invariant in Knot
Theory can be defined as the second degree coefficient of the Conway polynomial
modulo two [6]. It can also be expressed as the value of the Jones polynomial at
t= &

Arf(K) = Vi (i)

i=+-1

Four months after the discovery of the Jones polynomial, an invariant

called the HOMFLY polynomial was discovered by six mathematicians - Hoste,
Ocneanu, Millett, Freyd, Lickorish, and Yetter, whose names constitute the
acronym HOMFLY. They discovered the polynomial invariant independently
and published their findings in the same publication. The HOMFLY polynomial

is a polynomial in a and z which satisfies the following three axioms:
1. Invariance: L ~L'= F, = F,..

2. Normalization: F, =1.

3. Skein Relation: a ' P, (a,2)—aP,_(a,2) = 2P,y (g, 2).
The HOMFLY polynomial is a generalization of the Jones polynomial, and in
most cases detects chirality [1,16].
The Work of Kauffman; The Bracket Polynomsial

In August 1985, mathematician Louis H. Kauffman (1945 - ), employing

techniques used in the study of statistical physics, discovered another approach
to the Jones polynomial. Two weeks before this finding, he had discovered a
generalized form of another polynomial called the BLM/Ho invariant [16]. He
began by defining a polynomial in variables A, B and d which satisfied the
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following axioms:

L. <=4 1T858} }

In the second axiom, O represents the unknot. Using the observation that each
crossing on a diagram creates two pairs of complimentary angles on the plane, as
in the figure below, Kauffman defined region A as the area on one’s right if
walking along the upper strand toward the crossing, and region B as the area on
the left.

Using this convention, the first formula above becomes:

j/z/; :A:‘FE ><

Kaunffman’s formula states that each crossing in an unoriented diagram can be
smoothed in two ways: either by an A-splicing connecting the A regions, or by a
B-splicing connecting the B regions [6)].

Kauffman defined the state, S, of a given universe, U, of a knot as “a
choice of splitting for each vertex of U,” [6]. There are 2" possible states
associated with a universe with n vertices. Kauffman's “Bracket polynomial”

could then be defined by the following *state sum” formula:
[K} i Zﬁwﬂ_ﬂm!ﬁm_!,

where a(s) is the number of A-splicings, B(s) is the number of B-splicing, and y(s)
is the number of components of the state [1,6,16]. It is easily verified that given
the conditions B=A" and d=(-A*-A"), the Kauffman Bracket is invariant under
the second and third Reidemeister moves. However, the first Reidemeister move

presented a problem. For example:
ERTB Y P T
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The Kauffman Bracket is not invariant under the first Reidemeister move.
Kauffman searched for a modification to his polynomial that would result in its

invariance under ambient isotopy. Recall that the writhe, w(K), of a knot or link
X

.
corresponds to +1 and /Q corresponds to -1. The writhe is invariant under the

is defined as the sum of all the crossing signs on a diagram, given that

second and third Reidemeister moves, but not under the first, which changes the
value of w(K) by plus or minus one. Kauffman employed this fact and showed
that

Vi = (A [K].

[:_A}—a-w[ﬁ'] [K'i : - ; f : "
is a polynomial invariant under all three Reidemeister moves.

Kauffman initially thought he had discovered an original invariant of links, but
soon he realized that he had discovered a different method of obtaining the Jones
Polynomial [6,16].

Although the Kauffman Bracket polynomial only produced an alternative
method for computing the Jones polynomial, it is certainly relevant to Knot
Theory, and ideas introduced in the discovery of the polynomial were applicable
to several disciplines outside of Knot Theory. The Bracket polynomial has been
used in the study of physics and statistics, both of which will be addressed in
Section V.

The Weork of Vassiliev; Vassiliev Invariants

Victor Vassiliev took a different approach to the study of knots altogether,
perhaps because Knot Theory was not his primary area of study. Vassiliev
studied singularities, in the framework of the so-called “catastrophe theory,” and
he applied his knowledge in this area to Knot Theory. Until this point, the only
knots studied had been those with over and under crossings, or “ordinary knots.”
Vassiliev studied ordinary knots as well, but he considered another type of knot,
called a “singular knot,” which is an oriented knot characterized by having what
he called a “double point.” [16].

To understand the concept of a double point, one can think of a knot
moving in space, with the ares able to cross through each other. Two arcs could

approach each other, then cross through one another, and the crossing would be
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reversed. However, there is an instant, a “catastrophic moment,” during this
crossing switch in which the ares would be in the same plane. Neither one would
be crossing over or under the other; the arcs would meet at a point, called a
double point, which is represented by a dot in the following figure. In the next
instant the knot would again be an ordinary knot and the ecrossing would be the

opposite of what it was before the reversal.

R

Vassiliev defined the set of all knots, 3, an infinite set containing ordinary
knots and singular knots with any finite number of double crossings. He then

defined certain subsets of 3; for example, 2y €3 is defined as the set of all

P =

ordinary knots; is the set of singular knots containing exactly one double

point, etc. He used these subsets in his search for knot invariants. Vassiliev

discovered that by studying each subset Z; of 3, one is able to define a vector
space over the real numbers, V, of all of the real valued invariants that vanish
on knots with more than i double points [16,18].

The notion of ambient isotopy for singular knots is similar to that of
ordinary knots, with one significant distinction: ambient isotopy for ordinary
knots cannot instantaneously change an over crossing to an under crossing, or
vice versa; if one considers a knot with a chosen double point, using ambient
isotopy, one is able to perturb one of the chosen ares to obtain either an over

crossing or an under crossing. Specifically,
e X=X
This idea led Vassiliev to an interesting observation regarding his invariants. He

defined the order of a Vassiliev invariant in the following way: a Vassiliev

invariant is of order n if it vanishes on knots with more than n double points



[16]. He then proved the following:
Lemma: “The value of the Vassiliev invariant of order less than or equal
to n of a singular knot with exactly n double points does not vary when one
(or several) crossings are changed to opposite crossings,” [16].
Since it can be shown that there exist no nontrivial first order invariants, it
follows from the Lemma that all zero order and first order invariants are equal to
that of the unknot. The values vary for orders greater than or equal to two.
Vassiliev invariants, like the invariants discussed earlier in this section,
follow a set of axioms. Firstly, if two knots have the same number of double
points, their Vassiliev invariants are equal. Secondly, every Vassiliev invariant,

regardless of its order, satisfies the following skein relation:
{(2X0) =A< = H2X)

in which the dot represents a double point. Following this relation, one is able to

3

obtain the one-term relation:

The discovery of Vassiliev invariants was fundamental to the study of
knots. Not only did Vassiliev discover new knot invariants, he discovered an
entirely new method of searching for knot invariants. While the previously
known polynomial invariants are not complete, there is a conjecture (which is
currently unproved) stating that “for each pair of nonequivalent knots K, and K,
there is a natural number m € N and an invariant ¥ € V. such that
v(K,) # v(K,) ;7 [16]. Currently, even with Vassiliev’s important discovery, there
remain undiscovered invariants. Vassiliev's approach, however, allows
mathematicians to define new invariants for knots. Tt is thought that Vassiliev's

method can be applied to other disciplines, such as physics, which will be
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discussed in the following section [16].

V. Applications of Knot Theory to Other Disciplines

Since the original Knot Theory was applied to Thomson's Theory of
Vortex Atoms, several connections have been drawn between the study of knots
and certain areas in Physics and Biology. These connections have arisen from
the observation of a number of “coincidences,” or similarities between formulae
appearing in seemingly disconnected fields. As the examination of these
presumed coincidences continues, several new discoveries have been made, both
in the form of knot invariants and alternative approaches to already known
invariants. In many cases, concrete connections have yet to be made, but the
analysis of these similarities continues with the hope that the application of knots
to other disciplines will promote the discovery of new methods, new invariants,
and previously unknown properties of knots [16].

While the first practical applications of Knot Theory were to physics,
connections between the study of knots and biology have also been discovered.
In the 1950°s, it was found that DNA molecules take the shape of a double-helix.
DNA molecules perform several biological functions, some of which can be
affected by the topological properties of the DNA strands. Enzymes called
“topoisomerases” have been discovered that manipulate the DNA strands using

the operations shown in the figure below [1].

e .

Biochemists identified the effects of these topoisomerases on DNA by observing
their effects on closed, or circular, DNA molecules, then describing the resulting
knotted DNA using properties of knots such as the writhe and linking number
[1]. The study of knots as applied to the topology of DNA shows great promise
in furthering our understanding of biochemistry.

A profound example of the ties between physics and Knot Theory is the
discovery of actual statistical models which provide an alternate approach to the

caleculation of knot invariants. Recall that Kauffman discovered the Bracket
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polynomial using a technique associated with statistical models. Kauffman’s
polynomial was not itself a statistical model for any existent object. However,
following the introduction of the idea that statistical models could be related to
polynomial invariants, Jones discovered a real statistical model that could be
used to derive certain knot invariants [16].

Jones began with two actual statistical models, the Ising model and the
Potts model. The Ising model was developed in 1924 by Ernst Ising during his
study of ferromagnetic materials. It is a statistical model in which particles in
the system adapt their behavior according to the behavior of the particles in their
immediate surroundings. Each statistical model is associated with a partition
function, or the sum of terms over all of the possible states of the system. Jones
found that the partition function associated with the Ising model can be used to
derive the Arf invariant [1,16].

Jones also studied a generalized form of the Ising model, called the Potts
model, to obtain an alternate derivation of the Jones polynomial. The Potts
model is used to model the phase change from water to ice. Jones analyzed the

partition function associated with the Potts model; using the relation
1

IS|=2+t+-
t i
where |S| denotes the number of states in the system, and { is the variable used
in the Jones polynomial, Jones discovered that the partition function gives the
Jones polynomial. While there is much still undiscovered on the subject of knots
related to statistical physics, Jones' discovery has motivated mathematicians to
search for new knot invariants by means of statistical models [16].

Another seemingly promising link between physics and knots pertains to
Vassiliev invariants. Vassiliev invariants were discovered during the early 1990°s,
making them the youngest of the previously discussed invariants. Distinet
connections between the invariants and physics have yet to be made, but there is
reason to expect that correlations will be found as research progresses [16]. It is
clear that the notion that Knot Theory can be related to other fields is a work in

progress.
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VI. Conclusion

Knot Theory has progressed considerably from its early rise to prominence
as Thomson’s failed idea of the knot as a model for the atom. However, the
central questions today are still as elusive as they were then: How can we
classify knots effectively; can we establish a complete and efficient system of
invariants; and what role do knots play in the basic theory of the structure of
matter? These challenges ensure that Knot Theory will continue to be a

dynamic field of study for the scientific world.
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