\documentclass[a4paper,twoside]{article} \usepackage{amsmath,amssymb,amsfonts} \oddsidemargin 0cm \evensidemargin 0cm \textwidth 15.5cm \topmargin -1cm \textheight 24cm \parskip 1mm \title {Solution to the Quiz} \begin {document} \maketitle \noindent We are asked to solve the ODE: \begin{equation*} (x^2y^3 - \frac{1}{1 + 9x^2})\frac{dx}{dy} + x^3y^2 = 0 \end{equation*} \noindent Rearranging the terms, we get: \begin{equation*} (x^2y^3 - \frac{1}{1 + 9x^2})dx + x^3y^2dy = 0 \end{equation*} \noindent And looking at $M(x,y) = x^2y^3 - \frac{1}{1 + 9x^2}$ and $N(x,y) = x^3y^2$, we find that \begin{equation*} \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 3x^2y^2 \end{equation*} \noindent so we know we have an exact DE. This means there exists some $f(x,y)$ such that $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$. Now we have to integrate to find $f(x,y)$: \begin{equation} \label{fun} f(x,y) = \int{M(x,y)}dx + g(y) = \int(x^2y^3 - \frac{1}{1 + 9x^2})dx + g(y) \end{equation} \noindent To compute the integral $\int{\frac{1}{1 + 9x^2}}dx$, we need to first use $u$-substitution $u=3x$ (so $du = 3dx$) and then remember that $\int{\frac{1}{1 + u^2}}du = \arctan(u)$. Thus \begin{equation*} \int{\frac{1}{1 + 9x^2}}dx = \frac{1}{3}\int{\frac{1}{1 + u^2}}du = \frac{1}{3}\arctan(u) = \frac{1}{3}\arctan(3x) \end{equation*} \noindent So after integrating in (\ref{fun}) we get \begin{equation} \label{fun2} f(x,y) = \frac{1}{3}x^3y^3 - \frac{1}{3}\arctan(3x) + g(y) \end{equation} \noindent Now we take the partial derivative of $f$ with respect to $y$ and set it equal to $N$: \begin{equation*} \frac{\partial f}{\partial y}= x^3y^2 + g'(y)= N = x^3y^2 \end{equation*} \noindent This tells us that $g'(y) = 0$, so $g(y) = c_1$. Plugging back into (\ref{fun2}), we get \begin{equation*} f(x,y) = \frac{1}{3}x^3y^3 - \frac{1}{3}\arctan(3x) + c_1 \end{equation*} \noindent so we have the solution in implicit form when we set $f(x,y)=0$. This gives us a correct solution. However, we can also multiply through by 3 and set $c = -3c_1$ to get an equivalent,y cleaner-looking solution: \begin{equation*} x^3y^3 - \arctan(3x) = c \end{equation*} \end{document}