Entropy in Measurable Dynamics

Lewis Bowen

UCLA, March 2009

Let (X, μ) be a measure space with $\mu(X) = 1$.

Let (X, μ) be a measure space with $\mu(X) = 1$.

Let *G* be a countable discrete group acting by measure-preserving transformations on (X, μ) .

Let (X, μ) be a measure space with $\mu(X) = 1$.

Let *G* be a countable discrete group acting by measure-preserving transformations on (X, μ) .

The triple (G, X, μ) is a *dynamical system*.

Let (X, μ) be a measure space with $\mu(X) = 1$.

Let *G* be a countable discrete group acting by measure-preserving transformations on (X, μ) .

The triple (G, X, μ) is a *dynamical system*.

Two systems (G, X_1, μ_1) and (G, X_2, μ_2) are *isomorphic* if there exists a measure-space isomorphism $\phi : X_1 \to X_2$ with $\phi(gx) = g\phi(x)$ for a.e. $x \in X_1$ and for all $g \in G$.

Main Problem: Classify systems up to isomorphism.

• Let *K* be a finite set, κ a probability measure on *K*.

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\}.$$

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\}.$$

• κ^G is the product measure on K^G .

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\}.$$

- κ^G is the product measure on K^G .
- *G* acts on K^G by shifting. $(gx)(f) = x(g^{-1}f)$ for all $x \in K^G, g, f \in G$.

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\}.$$

- κ^G is the product measure on K^G .
- *G* acts on K^G by shifting. $(gx)(f) = x(g^{-1}f)$ for all $x \in K^G, g, f \in G$.

• (G, K^G, κ^G) is the *Bernoulli shift* over *G* with *base measure* κ .

von Neumann's question

von Neumann's question

If |K| = n and κ is the uniform probability measure on K then (G, K^G, κ^G) is the *full n-shift* over G.

von Neumann's question

If |K| = n and κ is the uniform probability measure on K then (G, K^G, κ^G) is the *full n-shift* over G.

von Neumann's question: Is the full 2-shift over \mathbb{Z} isomorphic to the full 3-shift over \mathbb{Z} ?

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Goal: quantify the "amount of information" we gain by being told that $x \in E$.

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Goal: quantify the "amount of information" we gain by being told that $x \in E$.

This amount, denoted I(E), should depend only on $\mu(E)$. So write $I(E) = I(\mu(E))$.

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Goal: quantify the "amount of information" we gain by being told that $x \in E$.

This amount, denoted I(E), should depend only on $\mu(E)$. So write $I(E) = I(\mu(E))$.

I(t) for $0 \le t \le 1$ should satisfy:

- $1(t) \geq 0.$
- 2 I(t) is continuous.
- **3** I(ts) = I(t) + I(s).
- So $I(t) = -\log_b(t)$ for some b > 1.

An *observable* is a measurable map $\phi : X \to A$ into a finite set *A*.

An *observable* is a measurable map $\phi : X \to A$ into a finite set A.

The *Shannon entropy* of ϕ is the average amount of information one gains by learning the value of ϕ . I.e.,

$$H(\phi) = \sum_{\boldsymbol{a} \in \boldsymbol{A}} \mu(\phi^{-1}(\boldsymbol{a})) I(\phi^{-1}(\boldsymbol{a})) = -\sum_{\boldsymbol{a} \in \boldsymbol{A}} \mu(\phi^{-1}(\boldsymbol{a})) \log\left(\mu(\phi^{-1}(\boldsymbol{a}))\right).$$

An *observable* is a measurable map $\phi : X \to A$ into a finite set A.

The *Shannon entropy* of ϕ is the average amount of information one gains by learning the value of ϕ . I.e.,

$$H(\phi) = \sum_{\boldsymbol{a} \in \boldsymbol{A}} \mu(\phi^{-1}(\boldsymbol{a})) I(\phi^{-1}(\boldsymbol{a})) = -\sum_{\boldsymbol{a} \in \boldsymbol{A}} \mu(\phi^{-1}(\boldsymbol{a})) \log \left(\mu(\phi^{-1}(\boldsymbol{a})) \right).$$

If $\phi : X \to A$ and $\psi : X \to B$ are two observables then their join is defined by $\phi \lor \psi(x) := (\phi(x), \psi(x)) \in A \times B$.

An *observable* is a measurable map $\phi : X \to A$ into a finite set A.

The *Shannon entropy* of ϕ is the average amount of information one gains by learning the value of ϕ . I.e.,

$$H(\phi) = \sum_{\boldsymbol{a} \in \boldsymbol{A}} \mu(\phi^{-1}(\boldsymbol{a})) I(\phi^{-1}(\boldsymbol{a})) = -\sum_{\boldsymbol{a} \in \boldsymbol{A}} \mu(\phi^{-1}(\boldsymbol{a})) \log \left(\mu(\phi^{-1}(\boldsymbol{a})) \right).$$

If $\phi : X \to A$ and $\psi : X \to B$ are two observables then their join is defined by $\phi \lor \psi(x) := (\phi(x), \psi(x)) \in A \times B$.

Let $T : X \to X$ be measure-preserving. The *entropy rate* of ϕ w.r.t T is:

$$h(T,\phi) = \lim_{n\to\infty} \frac{1}{2n+1} H\Big(\bigvee_{i=-n}^n \phi \circ T^i\Big).$$

Coding

Let (G, X, μ) be a system and $\phi : X \rightarrow A$ an observable.

Coding

Let (G, X, μ) be a system and $\phi : X \to A$ an observable.

Define $\Phi: X \to A^G$ by $\Phi(x) := g \mapsto \phi(g^{-1}x)$.

Coding

Let (G, X, μ) be a system and $\phi : X \to A$ an observable.

Define
$$\Phi: X \to A^G$$
 by $\Phi(x) := g \mapsto \phi(g^{-1}x)$.

ϕ is a finite generator if Φ is an isomorphism from (G, X, μ) to $(G, A^G, \Phi_*\mu)$.

Kolmogorov's entropy

Theorem (Kolmogorov, 1958)

Let $T : X \to X$ be an automorphism of (X, μ) . If ϕ and ψ are finite generators for $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$ then $h(T, \phi) = h(T, \psi)$.

Kolmogorov's entropy

Theorem (Kolmogorov, 1958)

Let $T : X \to X$ be an automorphism of (X, μ) . If ϕ and ψ are finite generators for $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$ then $h(T, \phi) = h(T, \psi)$. So $h(\mathbb{Z}, X, \mu) := h(T, \phi)$ is the entropy of the action.

Kolmogorov's entropy

Theorem (Kolmogorov, 1958)

Let $T : X \to X$ be an automorphism of (X, μ) . If ϕ and ψ are finite generators for $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$ then $h(T, \phi) = h(T, \psi)$. So $h(\mathbb{Z}, X, \mu) := h(T, \phi)$ is the entropy of the action.

Theorem (Sinai, 1959)

If ϕ is any finite observable then $h(T, \phi) \leq h(\mathbb{Z}, X, \mu)$. Hence we may define the entropy of (\mathbb{Z}, X, μ) to be $\sup_{\phi} h(T, \phi)$.

Let $\phi: \mathcal{K}^{\mathbb{Z}} \to \mathcal{K}$ be evaluation at the identity element.

Let $\phi : K^{\mathbb{Z}} \to K$ be evaluation at the identity element.

 ϕ is generating for the shift-action. So,

$$h(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}) = h(\phi) = -\sum_{k \in K} \kappa(k) \log (\kappa(k)) =: H(\kappa).$$

Let $\phi : K^{\mathbb{Z}} \to K$ be evaluation at the identity element.

 ϕ is generating for the shift-action. So,

$$h(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}) = h(\phi) = -\sum_{k \in K} \kappa(k) \log (\kappa(k)) =: H(\kappa).$$

 $H(\kappa)$ is the base measure entropy.

Let $\phi : K^{\mathbb{Z}} \to K$ be evaluation at the identity element.

 ϕ is generating for the shift-action. So,

$$h(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}) = h(\phi) = -\sum_{k \in K} \kappa(k) \log (\kappa(k)) =: H(\kappa).$$

 $H(\kappa)$ is the base measure entropy.

Theorem (Kolmogorov, 1958)

If $(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}})$ is isomorphic to $(\mathbb{Z}, L^{\mathbb{Z}}, \lambda^{\mathbb{Z}})$ then $H(\kappa) = H(\lambda)$. So the full 2-shift is not isomorphic to the full 3-shift.

Questions

Does the converse hold?

• What if \mathbb{Z} is replaced with some other group *G*?

Definition

A group *G* is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) .

Definition

A group *G* is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) .

• No finite group is Ornstein.

Definition

A group *G* is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) .

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].

The Converse

Definition

A group *G* is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) .

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].

The Converse

Definition

A group *G* is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) .

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If *G* contains an Ornstein subgroup *H* then *G* is Ornstein [Stepin, 1975].

The Converse

Definition

A group *G* is *Ornstein* if whenever (K, κ) , (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) .

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If *G* contains an Ornstein subgroup *H* then *G* is Ornstein [Stepin, 1975].
- Is every countably infinite group Ornstein?

Theorem (Ornstein, 1970)

Bernoulli shifts over \mathbb{Z} are completely classified by their entropy.

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037.

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037.

D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141.

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037.

D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141.

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031–1037.

D. Ornstein and B. Weiss. *Entropy and isomorphism theorems for actions of amenable groups*. J. Analyse Math. 48 (1987), 1–141.

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

What if G is nonamenable?

Definition

Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) .

Definition

Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) .

Theorem (Sinai, 1959)

Entropy is nonincreasing under factor maps.

Definition

Let (G, X, μ) , (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_*\mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a *factor map* from (G, X, μ) to (G, Y, ν) .

Theorem (Sinai, 1959)

Entropy is nonincreasing under factor maps.

If *G* is amenable then the full *n*-shift over *G* has entropy log(n).

So the full 2-shift over G cannot factor onto the full 4-shift over G.

Theorem (Ornstein-Weiss, 1987)

If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F} .

Theorem (Ornstein-Weiss, 1987)

If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F} .

Define $\phi : (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$ by

Theorem (Ornstein-Weiss, 1987)

If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F} .

Define $\phi : (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$ by

$$\phi(x)(g) = \left(x(g) + x(ga), x(g) + x(gb)\right).$$

Theorem (Ornstein-Weiss, 1987)

If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F} .

Define $\phi : (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$ by

$$\phi(x)(g) = \left(x(g) + x(ga), x(g) + x(gb)\right).$$

Theorem

If G contains a subgroup isomorphic to \mathbb{F} then every nontrivial Bernoulli shift over G factors onto every other Bernoulli shift over G.

New Results

Theorem

If G is a sofic group (e.g., a residually finite group) then Kolmogorov's direction holds. I.e., if (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) then $H(\kappa) = H(\lambda)$.

Let $T : X \to X$ be an automorphism of (X, μ) .

Let $T : X \to X$ be an automorphism of (X, μ) .

Let $\phi : X \to A$ be an observable.

Let $T : X \to X$ be an automorphism of (X, μ) .

Let $\phi : X \to A$ be an observable.

Let $x \in X$ be a typical element and consider the sequence $(\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)$.

Let $T : X \to X$ be an automorphism of (X, μ) .

Let $\phi : X \to A$ be an observable.

Let $x \in X$ be a typical element and consider the sequence $(\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)$.

The idea: For n > 0, count the number of sequences $(a_1, a_2, ..., a_n)$ with elements $a_i \in A$ that approximate the above sequence.

First idea: For each $a \in A$, we'd like the frequency of a in $(a_1, a_2, ..., a_n)$ to be close to $\mu(\phi^{-1}(a))$.

First idea: For each $a \in A$, we'd like the frequency of a in $(a_1, a_2, ..., a_n)$ to be close to $\mu(\phi^{-1}(a))$.

Second idea: For each $a, b \in A$, we'd like the frequency of a, b in (a_1, a_2, \ldots, a_n) to be close to $\mu(\phi^{-1}(a) \cap T^{-1}\phi^{-1}(b))$.

First idea: For each $a \in A$, we'd like the frequency of a in $(a_1, a_2, ..., a_n)$ to be close to $\mu(\phi^{-1}(a))$.

Second idea: For each $a, b \in A$, we'd like the frequency of a, b in (a_1, a_2, \ldots, a_n) to be close to $\mu(\phi^{-1}(a) \cap T^{-1}\phi^{-1}(b))$.

Let $\phi^m : X \to A^m$ be the function $\phi^m(x) = (\phi(x), \phi(Tx), \dots, \phi(T^{m-1}x))$. Let $\phi^m_* \mu$ be the pushforward measure on A^m .

First idea: For each $a \in A$, we'd like the frequency of a in $(a_1, a_2, ..., a_n)$ to be close to $\mu(\phi^{-1}(a))$.

Second idea: For each $a, b \in A$, we'd like the frequency of a, b in (a_1, a_2, \ldots, a_n) to be close to $\mu(\phi^{-1}(a) \cap T^{-1}\phi^{-1}(b))$.

Let $\phi^m : X \to A^m$ be the function $\phi^m(x) = (\phi(x), \phi(Tx), \dots, \phi(T^{m-1}x))$. Let $\phi^m_* \mu$ be the pushforward measure on A^m .

Fix $m \ge 0$. Given a sequence $\alpha = (a_1, a_2, \dots, a_n)$, define $\pi(\alpha) : A^m \to [0, 1]$ by

$$\pi(\alpha)(b_1,\ldots,b_m) = \frac{\# \text{appearances of } (b_1,\ldots,b_m) \text{ in } (a_1,\ldots,a_n)}{n}$$

First idea: For each $a \in A$, we'd like the frequency of a in $(a_1, a_2, ..., a_n)$ to be close to $\mu(\phi^{-1}(a))$.

Second idea: For each $a, b \in A$, we'd like the frequency of a, b in (a_1, a_2, \ldots, a_n) to be close to $\mu(\phi^{-1}(a) \cap T^{-1}\phi^{-1}(b))$.

Let $\phi^m : X \to A^m$ be the function $\phi^m(x) = (\phi(x), \phi(Tx), \dots, \phi(T^{m-1}x))$. Let $\phi^m_* \mu$ be the pushforward measure on A^m .

Fix $m \ge 0$. Given a sequence $\alpha = (a_1, a_2, \dots, a_n)$, define $\pi(\alpha) : A^m \to [0, 1]$ by

$$\pi(\alpha)(b_1,\ldots,b_m) = \frac{\# \text{appearances of } (b_1,\ldots,b_m) \text{ in } (a_1,\ldots,a_n)}{n}$$

Let $d_m(\alpha, \phi)$ be the l^1 -distance between $\pi(\alpha)$ and $\phi_*^m \mu$.

$$\boldsymbol{d}_{\boldsymbol{m}}(\alpha,\phi) = \sum_{(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m)\in\boldsymbol{A}^m} \left| \pi(\alpha)(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m) - \phi_*^m \mu((\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m)) \right|.$$

$$\boldsymbol{d}_{\boldsymbol{m}}(\alpha,\phi) = \sum_{(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m)\in \boldsymbol{A}^m} \left| \pi(\alpha)(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m) - \phi_*^m \mu((\boldsymbol{b}_1,\ldots,\boldsymbol{b}_m)) \right|.$$

Theorem

$$h(T,\phi) = \lim_{m\to\infty} \inf_{\epsilon>0} \lim_{n\to\infty} \frac{1}{n} \log \left| \left\{ \alpha = (a_1,\ldots,a_n) : d_m(\alpha,\phi) < \epsilon \right\} \right|.$$

Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$.

Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$.

Let *G* be a group and $\sigma : G \rightarrow \text{Sym}(m)$ a map.

Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$.

Let *G* be a group and $\sigma : G \rightarrow \text{Sym}(m)$ a map.

 σ is not necessarily a homomorphism!

Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$.

Let *G* be a group and $\sigma : G \rightarrow \text{Sym}(m)$ a map.

 σ is not necessarily a homomorphism!

For $F \subset G$, let $V_F \subset \{1, \ldots, m\}$ be the set of all v such that

$$\begin{aligned} \sigma(fg) v &= \sigma(f) \sigma(g) v \ \forall f, g \in F \text{ with } fg \in F, \\ \sigma(f) v &\neq \sigma(g) v \ \Leftarrow f \neq g \in F. \end{aligned}$$

Let Sym(m) be the symmetric group on $\{1, \ldots, m\}$.

Let *G* be a group and $\sigma : G \rightarrow \text{Sym}(m)$ a map.

 σ is not necessarily a homomorphism!

For $F \subset G$, let $V_F \subset \{1, \ldots, m\}$ be the set of all v such that

$$\begin{aligned} \sigma(fg) \mathbf{v} &= \sigma(f) \sigma(g) \mathbf{v} \; \forall f, g \in \mathbf{F} \text{ with } fg \in \mathbf{F}, \\ \sigma(f) \mathbf{v} &\neq \sigma(g) \mathbf{v} \leftarrow f \neq g \in \mathbf{F}. \end{aligned}$$

 σ is a (F, ϵ) -approximation to G if $|V_F| \ge (1 - \epsilon)m$.

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (F_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $F_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} F_i = G$).

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (F_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $F_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} F_i = G$).

G is *sofic* if there exists a sofic approximation to *G*.

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (F_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $F_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} F_i = G$).

G is *sofic* if there exists a sofic approximation to *G*.

• (Gromov, 1999), (Weiss, 2000).

Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (F_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $F_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} F_i = G$).

G is *sofic* if there exists a sofic approximation to *G*.

- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.

Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (F_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $F_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} F_i = G$).

G is *sofic* if there exists a sofic approximation to *G*.

- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
- Amenable groups are sofic.

Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a *sofic* approximation if σ_i is an (F_i, ϵ_i) -approximation with $\epsilon_i \to 0$ and $F_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} F_i = G$).

G is *sofic* if there exists a sofic approximation to *G*.

- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
- Amenable groups are sofic.
- Is every countable group sofic?

Let (G, X, μ) be a system,

Let (G, X, μ) be a system,

 $\Sigma = \{\sigma_i\}$ be a sofic approximation to *G* where $\sigma_i : G \to \text{Sym}(m_i)$,

Let (G, X, μ) be a system,

 $\Sigma = \{\sigma_i\}$ be a sofic approximation to *G* where $\sigma_i : G \to \text{Sym}(m_i)$,

 $\phi: X \rightarrow A$ be a measurable map into a finite set.

Let (G, X, μ) be a system,

 $\Sigma = \{\sigma_i\}$ be a sofic approximation to *G* where $\sigma_i : G \to \text{Sym}(m_i)$,

 $\phi: X \rightarrow A$ be a measurable map into a finite set.

The idea: Let ζ be the uniform measure on $\{1, \ldots, m_i\}$. Count the number of observables $\psi : \{1, \ldots, m_i\} \rightarrow A$ that approximate ϕ .

If $F \subset G$ is finite, let $\phi^F : X \to A^F$ be the map $\phi^F(x) := \left(\phi(fx)\right)_{f \in F}$.

If $F \subset G$ is finite, let $\phi^F \colon X \to A^F$ be the map $\phi^F(x) := \left(\phi(fx)\right)_{f \in F}$.

 $\phi_*^F \mu$ is the push-forward measure on A^F . So $\phi_*^F \mu(a) = \mu((\phi^F)^{-1}(a))$.

If $F \subset G$ is finite, let $\phi^F \colon X \to A^F$ be the map $\phi^F(x) := (\phi(fx))_{f \in F}$.

 $\phi_*^F \mu$ is the push-forward measure on A^F . So $\phi_*^F \mu(a) = \mu((\phi^F)^{-1}(a))$.

Given $\psi : \{1, \dots, m_i\} \to A, \psi^F : X \to A^F$ is the map $\psi^F(j) := \left(\psi(\sigma(f)j)\right)_{f \in F}, \psi^F_*\zeta$ is the push-forward measure on A^F .

If $F \subset G$ is finite, let $\phi^F \colon X \to A^F$ be the map $\phi^F(x) := (\phi(fx))_{f \in F}$.

 $\phi_*^F \mu$ is the push-forward measure on A^F . So $\phi_*^F \mu(a) = \mu((\phi^F)^{-1}(a))$.

Given $\psi : \{1, \dots, m_i\} \to A, \psi^F : X \to A^F$ is the map $\psi^F(j) := \left(\psi(\sigma(f)j)\right)_{f \in F}, \psi^F_*\zeta$ is the push-forward measure on A^F .

Let $d_F(\phi, \psi)$ be the l^1 -distance between $\phi_*^F \mu$ and $\psi_*^F \zeta$.

$$h(\Sigma,\phi) := \inf_{F \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log \left(\left| \{\psi : \{1,\ldots,m_i\} \to A : d_F(\phi,\psi) \le \epsilon\} \right| \right)}{m_i}.$$

$$h(\Sigma,\phi) := \inf_{F \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log\left(\left|\{\psi : \{1,\ldots,m_i\} \to A : d_F(\phi,\psi) \le \epsilon\}\right|\right)}{m_i}$$

Theorem

If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

$$h(\Sigma,\phi) := \inf_{F \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log\left(\left|\{\psi : \{1,\ldots,m_i\} \to A : d_F(\phi,\psi) \le \epsilon\}\right|\right)}{m_i}$$

Theorem

If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Theorem

If G is amenable then $h(\Sigma, G, X, \mu)$ is the classical entropy of (G, X, μ) .

$$h(\Sigma,\phi) := \inf_{F \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log\left(\left|\{\psi : \{1,\ldots,m_i\} \to A : d_F(\phi,\psi) \le \epsilon\}\right|\right)}{m_i}$$

Theorem

If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Theorem

If G is amenable then $h(\Sigma, G, X, \mu)$ is the classical entropy of (G, X, μ) .

Theorem

$$h(\Sigma, G, K^G, \kappa^G) = H(\kappa).$$

We identify $\phi : X \to A$ with the partition $\{\phi^{-1}(a) \mid a \in A\}$ it induces on *X* (up to measure zero).

We identify $\phi : X \to A$ with the partition $\{\phi^{-1}(a) \mid a \in A\}$ it induces on *X* (up to measure zero).

Let ϕ, ψ be observables.

We identify $\phi : X \to A$ with the partition $\{\phi^{-1}(a) \mid a \in A\}$ it induces on *X* (up to measure zero).

Let ϕ, ψ be observables.

Definition (Rohlin distance)

 $d(\phi,\psi) := 2H(\phi \lor \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).$

We identify $\phi : X \to A$ with the partition $\{\phi^{-1}(a) \mid a \in A\}$ it induces on *X* (up to measure zero).

Let ϕ, ψ be observables.

Definition (Rohlin distance)

 $d(\phi,\psi) := 2H(\phi \lor \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).$

Definition

 ϕ refines ψ if $H(\psi \lor \phi) = H(\phi)$.

We identify $\phi : X \to A$ with the partition $\{\phi^{-1}(a) \mid a \in A\}$ it induces on X (up to measure zero).

Let ϕ, ψ be observables.

Definition (Rohlin distance)

$$d(\phi,\psi) := 2H(\phi \lor \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).$$

Definition

 ϕ refines ψ if $H(\psi \lor \phi) = H(\phi)$.

Definition

 ϕ and ψ are *equivalent* if there exists finite subsets $K, L \subset G$ such that ϕ^{K} refines ψ and ψ^{L} refines ϕ .

Theorem

If ϕ is a generator then its equivalence class is dense in the space of all generating observables.

Theorem

If ϕ is a generator then its equivalence class is dense in the space of all generating observables.

Lemma

 $h(\Sigma, \phi)$ is upper semi-continuous in ϕ .

Theorem

If ϕ is a generator then its equivalence class is dense in the space of all generating observables.

Lemma

 $h(\Sigma, \phi)$ is upper semi-continuous in ϕ .

Theorem

If ϕ and ψ are equivalent then $h(\Sigma, \phi) = h(\Sigma, \psi)$.

Definition

 ϕ is a *simple splitting* of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$\phi = \psi \lor \omega \circ f.$$

 ϕ is a *splitting* of ψ if it can be obtained from ψ by a sequence of simple splittings.

Definition

 ϕ is a *simple splitting* of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$\phi = \psi \lor \omega \circ f.$$

 ϕ is a *splitting* of ψ if it can be obtained from ψ by a sequence of simple splittings.

Lemma

If ϕ and ψ are equivalent then there exists an observable ω that is a splitting of both ϕ and ψ .

Definition

 ϕ is a *simple splitting* of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$\phi = \psi \lor \omega \circ f.$$

 ϕ is a *splitting* of ψ if it can be obtained from ψ by a sequence of simple splittings.

Lemma

If ϕ and ψ are equivalent then there exists an observable ω that is a splitting of both ϕ and ψ .

Proposition

If ϕ is a simple splitting of ψ then $h(\Sigma, \phi) = h(\Sigma, \psi)$.

Applications: von Neumann algebras

A system (G, X, μ) gives rise in a natural way to a *crossed product von Neumann algebra* $L^{\infty}(X, \mu) \rtimes G$.

Applications: von Neumann algebras

A system (G, X, μ) gives rise in a natural way to a *crossed product von Neumann algebra* $L^{\infty}(X, \mu) \rtimes G$.

If the action is ergodic and free and *G* is infinite then $L^{\infty}(X, \mu) \rtimes G$ is a II_1 factor.

Major problem: classify these algebras up to isomorphism in terms of the group/action data.

Applications: von Neumann algebras

A system (G, X, μ) gives rise in a natural way to a *crossed product von Neumann algebra* $L^{\infty}(X, \mu) \rtimes G$.

If the action is ergodic and free and *G* is infinite then $L^{\infty}(X, \mu) \rtimes G$ is a II_1 factor. Major problem: classify these algebras up to isomorphism in terms of the group/action data.

Theorem (Connes, 1976)

If G is infinite and amenable and the action $G \curvearrowright (X, \mu)$ is free and ergodic then $L^{\infty}(X, \mu) \rtimes G$ is hyperfinite. In particular, all such algebras are isomorphic.

Rigidity

Definition

 (G_1, X_1, μ_1) and (G_2, X_2, μ_2) are von Neumann equivalent (vNE) if $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$.

Rigidity

Definition

 (G_1, X_1, μ_1) and (G_2, X_2, μ_2) are von Neumann equivalent (vNE) if $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$.

Theorem (Popa, 2006)

If G is a countably infinite ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic.

Rigidity

Definition

 (G_1, X_1, μ_1) and (G_2, X_2, μ_2) are von Neumann equivalent (vNE) if $L^{\infty}(X_1, \mu_1) \rtimes G_1 \cong L^{\infty}(X_2, \mu_2) \rtimes G_2$.

Theorem (Popa, 2006)

If G is a countably infinite ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic.

Corollary

If, in addition, G is sofic and Ornstein then Bernoulli shifts over G are classified up to vNE by base measure entropy. E.g., this occurs when $G = PSL_n(\mathbb{Z})$ for n > 2.

Applications: orbit equivalence

Definition

 (G_1, X_1, μ_1) is orbit equivalent (OE) to (G_2, X_2, μ_2) if there exists a measure-space isomorphism $\phi : X_1 \to X_2$ such that $\phi(G_1x) = G_2\phi(x)$ for a.e. $x \in X_1$.

Applications: orbit equivalence

Definition

 (G_1, X_1, μ_1) is orbit equivalent (OE) to (G_2, X_2, μ_2) if there exists a measure-space isomorphism $\phi : X_1 \to X_2$ such that $\phi(G_1x) = G_2\phi(x)$ for a.e. $x \in X_1$.

Theorem (Dye 1959, Connes-Feldman-Weiss 1981)

If G_1 and G_2 are amenable and infinite and their respective actions are ergodic and free then (G_1, X_1, μ_1) is OE to (G_2, X_2, μ_2) .

OE rigidity

Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes. Assume 3g + n - 4 > 0 and $(g, n) \notin \{(1, 2), (2, 0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if (G_2, X_2, μ_2) is free, ergodic and OE to (G, X, μ) then it is isomorphic to (G, X, μ) .

OE rigidity

Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes. Assume 3g + n - 4 > 0 and $(g, n) \notin \{(1, 2), (2, 0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if (G_2, X_2, μ_2) is free, ergodic and OE to (G, X, μ) then it is isomorphic to (G, X, μ) .

Corollary

If G is as above then Bernoulli shifts over G are classified up to OE by base measure entropy.

Free Groups: a special case

For each $i \ge 1$, let $\sigma_i : \mathbb{F} = \langle s_1, \dots s_r \to \text{Sym}(i)$ be chosen uniformly at random.

Let
$$\Sigma = \{\sigma_i\}$$
.
Define

$$h(\Sigma,\phi) := \inf_{F \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log \left(\mathbb{E} \left[\left| \{ \psi : \{1, \dots, i\} \to A : d_F(\phi, \psi) \le \epsilon \} \right| \right] \right)}{i}$$

Free Groups: a special case

For each $i \ge 1$, let $\sigma_i : \mathbb{F} = \langle s_1, \dots s_r \to \text{Sym}(i)$ be chosen uniformly at random.

Let
$$\Sigma = \{\sigma_i\}$$
.
Define

$$h(\Sigma,\phi) := \inf_{F \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log \left(\mathbb{E} \left[\left| \{\psi : \{1, \dots, i\} \to A : d_F(\phi, \psi) \le \epsilon \} \right| \right] \right)}{i}$$

lf

$$F(\phi) := -(2r-1)H(\phi) + \sum_{i=1}^{r} H(\phi \lor \phi \circ s_i).$$
$$f(\phi) := \inf_{n} F(\phi^{B(e,n)}),$$

Free Groups: a special case

For each $i \ge 1$, let $\sigma_i : \mathbb{F} = \langle s_1, \dots s_r \to \text{Sym}(i)$ be chosen uniformly at random.

Let
$$\Sigma = \{\sigma_i\}$$
.
Define

$$h(\Sigma,\phi) := \inf_{F \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log \left(\mathbb{E} \left[\left| \{ \psi : \{1, \dots, i\} \to A : d_F(\phi, \psi) \le \epsilon \} \right| \right] \right)}{i}$$

lf

$$F(\phi) := -(2r-1)H(\phi) + \sum_{i=1}^{r} H(\phi \lor \phi \circ s_i).$$
$$f(\phi) := \inf_{n} F(\phi^{B(e,n)}),$$

then $h(\Sigma, \phi) = f(\phi)$.

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N} .

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N} .

Theorem (Yuzvinskii, 1965)

 $h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N} .

Theorem (Yuzvinskii, 1965)

```
h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).
```

Theorem

If \mathcal{G} is totally disconnected and \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f(\mathbb{F}, \mathcal{G}, Haar_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, Haar_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N} .

Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

Theorem

If \mathcal{G} is totally disconnected and \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f(\mathbb{F}, \mathcal{G}, Haar_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, Haar_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$

Let $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$. Let $\mathcal{N} = \{\mathbf{0}, \mathbf{1}\}$. By Ornstein-Weiss' example, $\mathcal{G}/\mathcal{N} \cong \mathcal{G} \times \mathcal{G} = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$.

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N} .

Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

Theorem

If \mathcal{G} is totally disconnected and \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f(\mathbb{F}, \mathcal{G}, Haar_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, Haar_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$

Let $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$. Let $\mathcal{N} = \{\mathbf{0}, \mathbf{1}\}$. By Ornstein-Weiss' example, $\mathcal{G}/\mathcal{N} \cong \mathcal{G} \times \mathcal{G} = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$.

$$f(\mathbb{F},\mathcal{G},\operatorname{Haar}_{\mathcal{G}}) = f(\mathbb{F},\mathcal{N},\operatorname{Haar}_{\mathcal{N}}) + f(\mathbb{F},\mathcal{G}/\mathcal{N},\operatorname{Haar}_{\mathcal{G}/\mathcal{N}})$$

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N} .

Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, Haar_{\mathcal{G}}) = h(T, \mathcal{N}, Haar_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$$

Theorem

If \mathcal{G} is totally disconnected and \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f(\mathbb{F}, \mathcal{G}, Haar_{\mathcal{G}}) = f(\mathbb{F}, \mathcal{N}, Haar_{\mathcal{N}}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, Haar_{\mathcal{G}/\mathcal{N}}).$

Let $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$. Let $\mathcal{N} = \{\mathbf{0}, \mathbf{1}\}$. By Ornstein-Weiss' example, $\mathcal{G}/\mathcal{N} \cong \mathcal{G} \times \mathcal{G} = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\mathbb{F}}$.

$$\begin{aligned} f(\mathbb{F},\mathcal{G},\mathrm{Haar}_{\mathcal{G}}) &= f(\mathbb{F},\mathcal{N},\mathrm{Haar}_{\mathcal{N}}) + f(\mathbb{F},\mathcal{G}/\mathcal{N},\mathrm{Haar}_{\mathcal{G}/\mathcal{N}})\\ \log(2) &= -\log(2) + \log(4). \end{aligned}$$

 Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy.

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy.
- Noncommutative entropy.

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy.
- Noncommutative entropy.
- Entropy for hyperlinear group actions.