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Introduction

A measure preserving action � � X of a countable group � on a probability space
(X,μ) gives rise in a natural way to a von Neumann algebra L∞(X)��, through the
group measure space (or crossed product) construction of Murray and von Neumann
([MvN36]). If � is infinite and the action is free and ergodic then L∞(X) � � is
a II1 factor, a highly non-commutative infinite dimensional algebra with a positive
trace. A central problem in the theory of von Neumann algebras is the classification
up to isomorphisms of these factors in terms of their group/action data. Related to
this, it was already shown in ([Si55]) that the isomorphism class of L∞(X)�� only
depends on the equivalence relation given by the orbits of � � X. This led to the
study of actions of groups up to orbit equivalence ([D59]), an area in ergodic theory
which since then developed in parallel but closely related to von Neumann algebras.

The early years concentrated on the amenable case, culminating with Connes’
celebrated theorem that all II1 factors arising from actions of amenable groups are
isomorphic ([C76]). Also, all ergodic actions of amenable groups on the non-atomic
probability space were shown orbit equivalent in ([OW80], [CFW81]). But non-
amenable groups were used to produce large families of non-isomorphic factors in
([MvN43], [D63], [Sch63], [Mc70], [C75]), indicating the richness of the theory.
Rigidity phenomena started to unveil in the work of Connes ([C80]), who discovered
that factors arising from groups with property (T) of Kazhdan have countable outer
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automorphism and fundamental groups ([C80]). On the OE side, Zimmer obtained
a cocycle superrigidity result for actions of higher rank semisimple Lie groups, a
dynamical generalization of Margulis superrigidity which enabled him to prove that
free ergodic actions of lattices such as SL(n,Z) are non-OE for different n’s ([Z80]).
Surprising non-embeddability results for II1 factors arising from certain lattices were
then shown in ([CJ85], [CoH89]). More applications of all these ideas were derived
in ([P86], [GoNe87], [GeGo88], [CoZ89]).

We present in this paper some recent progress made in these areas, triggered
by the discovery in ([P01a], [P01b]) that if a group action � � X satisfies both a
rigidity condition (e.g. a weak form of property T) and a deformability property (e.g.
Haagerup property on the group, or Bernoulli-like malleability on the action), then
the overall rigidity ofL∞(X)�� is considerably enhanced. Two new techniques, de-
formation/rigidity and intertwining subalgebras, were developed to exploit this idea
([P01b], [P03], [P04a]). This led to the first strong rigidity results in von Neumann
algebra theory, showing that any isomorphism between factors arising from Bernoulli
actions of Kazhdan groups comes from conjugacy of actions and isomorphism of
groups ([P03], [P04a]). When combined with work of Gaboriau in OE ergodic the-
ory ([G00], [G01]), it also led to the solution in ([P01b], [P03]) of long standing
open problems of Murray–von Neumann ([MvN43]) and Kadison ([Ka67]) on the
fundamental group of factors.

The von Neumann algebra framework and deformation/rigidity techniques also
allowed proving cocycle superrigidity with arbitrary discrete groups as targets for all
Bernoulli actions � � (X0, μ0)

� , first in the case � is Kazhdan ([P05]), then for
� a product between a non-amenable and an infinite group ([P06]). When applied
to cocycles coming from OE, this provided new OE superrigidity results, showing
that if in addition � has no finite normal subgroups then any OE between a Bernoulli
�-action and a free action � � Y of an arbitrary countable group comes from a
conjugacy. This added to the recent rigidity results obtained in OE ergodic theory
using measure theoretic framework in ([Fu99a], [Fu99b], [G00], [G02], [MoS02];
see [S05] for a survey).

The presentation is organized as follows: In Sections 1, 2 we recall the basic
definitions related to II1 factor framework and its specific analysis tools (c.p. maps
and Hilbert bimodules, Jones basic construction). In Section 3 we discuss the rigidity
statements we aim to prove and review past progress. Section 4 explains the use of
“separability arguments” in rigidity results while Sections 5, 6 describe the intertwin-
ing and resp. deformation/rigidity techniques. In Sections 7–10 we state the results
obtained through these techniques in ([P01b], [P03], [P04a], [IPeP05], [P05]).

1. The II1 factor framework

A von Neumann algebra is an algebra of linear bounded operators on a Hilbert
space H , containing idH , closed under the adjoint ∗-operation and closed in the
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weak operator topology given by the seminorms |〈T ξ, η〉|, T ∈ B(H), ξ, η ∈ H .
These conditions ensure that once an operator T lies in the algebra so does its polar
decomposition, and if in addition T = T ∗ then the functional calculus of T with Borel
functions belongs to it as well. The algebra B(H) of all linear bounded operators
on H is an example of a von Neumann algebra. If X ⊂ B(H) is a selfadjoint subset
(for instance the range of a unitary representation of a group) then the set X′ of oper-
ators T ∈ B(H) commuting with all elements in X is a von Neumann algebra. By
a well known theorem of von Neumann, a ∗-algebra M ⊂ B(H) is a von Neumann
algebra iff it is equal to its bicommutant M ′′ = (M ′)′.

1.1. von Neumann algebras from group actions. If (X,μ) is a standard probabil-
ity space then the algebra of left multiplication operators by elements inL∞(X) on the
Hilbert space L2(X) is a von Neumann algebra. By the spectral theorem, any singly
generated abelian von Neumann algebraA is in fact of this form. One identifies (func-
torially) a measure preserving isomorphism of probability spaces� : (X,μ) 	 (Y, ν)

(defined a.e.) with the integral preserving algebra isomorphism� : (L∞X,
∫ ·dμ) 	

(L∞Y,
∫ ·dν), via the relation �(x)(t) = x(�−1(t)) for all x ∈ L∞X, t ∈ X. In

particular, this gives a canonical identification of the groups Aut(X,μ), Aut(L∞(X),∫ ·dμ).
Let now � be a countable group and � � X a measure preserving (m.p.) action

of � on the probability space (X,μ), viewed also as an action of � on the algebra
L∞(X) preserving the integral, via the above identification. Consider the Hilbert
space H = L2(X) ⊗ �2� and let L∞(X) acting on it by left multiplication on the
L2(X)-component. Let also � act on H as the multiple of the left regular repre-
sentation λ, given by the unitary operators ug = σg ⊗ λg , g ∈ �, where σ denotes
the representation of � on L2(X) extending � � L∞(X). Let M0 be the algebra
generated by L∞(X) and {ug}g in B(H). The group measure space von Neumann
algebra associated to � � X is the weak closure of the algebra M0 and is denoted
L∞(X)� �.

It is convenient to view the dense subalgebra M0 ⊂ M = L∞X � � as the alge-
bra of “polynomials” �gagug with “coefficients” ag in L∞(X), “indeterminates”
(called canonical unitaries) ug, g ∈ �, and multiplication rule (agug)(ahuh) =
agσg(ah)ugh, and to view H as the Hilbert space ⊕gL

2(X)ug of square summable for-
mal “Fourier series”�gξgug with coefficients ξg inL2(X). The same product formula
gives an action ofM0 on H by left multiplication. In fact, if a series x = �gagug ∈ H
is so that its formal product with any element in�hξhuh ∈ H remains in H , then the
left multiplication operator by x lies in M = Mwo

0 , and any element of M is of this
form.

The particular case when X is reduced to a point (i.e. L∞(X) = C) of this
construction gives the group von Neumann algebraL� associated with� ([MvN43]).
It is naturally isomorphic to the von Neumann subalgebra of L∞(X) � � generated
by the canonical unitaries {ug}g .
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If we viewL∞(X) as a subalgebra ofM via the identification a = aue = a1, then
the integral

∫ ·dμ extends to a functional τ on M , by τ(x) = ∫
xdμ = 〈x, 1〉H =∫

aedμ, where x = �gagug ∈ M . The functional τ is positive (i.e. τ(x∗x) ≥ 0 for
all x ∈ M), faithful (i.e. τ(x∗x) = 0 iff x = 0) and satisfies τ(xy) = τ(yx) for all
x, y ∈ M , i.e. it is a trace onM . Moreover, like the integral onL∞(X), τ is countably
additive on mutually orthogonal projections, i.e. it is normal on M .

Like L∞(X), which we view both as a subspace of L2(X) and as operators of left
multiplication on L2(X), we view x = �gagug ∈ M both as an element in H and as
operator of left multiplication on H . The trace τ then recovers the Hilbert norm on
M ⊂ H by ‖x‖2 = τ(x∗x)1/2 and H is the completion of M in this norm.

1.2. von Neumann algebras from equivalence relations. An action � � X is
free (i.e. μ({t ∈ X | gt = t}) = 0 for all g �= e) iff L∞(X) is maximal abelian
in M . If this is the case, then one can give the following alternative description of
the von Neumann algebraM = L∞(X)��, which only depends on the equivalence

relations R�
def= {(t, gt) | t ∈ X, g ∈ �} (cf. [Si55]): Let m be the unique measure

on R = R� satisfying m({(t, gt) | t ∈ X0}) = μ(X0) for all X0 ⊂ X and g ∈ �. If
one identifies R with X × � via (t, gt) �→ (t, g), then m corresponds to the product
measure onX×�, soL2(R,m) identifies naturally withL2(X)⊗�2� = �gL

2(X)ug .
Under this identification, if x, y ∈ L2(R,m) then their formal product as elements
in �gL2Xug corresponds to “matrix multiplication” xy(t, t ′) = �s∼t x(t, s)y(s, t ′)
for all (t, t ′) ∈ R. ThenM is equal to the set L(R) of operators on L2(R) for which
there exists x ∈ L2(R)with (matrix) product xy lying in L2(R), for any y ∈ L2(R).
Note thatL∞(X) then corresponds to “matrices” x that are supported on the diagonal
{(t, t) | t ∈ X} ⊂ R.

The above construction of the von Neumann algebra L(R) works in fact for
any equivalence relation R on (X,μ) that can be generated by a countable group
� ⊂ Aut(X,μ) (cf. [FM77]). Under this construction, L∞(X) embeds in L(R) as
the subalgebra of “diagonal matrices” on R, and is always maximal abelian in L(R).
Thus, unless � acts freely, the construction of L(R�) and L∞(X)� � are different.
For instance if X is a one point set then L∞(X)� � = L� while L(R�) = C. The
algebra L(R) has a canonical trace, given by τ(x) = 〈x, 1〉 = ∫

x0dμ, where x0 is
the restriction of x ∈ L2(R) to the diagonal. Thus, τ is positive, normal, faithful and
it extends

∫ ·dμ. If � � X is not free then one still has a set of canonical unitaries
{ug | g ∈ �} in L(R�) which satisfy ugau∗

g = g(a) for all a ∈ L∞(X), and which
together with L∞(X) generate L(R�), but with τ(ug) being the measure of the set
{t ∈ X | gt = t} (thus possibly non-zero for g �= e).

The maximal abelian subalgebraA = L∞(X) inM = L(R) has the property that
the normalizer of A in M , NM(A) = {u ∈ U(M) | uAu∗ = A}, generates M as a
von Neumann algebra, i.e. NM(A)

′′ = M ([Di54]). Maximal abelian ∗-subalgebras
A ⊂ M in arbitrary II1 factors which satisfy this property are called Cartan subalge-
bras ([Ve71], [FM77]). It is shown in ([FM77]) that if A ⊂ M is a Cartan subalgebra
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inclusion, then there exist a m.p. action � � A = L∞(X,μ) and a U(A)-valued
2-cocycle v for the action such that (A ⊂ M) = (L∞(X) ⊂ L(R, v)), where the
von Neumann algebra L(R, v) is defined similarly with L(R) but with the product
of canonical unitaries being twisted by the cocycle.

1.3. Conjugacy, orbit equivalence and algebra isomorphism. A conjugacy of
group actions � � (X,μ), � � (Y, ν) is an isomorphism of probability spaces
� : (X,μ) 	 (Y, ν) and a group isomorphism δ : � 	 � such that δ(g) �� = � � g
for all g ∈ �. If the actions are faithful (i.e. any g �= e implements a non-trivial
automorphism) then the condition ���−1 = � is sufficient to ensure conjugacy.
A conjugacy (�, δ) implements an algebra isomorphism θ = θ�,δ : L∞(X) � � 	
L∞(Y )��, by θ(�gagug) = �g�(aδ(g))vδ(g), where vh are the canonical unitaries
in L∞(Y )��. Thus, θ extends � : L∞(X) 	 L∞(Y ).

By the construction in 1.2, an isomorphism� : (X,μ) 	 (Y, ν), viewed as algebra
isomorphism � : L∞(X) 	 L∞(Y ), extends to an isomorphism L(R�) 	 L(R�)

iff � takes R� onto R�, i.e. if it is an orbit equivalence (OE) of � � X,� � Y

(cf. [Si55], [FM77]). In other words, an OE of actions � � X,� � Y is the same
as an isomorphism of the associated von Neumann algebras L(R�) 	 L(R�) (or
L∞(X)�� 	 L∞(Y )�� when actions are free) that takes L∞(X) onto L∞(Y ). A
third point of view, adopted in ([D59]; cf. also [Si55]), is to consider the full group [�]
of an action � � X as the set of automorphisms α of (X,μ) for which there exists
a (countable) partition of X into measurable sets Xαg , g ∈ � such that α coincides
with g on Xαg . Equivalently, α ∈ [�] iff the graph of α is contained in R� . It is then
immediate to see that � : X 	 Y is an OE of � � X,� � Y iff �[�]�−1 = [�],
i.e. � conjugates the full groups.

Triggered this way by Murray–von Neumann group measure space construction,
these observations led to the study of actions up to OE ([D59]), initiating what today
is called orbit equivalence ergodic theory. The fact that OE of actions can be defined
in both measure theoretic and von Neumann algebra terms allows a powerful dual
approach to this subject. When adopting the point of view of studying group actions,
an isomorphism of algebras L∞(X) � � 	 L∞(Y ) � � (or L(R�) 	 L(R�)) is
called a von Neumann equivalence (vNE) of � � X,� � Y . Thus, “conjugacy ⇒
OE ⇒ vNE”, but the reverse implications fail in general (cf. [D59], [CJ82]).

1.4. Ergodic actions and II1 factors. A von Neumann algebraM having a faithful
normal trace τ is called finite. Thus L∞(X) � �, L(R�) and their von Neumann
subalgebras are finite.

A von Neumann algebra M is a factor if its center, Z(M) = {z ∈ M | zx =
xz for all x ∈ M}, is equal to C1M . A finite factor (M, τ) which has atoms (i.e.
non-zero p ∈ P (M) with pMp = Cp) is of the formM 	 Mn×n(C), for some n. A
finite factor M has no atoms (i.e. it is diffuse) iff it is infinite dimensional. M is then
called a type II1 factor. Like the algebra Mn×n(C), a II1 factor has a unique trace τ
with τ(1) = 1, and projections in M can be conjugated by a unitary element in M
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iff they have same trace. In other words, τ is a “dimension function” on P (M), but
while τ(P (M)) = {k/n | 0 ≤ k ≤ n} when M = Mn×n(C), for II1 factors the range
of τ on projections is all the interval [0, 1].

The trace of a non-factorial finite von Neumann algebra M is not unique, but M
does have a unique conditional expectation Ctr onto its center, called the central trace
onM , which satisfies Ctr(xy) = Ctr(yx) for all x, y ∈ M , is normal faithful and has
the property that projections are unitary conjugate iff they have the same Ctr.

The algebraL(R�) associated to an action� � X is a factor iff� acts ergodically
on (X,μ), i.e., if Z ⊂ X measurable satisfies g(Z) = Z for all g ∈ �, then μ(Z) =
0, 1. If this is the case, thenL(R�) is II1 iffX (orL∞(X)) has no atoms. In particular,
if � � X is free, then L∞(X)� � is a factor iff � � X is ergodic. It is a II1 factor
iff action is ergodic and X diffuse (or |�| = ∞).

Given any countable (infinite) group �, its action on the non-atomic probability
space by Bernoulli shifts,� � (X0, μ0)

� 	 (T, μ), is free and ergodic (even mixing).
More generally, if � acts on a countable set I then the action � � (X0, μ0)

I , given
by g(ti)i = (tg−1i )i , is free whenever {i | gi �= i} is infinite for all g �= e and it is
ergodic iff |�i| = ∞ for all i ∈ I , in which case it is even weak mixing, i.e. there
exists gn ∈ � such that limn μ(gn(Z)∩Z) = μ(Z)2 for all Z ⊂ X. Such actions are
called generalized Bernoulli actions.

If an action � � X is not free, then a sufficient condition for L∞(X) � � to
be a II1 factor is that the action be ergodic and � be infinite conjugacy class (ICC),
i.e. |{ghg−1 | g ∈ �}| = ∞ for all h �= e. In particular, L� is a II1 factor iff � is
ICC. Examples of ICC groups are the infinite symmetric group S∞, the free groups
Fn, 2 ≤ n ≤ ∞, the groups PSL(n,Z), n ≥ 2.

In fact, given any finite von Neumann algebra (P, τ ) and an action � � (P, τ )

of a countable group � on it, one can construct the crossed product von Neumann
algebra P � � acting on the Hilbert space �2(�) ⊗ L2(P ), exactly as in the case
(P, τ ) = (L∞(X),

∫ ·dμ). Freeness of the action means in this general context that
if g ∈ � and v ∈ P satisfy vx = g(x)v for all x ∈ P , then either g = e or v = 0,
and it is equivalent to the condition P ′ ∩P �� = Z(P ). If the action is free ergodic
then the crossed product algebra is a factor.

Other constructions of factors are the tensor product and the free product (pos-
sibly with amalgamation) of finite factors (Pi, τi), i = 1, 2, . . . , which have self-
explanatory definitions. A useful framework for analysis arguments is the ultraprod-
uct construction of II1 factors �ωMn, associated to a sequence of finite factors Mn,
with dimMn → ∞, and a free ultrafilter ω on N (e.g. [Mc70], [C76]).

1.5. Approximately finite dimensional II 1 factors. Murray–von Neumann showed
that all group measure space II1 factors arising from actions of locally finite groups,
and more generally all approximately finite dimensional (AFD) II1 factors, are mu-
tually isomorphic ([MvN43]). The unique AFD II1 factor, also called the hyperfinite
II1 factor and denoted R, can be realized as the group factor L(S∞), or as the infi-
nite tensor product ⊗n(M2×2(C), tr)n. Since the relative commutant P ′

0 ∩M of any
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finite dimensional subfactor P0 of a II1 factor M is also a II1 factor, one can con-
struct a copy of R = ⊗n(M2×2, tr)n inside any II1 factor M . A remarkable theorem
of Connes shows that all amenable II1 factors are AFD and thus isomorphic to R
([C76]). In particular II1 factors of the form L∞(X) � � with � amenable, and all
their subfactors, are isomorphic to R. Similarly, by ([OW80], [CFW81]), all free
ergodic actions of infinite amenable groups are OE and any two Cartan subalgebras
of R are conjugate by an automorphism of R. The outer automorphism group of R
is huge, in fact any separable locally compact group � acts faithfully of R by outer
automorphisms (e.g. if � is countable discrete then the “non-commutative” Bernoulli
action � � R = ⊗g∈�(M2×2(C), tr)g is properly outer) and the group of inner
automorphisms Int(R) = Ad(u) | u ∈ U(R)} is dense in Aut(R), when the latter
is endowed with the natural Polish group structure given by pointwise convergence
in ‖ · ‖2.

1.6. Amplifications and the fundamental group. The “continuous dimension”
phenomenon allows defining the algebra of “t by t matrices” over a II1 factor M ,
or amplification of M by t , Mt , for any positive real numbers t : First note that if
p ∈ P (M) then the algebra pMp, with normalized trace τ(·)/τ(p), is a II1 factor.
Similarly if n ≥ 1 is an integer then Mn×n(M) 	 Mn×n(C)⊗M is a II1 factor, with
the normalized trace τ((xij )i,j ) = �iτ(xii)/n. With this in mind, for t > 0 define
Mt to be the (isomorphism class of the) algebra pMn×n(M)p, where n ≥ t is an
integer and p ∈ Mn×n(M) is a projection of (normalized) trace t/n.

Rather than studying only isomorphisms between II1 factors associated with ac-
tions, one considers stable isomorphisms (stable vNE) L∞(X)�� 	 (L∞(Y )��)t
and respectively stable orbit equivalence R� 	 Rt

� of actions � � X,� � Y ,
where Rt

� is the equivalence relation on a subsetY0 of measure t/nofY×{1, 2, . . . , n}
obtained by restriction to Y0 of the product between R� and the transitive relation on
the n-point set, for some n ≥ t . It is easy to see that Rt

� is itself implementable by a
countable �′ ⊂ Aut(Y0, μ). We write L∞(Y )t for L∞(Y0).

Since both vNE and OE isomorphisms can be “amplified”, stable vNE and OE
are equivalence relations and (Ms)t = Mst . The fundamental group of a II1 factor
M (resp. of an equivalence relation R� implemented by an ergodic action � � X)

is defined by F (M)
def= {t > 0 | Mt 	 M} (resp. F (R�)

def= {t > 0 | Rt
� 	 R�}).

An amplification of an AFD factor is clearly AFD. Thus, F (R) = R∗+. Similarly,
if R denotes the (unique) amenable equivalence relation implemented by any free
ergodic action of an infinite amenable group, then F (R) = R∗+.

1.7. Representations of finite algebras (Hilbert modules). If (M, τ) is a finite von
Neumann algebra then L2(M) denotes the completion of M in the norm ‖ · ‖2 given
by the trace, then M can be represented on L2(M) by left multiplication operators,
as a von Neumann algebra. This is the standard representation of M .

If (M, τ) = (L∞X,
∫ ·dμ) then L2(M) coincides with L2(X), and each ξ ∈

L2(M) = L2(X) can be viewed as the closed (densely defined) operator of (left)
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multiplication by ξ , with the spectral resolution of |ξ | and the partial isometry u =
ξ |ξ |−1 all lying in L∞(X). For arbitrary (M, τ), L2(M) can be similarly identified
with the (densely defined) closed linear operators ξ on L2(M), containing M in
their domain, with |ξ | = (ξ∗ξ)1/2 having spectral resolution et , t ≥ 0, in M and
u = ξ |ξ |−1 inM as well. The fact that the vector 1 is in the domain of ξ is equivalent
to ξ being “square integrable”, i.e.

∫
t2dτ(es) < ∞. Similarly, the completion of

M in the norm ‖x‖1 = τ(|x|), denoted L1(M), can be identified with the space of
closed linear operators ξ onM with polar decomposition ξ = u|ξ | satisfying u ∈ M ,
|ξ |1/2 ∈ L2(M). One has (L1(M))∗ = M , i.e. L1(M) is the predual of M .

In fact, M acts on L2(M) by right multiplication as well, giving this way the
standard representation of Mop (the “opposite” of the algebra M). The left-right
multiplication algebras M,Mop commute, one being the commutant of the other.
If one extends the antilinear isometric map JM(x) = x∗ from M to L2(M) by den-
sity, then J 2

M = id and for each x ∈ M , viewed as left multiplication operator on
L2(M), JMxJM gives the operator of right multiplication by x∗. Thus, Mop =
JMMJM = M ′.

Any other (separable) representation M ⊂ B(H) of M as a von Neumann al-
gebra (or left Hilbert M-module H) is of the form H 	 ⊕nL

2(M)pn, for some
{pn}n ⊂ P (M), with the action of M by left multiplication. If M is a factor,

the number dimMH
def= �nτ(pn) ∈ [0,∞] characterizes the isomorphism class

of H . The M-module H can then be alternatively described as the (left) M-module
e11L

2(Mn×n(M))p, where n ≥ dim H , e11 ∈ Mn×n(C) is a one dimensional pro-
jection and p ∈ P (Mn×n(M)) has (normalized) trace equal to dim H/n. Thus, the
commutant M ′ of M in B(H) is a II1 factor iff dimMH < ∞ and if this is the case
then M ′ 	 (Mt)op, where t =dimMH . For general finite von Neumann algebra M ,
M ′ is finite iff �n Ctr(pn) is a densely defined operator in Z(M).

2. Some II1 factor tools

Thus, a free ergodic m.p. action � � X of an infinite group on a non-atomic prob-
ability space gives rise to a II1 factor M = L∞(X) � � with trace extending the
integral on L∞(X) and a natural pre-Hilbert space structure. Elements x ∈ M have
Fourier-like expansion, x = �gagug , with coefficients in L∞(X) and “basis” {ug}g
made out of unitary elements that satisfy uguh = ugh and implement the �-action on
L∞(X), by ugau∗

g = g(a). Spectral analysis and distribution behavior of elements
in M already reveal the dynamical properties of the group action. But in order to
get proper insight into the structure of a II1 factor, for instance to recapture from the
isomorphism class ofM = L∞(X)�� the initial building data � � X (or part of it),
we need to complement such local von Neumann algebra analysis tools with more
global ones, some of which we briefly explain in this section.
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2.1. Hilbert bimodules and c.p. maps. While the Hilbert modules of a II1 factorM
reflect so nicely the continuous dimension phenomenon, they do not provide any actual
insight into specific properties of M , the way a “good” representation theory should
do. It was Connes who discovered, in the early 80s, that the appropriate representation
theory for a II1 factor M is given by the Hilbert M-bimodules, i.e. Hilbert spaces H
with commuting von Neumann algebra representations M,Mop ⊂ B(H) ([C82]).
Moreover, the same way the GNS construction provides an equivalence between
unitary representations of a group and its positive definite functions, Hilbert M-
bimodules can be “encoded” into a completely positive (c.p.) map φ : M → M , i.e.
a linear map with all amplifications φn = φ ⊗ id on Mn×n(M) 	 M ⊗ Mn×n(C),
n ≥ 1, positive.

This proved to be a deep, important idea at the conceptual level. Thus, Connes–
Jones used this point of view in ([CJ85]) to define the property (T) for abstract II1
factors M , by requiring: there is a finite F ⊂ M and ε > 0 such that if H has a unit
vector with ‖yξ − ξy‖ ≤ ε for all y ∈ F , then H contains a non-zero central vector
ξ0, i.e. xξ0 = ξ0x for all x ∈ M . They proved that this is equivalent to the following
condition for c.p. maps: for all ε0 there is a finite F ⊂ M and δ > 0 such that if a
subunital subtracial c.p. map φ : M → M satisfies ‖φ(y) − y‖2 ≤ δ for all y ∈ F ,
then ‖φ(x) − x‖2 ≤ ε for all x in the unit ball (M)1 of M . Moreover, they pointed
out that all the representation theory of a group � is reflected into the “representation
theory” of a II1 factor L∞(X) � � of the group action � � X, since any positive
definite function ϕ on� gives rise to a c.p. map φ = φϕ , by φ(�agug) = �gϕ(ag)ug .
This led to a notion of Haagerup property for abstract II1 factors and the proof that
property (T) II1 factors cannot be embedded into factors having this property ([CJ85]).
It also led to several generalizations of all these notions in ([P86], [P01b]), as also
explained in Section 6, and more recently to the construction of new cohomology
theories for II1 factors ([CSh04], [Pe04]).

Note that any automorphism ofM , and more generally endomorphism θ : M → M

(not necessarily unital), is subunital subtracial c.p. map. Thus, c.p. maps can be
viewed as “generalized symmetries” of M , or as a very general notion of morphisms
of M into itself. This latter point of view was also present in work of Effros–Lance
([EL77]) and Haagerup ([H79], [CaH85], [CoH89]), and is now central to the theory
of operator spaces. Altogether, c.p. maps, or equivalently Hilbert bimodules (also
called correspondences by Connes [C82]) provide a key “global tool” in the study of
II1 factors.

2.2. Subalgebras and the basic construction. The study of subalgebras of a II1
factor M is an important part of the theory of von Neumann algebras, one of the
most interesting aspects of which is Jones far reaching theory of subfactors ([J83],
[J90]). For us here, the consideration of subalgebras of M is mostly in relation to
recovering the initial construction ofM . For instance, if θ : L∞(X)�� 	 L∞(Y )��
is an isomorphism, then we need to relate the positions of P = θ(L∞(X)) (resp.
P = θ(L�)) and N = L∞(Y ) (resp. N = L�) inside M = L∞(Y )��.
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If (M, τ) is a finite von Neumann algebra then any von Neumann subalgebra N
of M is finite, with τ|N its faithful normal trace. The closure of N in the Hilbert
space L2(M) is clearly isomorphic to L2(N) and a Radon–Nikodym type theorem
shows that the orthogonal projection eN of L2(M) onto L2(N) ⊂ L2(M) takes M
(as a subspace of L2(M)) onto N . The restriction of eN to M , denoted EN , gives
a τ -preserving projection of M onto N . Moreover EN(M+) = N+ and EN is N-
bilinear, i.e. EN is a conditional expectation of M onto N . Moreover, EN is the
unique expectation which preserves τ .

When viewed as operators on the Hilbert space L2(M), x ∈ M and eN satisfy
the relations: (a) eNxeN = EN(x)eN ; (b) x ∈ N iff [x, eN ] = 0. Let 〈M, eN 〉
denote the von Neumann algebra generated in B(L2(M)) by M and eN . Since we
have ∨{x(eN(L2(M))) | x ∈ M} = L2(M), from (a), (b) it follows that spanMeNM
is a *-algebra with support equal to 1 in B(L2(M)). Thus, 〈M, eN 〉 = spw{xeNy |
x, y ∈ M}. Also, 〈M, eN 〉 = (JMNJM)

′, eN 〈M, eN 〉eN = NeN , implying that
there are projections pn ↗ 1 in 〈M, eN 〉 such that pn〈M, eN 〉pn is a finite von
Neumann algebra. Thus, 〈M, eN 〉 is a semifinite von Neumann algebra and it is
finite iff dimNL

2(M) < ∞ (in the sense explained in 1.6). This is the Jones basic
construction for P ⊂ M ([J83]). The algebra 〈M, eN 〉 is endowed with a densely
defined trace Tr by Tr(�ixieNyi) = �iτ(xiyi), for xi, yi finite sets of elements in
M . One denotesL2(〈M, eN 〉,Tr) the completion of spMeNM in the norm ‖x‖2,Tr =
Tr(x∗x)1/2, x ∈ spMeNM .

Any Hilbert subspace ofL2(M)which is invariant under multiplication to the right
by elements inN is a right HilbertN -module (i.e. a leftNop module). If H ⊂ L2(M)

is a Hilbert subspace and f is the orthogonal projection onto H then HN = H (i.e. H
is a right N -module) iff f lies in 〈M, eN 〉. The right Hilbert N-module H ⊂ L2(M)

is invariant to multiplication from the left by a von Neumann subalgebra P ⊂ M , i.e.
PH ⊂ H , iff f ∈ P ′ ∩ 〈M, eN 〉. Although all subalgebras we consider have infinite
Jones index, the idea of viewing L2(M), as well as subspaces H ⊂ L2(M) with
PHN = H , as P − N Hilbert bimodules, and the use of the basic construction as
framework, came from developments in the theory of subfactors (e.g. [PiP86], [P86],
[P94], [P97]).

3. Prototype vNE and OE rigidity statements

While all II1 factors (resp. equivalence relations) arising from ergodic actions of
amenable groups look alike, in the non-amenable case the situation is very complex
and rigidity phenomena were already detected at early stages of the subject ([MvN43],
[D63], [Mc70], [C75], etc). Our aim in the rest of the paper is to investigate more
“extreme” such rigidity phenomena, where for certain “small classes” of group actions
the reverse of the implications “conjugacy ⇒ OE ⇒ vNE” hold true as well. Typically,
we fix a class of source group actions � � (X,μ) and a class of target actions
� � (Y, ν), each of them characterized by a set of suitable assumptions, then attempt
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to show that the isomorphism of their group measure space algebras (vNE) entails
isomorphism of the groups, or orbit equivalence of the actions (OE) or, ideally, the
following type of statement:

(3.1). Under the given conditions on the source � � X and target � � Y , if
θ : L∞(X) � � 	 (L∞(Y ) � �)t , then t = 1 and there exist a unitary element
u ∈ U(L∞(Y ) � �), γ ∈ Hom(�,T) and isomorphisms � : X 	 Y , δ : � 	 �

implementing a conjugacy of the actions, such that θ = Ad(u) � θγ � θ�,δ , where
θγ is the automorphism of L∞(Y )�� implemented by γ and θ�,δ : L∞(X)� � 	
L∞(Y )�� the algebra isomorphism implemented by the conjugacy.

When the context concerns free ergodic actions, we call (3.1) a vNE strong rigidity
statement. While we do indeed obtain such results, other results will only go as far as
showing that there exists a unitary element in the target algebra u ∈ (L∞(Y ) ��)t

such that Ad(u) � θ takes L∞(X) onto L∞(Y )t , a type of result we call vNE/OE
rigidity.

Note that this latter statement is stronger than just showing vNE ⇒ OE for the
specific classes of group actions involved. Indeed, this implication would only require
proving there exists an automorphism θ0 of the target factor such that θ0 � θ takes
L∞(X) onto L∞(Y ). While the vNE/OE version of (3.1) requires the θ0 to be
inner! If the groups �,� in (3.1) are amenable, when by ([C76]) the resulting group
measure space factors are all isomorphic to R, there always exists an automorphism
θ0 taking L∞(X) onto L∞(Y ), by ([CFW81]), but there are uncountably many ways
of decomposing R as L∞(Xi) � Z, with Z � Xi isomorphic actions, without the
Cartan subalgebras L∞(Xi) ⊂ R being unitarily conjugated in R (cf. [FM77]).

The vNE/OE rigidity results can be further complemented with OE rigidity results
from ergodic theory (e.g. [G01], [Fu99a], [MoSh02]), to recuperate the isomorphism
class of the group, or derive that t = 1. Taking the same action � � X as source
and target gives information about Out(M) = Aut(M)/ Int(M) and F (M) for M =
L∞(X)� �.

If from the hypothesis of (3.1) we can only derive � 	 �, then one calls it a
vNE rigidity result. The group algebra case of such a rigidity statement, with the
assumptions on both groups to have property (T), corresponds to Connes Rigidity
Conjecture ([C82]):

(3.2). If �,� are ICC property (T) groups and L� 	 L� then � 	 �

The case whenX is a single point set of (3.1) then becomes the following stronger
form of Connes’s conjecture (see [J00]):

(3.2′). If � is a property (T) group, � an arbitrary ICC group and θ : L� 	 (L�)t ,
then t = 1 and there exist a unitary u ∈ U(L�)), an isomorphism δ : � 	 � and
γ ∈ Hom(�,T) such that θ = Ad(u) � θγ � θδ , where θγ is the automorphism of L�
implemented by γ and θδ : L� 	 L� the isomorphism implemented by δ.

Note that although (3.2′) assumes property (T) only on the source group �, giving
the statement a “superrigidity” flavor, the property (T) for � is automatic from the
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isomorphism L� 	 (L�)t , due to results in ([CJ85]). The case � = � in (3.2′)
amounts to showing that Out(L�) 	 Hom(�,T) � Out(�) and F (L�) = {1}.
Connes’ breakthrough rigidity result ([C80]), leading to his conjecture (3.2), shows
that both groups are countable, being a verification “up to countable classes” of the
formulas. To this date, the only other insight into Connes rigidity conjecture are the
results of Connes–Jones, showing that L(SL(n,Z)), n ≥ 3, cannot be embedded into
L(SL(2,Z)) ([CJ85]), and of Cowling–Haagerup, showing that if �n are lattices in
Sp(n, 1) and L(�n) ⊂ L(�m) then n ≤ m ([CoH89]).

If the isomorphism θ in (3.1) comes from a stable OE of free ergodic actions (so
θ(L∞(X)) = (L∞(Y ))t by hypothesis), then (3.1) amounts to deriving conjugacy
from OE, a statement labeled OE strong rigidity in ([Fu99b], [MoSh02]). The “ideal”
such statement is when there are no restrictions at all on the “target” side, in which
case it qualifies as OE superrigidity result. If only the isomorphism of the groups is
derived, it is called OE rigidity. This type of result already appeared in early 80s,
in pioneering work of Zimmer ([Z80], [Z84]). Thus, using his celebrated cocycle
superrigidity theorem, itself a generalization of Margulis Superrigidity, he proved that
free ergodic m.p. actions of the groups SL(n,Z), n = 2, 3, . . . , are orbit inequivalent
for different n’s. Other OE rigidity results followed ([M82], [GeGo88]). By late 90s
OE superrigidity phenomena started to unveil in the work of Furman, who added new
ideas to the approach in ([Z91]) to derive that, more than just being rigid, actions of
higher rank lattices such as SL(n,Z) � Tn, n ≥ 3, are in fact OE superrigid, i.e. any
orbit equivalence between such an action and an arbitrary free m.p. action of a discrete
group� comes from a conjugacy ([Fu99a, Fu99b]). Another important development
on the OE side came with the work of Gaboriau who introduced a series of OE
numerical-invariants for equivalence relations, allowing him to show that free m.p.
actions of the free groups Fn are OE inequivalent for different n ≥ 1 ([G00, G01]).
A new set of OE superrigidity results was then established by Monod–Shalom, for
doubly ergodic actions of products of word-hyperbolic groups ([MoS02]; see [Mo06],
[S05] for survey articles).

These OE rigidity results were obtained by using a multitude of techniques, but all
in measure theoretic framework. By 2001, vNE/OE rigidity started to emerge as well
([P01b]). Combined with ([G00]), they led to the first vNE rigidity results, where
isomorphism of groups could be deduced from isomorphism of group measure space
algebras, and factors with trivial fundamental group could be exhibited ([P01b]; see
Section 7). Shortly after, vNE strong rigidity results of the form (3.1)were proved by
using exclusively II1 factor framework ([P03], [P04a]; see Section 8). They provided
completely new OE superrigidity results as well, obtained this time with von Neumann
algebra methods ([P04a], [P05]; see Section 9; also [V06] for a combined presentation
of these vNE and OE results).



Deformation and rigidity for group actions and von Neumann algebras 13

4. Proving rigidity “up to countable classes”

Before discussing the “precise” rigidity results mentioned above, we explain a method
for deriving vNE and OE rigidity statements “up to countable classes”, which grew
out of Connes’ initial rigidity paper ([C80]). Thus, by using the separability of the
Hilbert space L2(M) of a II1 factor M and the observation that two copies of the
left regular representation λ1, λ2 of � into M that are sufficiently close on a set of
generators of � can be intertwined in M , it was shown in ([P86]) that in fact all II1
factors of the form M = L∞(X) � �, with � a property (T) group, have countable
fundamental group. Moreover, if the generators of a property (T) II1 subfactor N1
of a separable II1 factor M are almost contained into another subfactor N2 ⊂ M ,
then a “corner” of N1 can be unitarily conjugated into N2. By separability of M this
showed that M contains at most countably many property (T) subfactors up to stable
isomorphism ([P86]).

These are typical examples of what we call separability arguments, leading to
rigidity statements “up to countable classes”. They perfectly illustrate the power of
the II1 factor framework. Such arguments were revived a few years ago, leading
to new applications ([P01b], [Hj02], [Oz02], [GP03]). Thus, Hjorth proved that an
infinite property (T) group � has uncountably many non-OE actions ([Hj02]). Since
by ([CW80], [Sc81]) any non-amenable, non(T) group has at least two non-OE free
ergodic m.p. actions, this shows that any non-amenable group has at least two non-OE
actions (in fact even non-vNE). His proof starts by noticing that a property (T) group
� has uncountably many non-conjugate actions σi (using Gaussian actions to produce
the family). If there exist only countably many equivalence relations, then there must
be uncountably many σi with same OE class R� . The σi’s give copies λi of the
left regular representations in the normalizer of L∞(X) in L(R�). As in ([P86]), by
separability there exist i �= j such that λi and λj can be intertwined by some b �= 0
in M = L(R�). Additional work shows that b can be “pushed” into the normalizer
of L∞(X), implying that σi, σj are conjugate, contradiction.

Another illustration is Ozawa’s proof ([Oz02]) that there exists no separable II1
factor M containing isomorphic copies of any separable II1 factor (not-necessarily
with same unit as M): By a theorem of Gromov there exists a property (T) group �
with uncountably many non-isomorphic simple quotients �i . Assuming there exists
a separable II1 factorM with L(�i) ⊂ M for all i, by the same separability argument
as above for λi’s the left regular representation of�i , but all viewed as representations
of the group �, one gets an intertwiner between λi, λj for some i �= j . This implies
�i 	 �j , contradiction.

In this same vein, let us note that by using a theorem of Shalom in ([Sh00]),
showing that any property (T) group is a quotient of a finitely presented property
(T) group (only countably many of which exist), separability arguments as above
show that Connes rigidity conjecture (3.2) does hold true “up to countable classes”,
i.e. the functor � �→ L� on ICC property (T) groups is (at most) countable to 1.
Indeed, because if M = L�i for uncountably many non-isomorphic groups �i , then
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by ([Sh00]) we may assume they are all quotients of the same property (T) group �,
and the previous separability argument gives a contradiction. Similarly one can prove
that the strong rigidity conjecture (3.2′) holds true “modulo countable classes”.

On the OE side, the same argument shows that there are at most countably many
mutually measure equivalent (ME) property (T) groups (recall from [Fu1] that � is
ME to � if there exist free ergodic m.p. actions � � X, � � Y which are stably
OE). In other words, the following holds true “modulo countable classes”: If two
property (T) groups are measure equivalent then they are virtually isomorphic.

A separability argument was also used to prove that free groups have uncountably
many OE inequivalent actions, in ([GP03]): One starts by showing that for all Fn � X

free, with one generator acting ergodically, there exists an increasing “continuous”
family of sub-equivalence relations RFn,t ⊂ RFn , 0 < t ≤ 1, each one implemented
by a free ergodic m.p. action of Fn. Taking the initial Fn-action to be the restriction
to Fn ⊂ SL(2,Z) of the natural action SL(2,Z) � T2 = Ẑ2 and using the rigidity
of this action (see 5.3), it follows from ([P01b]) that RFn,t are rigid for t ≥ c, for
some c < 1. Then a separability argument is used to show that RFn,t , t ∈ [c, 1] (in
fact even the II1 factors L(RFn,t )) are mutually non-isomorphic modulo countable
classes.

Thus, separability arguments can be used to prove rigidity results in many situ-
ations, often without too much work, but they give the answer only “up to count-
able classes”. However, such arguments brought up the following simple fact, spe-
cific to II1 factor framework, which is useful in proving “precise” rigidity results
as well: If a group � has property (T), then all its representations into a II1 factor
are isolated. More precisely, if M is a II1 factor, (F, ε) gives the critical neighbor-
hood of the trivial representation of � and πi : � → U(piMpi), i = 1, 2, satisfy
‖π1(h) − π2(h)‖2 < ε‖p1p2‖2 for all h ∈ F , then there exists a non-zero partial
isometry v in M such that π1(g)v = vπ2(g) for all g ∈ �.

5. Techniques for intertwining subalgebras

Let θ : L∞(X)� � 	 L∞(Y )�� be an isomorphism of II1 factors associated with
free ergodic m.p. actions � � X, � � Y , as in (3.1). Denote by M the target
factor L∞(Y )��, with {vh}h its canonical unitaries, while ug denotes the canonical
unitaries in the source factorL∞(X)��. For simplicity, we identifyL∞(X)�� with
M via θ . Proving a statement like (3.1)means finding a unitary u ∈ M that conjugates
P = L∞(X) onto N = L∞(Y ), and possibly {ug}g into {Tvh}h (simultaneously!).

This is difficult even if we somehow know that P,N are uniformly close one to
another, but careful averaging techniques can be used to derive the desired conclusion.
However, not being allowed “countable error”, as in Section 4, there is no reason an
isomorphism θ would take one structure close to the other, even on finite sets. This
fact constitutes a major obstacle in getting “precise” vNE rigidity results. Moreover,
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the Connes–Jones example ([CJ82]), where a group of the form� = �0 ×�1, with�0
property (T) and �1 an infinite product of non-commutative groups, is shown to have
two non-OE free ergodic actions that give the same von Neumann algebra, suggests
that vNE rigidity may in fact not occur.

Such problems were overcome in recent years due to a combination of two new
ideas and sets of techniques, that we call deformation/rigidity and intertwining sub-
algebras (cf. [P01b], [P03], [P04a]).

The intertwining technique establishes some efficient criteria for deciding whether
two von Neumann subalgebras P,N of a II1 factor M can be conjugated one into
the other by a unitary element in M , or more generally if one can find b ∈ M

such that pPpb ⊂ bN , for some p ∈ P (P ) with pb �= 0. If such an “in-
tertwiner” b exists, we write P ≺M N . Of equal importance in this problem-
atic are the techniques for evaluating relative commutants P ′ ∩M and normalizers
N (P ) = {u ∈ U(M) | uPu∗ = P } of subalgebras P ⊂ M , which we view as part
of the theory of “intertwining subalgebras”.

The first criteria for whetherP ≺M N and for estimatingP ′∩M,N (P )′′ appeared
in ([P83]; see also [P91]), but for particular classes of factorsM and subalgebras. The
general criteria below, which give several equivalent characterizations of P ≺M N ,
is due to insight gained during 1983–1997 in the study of subalgebras of finite Jones
index in ([PiP86], [P86], [P91], [P94], [P97]):

Theorem 5.1 ([P01b], [P03]). Let (M, τ) be a finite von Neumann algebra and
P,N ⊂ M von Neumann subalgebras. The following are equivalent:

(i) P ≺M N .

(ii) There exists a Hilbert P −N bimodule H ⊂ L2(M) such that dim HN < ∞.

(iii) There exists a non-zero projection f ∈ P ′ ∩ 〈M, eN 〉 such that Tr(f ) < ∞.

(iv) There exist projections p ∈ P , q ∈ N a unital isomorphism ψ : pPp → qNq

(not necessarily onto) and a partial isometry v ∈ M such that vv∗ ∈ pPp′ ∩
pMp, v∗v ∈ ψ(pPp)′ ∩ qMq and xv = vψ(x) for all x ∈ pPp.

Moreover, non-(i) is equivalent to:

(v) For all a1, . . . , an ∈ M and for all ε > 0 there exists u ∈ U(P ) such that
‖EN(aiuaj )‖2 ≤ ε for all i, j .

This is the “core” result in the series of criteria which constitute the intertwining
subalgebras techniques.

Condition (v) is very useful as a starting point in contradiction arguments. It is
also useful in order to get some information about elements in the algebra P , in case
one knows thatP cannot satisfyP ≺M N , for instance because it cannot be embedded
into N (e.g. if say N is abelian and P is type II1).
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Condition (iv) is of course the one we seek when we expect P to be unitary
conjugated intoN . It is however non-trivial to get from (iv) a unitary u with uPu∗ ⊂
N , because one cannot apriori control the relative commutant of the image of the
isomorphism ψ (of which we only know it exists). This is solved on a case by case
basis, by arguments in the spirit of ([P83]). It is in fact condition (v) that allows
controlling the relative commutant of the algebra P , in many situations.

An important case when the relative commutants and normalizers can be accurately
estimated is if M = L∞(Y ) � � comes from a free mixing action � � Y . Thus,
if one denotes N = L� and take a diffuse subalgebra Q ⊂ N , then Q′ ∩M ⊂ N ,
in fact all the normalizer of Q in M is contained in N . This implies that whenever
ψ, v are as in (iv) then v∗v ∈ N and further work gives the unitary u ([P03]). Other
situations when this can be resolved is if M = N ⊗ N0 = P ⊗ P0 ([OzP04]; see
also 6.6 below), or if M is a free product M = N ∗N0 ([Oz04], [IPeP05]).

For general vNE rigidity problems it is particularly important to deal with the case
when both P,N are maximal abelian in M (Cartan subalgebras). In this case one
can overcome the “relative commutant issue” altogether, and get from (iv) a unitary
element that conjugates P onto N ([P01b]). However, the proof of the (3.1)-type
vNE strong rigidity result in ([P03], [P04a]; see Section 8) will only use the criterion
for conjugating Cartan subalgebras after first showing that L�,L� can be unitary
conjugate onto each other, by using 5.1 and deformation/rigidity. Then L� ≺M L�

is shown to imply L∞(X) unitary conjugate to L∞(Y ), under no other assumptions
but some good mixing conditions on the actions (see [P04a]). The proof of this
implication does use a lot 5.1 and the criterion for conjugating Cartan subalgebras,
but combined with lengthy, hard asymptotic analysis in the ultrapower factorMω. It is
the most difficult result in this series of intertwining techniques. One then proves that
L� ≺M L� and L∞(X) ≺M L∞(Y ) implies there exists u ∈ U(M) that conjugates
simultaneously L∞(X) onto L∞(Y ) and L� onto L�, which in turn implies Ad u
takes {ug}g into scalar multiples of {vh}h as well.

Specific intertwining results can be obtained when the unit ball of P is “almost
contained” in a subalgebra N of M , i.e. ‖EN(x) − x‖2 ≤ ε for all x ∈ P, ‖x‖ ≤ 1,
for some small ε > 0. A pioneering such result appeared in ([Ch79]), where the basic
construction framework 〈M, eN 〉 was for the first time used. Theorem 5.1 does cover
also such cases, as P almost contained in N trivially implies P ′ ∩ 〈M, eN 〉 has finite
non-zero projections. A detailed analysis of how to get from this a unitary conjugacy
is carried out in ([P01b], [PSS04]), using subfactor methods.

6. Deformation and rigidity in II1 factors

As the discussion in the previous section shows, in order to recapture the building
data of a group measure space factor, or at least part of it, it is sufficient to fit into one
of the equivalent conditions of the criteria for intertwining subalgebras. For instance,
to prove (3.1)-type results it is sufficient, by Section 5, to obtain finite dimensional
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L∞(X)−L∞(Y ) andL�−L�Hilbert bimodules inM = L∞(X)�� = L∞(Y )��.
Our strategy for producing such finite dimensional bimodules is to use deforma-

bility properties of the target group action and rigidity properties of the source group
action. The method, which we call deformation/rigidity, works only when both con-
ditions are met, taking a concrete technical form on a case by case basis. So first of all
we need to single out classes of group actions whose associated factors satisfy both
rigidity and deformability properties.

It is the II1 factor framework that makes this approach possible, as these algebras
are particularly well adapted to deformations: by automorphisms, c.p. maps, com-
pletely bounded maps, etc. For us here, by a deformation of the identity idM of a
II1 factor M , we mean a sequence φn of subunital, subtracial, c.p. maps on M such
that limn ‖φn(x) − x‖2 = 0 for all x ∈ M . The maps φn of the deformations will
frequently be automorphisms, but also conditional expectations and c.p. maps coming
from positive definite functions on the group (for factors coming from group actions).
The purpose of deformations is to reveal some “pole of rigidity” of the factor, i.e. a
subalgebra P that has a rigid position (in a sense or another) inside M . This roughly
means that any deformation φn (often from a pre-assigned family of c.p. maps) must
converge to idP on the unit ball of P .

In order for the deformations to reveal the position of P relative to N , besides
P ⊂ M being rigid we needM to have “many”N-bilinear deformations, i.e.M to be
in some sense deformable (“soft”) relative to N . In the end, we want that “φn ≈ idP
on (P )1” gives enough information so that, after some additional work, one gets from
it a P −N Hilbert bimodule H ⊂ L2(M)with dimHN < ∞. The “additional work”
required may be minimal in some cases, like in examples 6.1, 6.6 and Section 7, or it
may represent a substantial part of the argument, like in Example 6.2 and the results in
Section 8–10. Moreover, the deformation/rigidity may require first an embedding of
M into a larger II1 factor M̃ , then taking deformations of M̃ (e.g. by automorphisms,
like in Sections 8–10). We illustrate this general strategy with a number of concrete
situations where it has been be applied, postponing to the next sections the exact
statement of the applications. The generic II1 factor M involved in each situation is
M = L∞(X)�� = L∞(Y )��, as in (3.1), with the subalgebras P,N ⊂ M being
either P = L∞(X),N = L∞(Y ), or P = L�,N = L�.

6.1. Haagerup deformation and relative property (T) ([P01b]). A II1 factor M
has property H (Haagerup property) relative toN if there exists a deformation of idM
with subunital subtracial N-bilinear c.p. maps {φn}n which are compact relative to
N , i.e. for all {xk}k ⊂ M with EN(x∗

mxm) ≤ 1 and limk ‖EN(x∗
k xm)‖2 = 0 for allm,

one has limm ‖φn(xm)‖2 = 0 (cf. [Cho83] for the case N = C, [Bo93] in general).
For subalgebras of the form N ⊂ M = N � �, this is equivalent to � having the
Haagerup approximation property ([H79]), i.e. there exist positive definite functions
ϕn on � that tend pointwise to 1� and vanish at ∞ (ϕn ∈ c0(�)). The typical (non-
amenable) example of groups with this property are the free groups Fn ([H79]), but
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all discrete subgroups in SU(n, 1), SO(n, 1) have the property as well (see [CaH85];
also [CCJJV01] for a survey.)

An inclusionP ⊂ M is rigid (or has the relative property (T)) if any deformation of
idM with subunital subtracial c.p. maps ofM tends uniformly to idP on the unit ball of
(P )1 ([P01b]). For subalgebras of the form P = LH ⊂ LG = M , whereH ⊂ G are
discrete groups, the rigidity of LH ⊂ LG is equivalent to the relative property (T) of
the inclusionH ⊂ G, as considered in ([K67], [Ma82]). (N.B. This property requires
that unitary representations of � which almost contain the trivial representation of �
must contain the trivial representation of H .) A well known example is the inclusion
of groups Z2 ⊂ Z2 � SL(2,Z) ([K67], [Ma82]), more generally Z2 ⊂ Z2 � � for
any � ⊂ SL(2,Z) non-amenable ([Bu91]).

With these concepts in hand, let us prove the result in ([P01b]), showing that if
P,N ⊂ M are so that P ⊂ M is rigid and M has property H relative to N then
P ≺M N . Indeed, since M has N-bilinear subunital subtracial c.p. maps φ that
are compact relative to N and close to idM , such φ follow uniformly close to idM
on (P )1. If P �≺M N then by 5.1 one can construct recursively uk ∈ U(P ) such
that limk ‖EN(u∗

kum)‖2 = 0 for all m. Thus, limk ‖φn(uk)‖2 = 0 for all n by
compactness of φn, while for large (but fixed) k one has φk(un) ≈ un uniformly in n,
contradiction.

6.2. Malleability as source of intertwiners. Loosely speaking, a malleable defor-
mation of a II1 factorM over a subalgebraN ⊂ M is an embedding ofM in a larger II1
factor M̃ and a continuous path αt of automorphisms of M̃ such that N is fixed by αt
for all t , with α0 = id and α1(M�N) ⊥ (M�N) as (pre)Hilbert spaces. More gen-
erally, one can merely require the automorphism α1 satisfying the above conditions to
be in the connected component of id

M̃
in AutN(M̃) = {ρ ∈ Aut(M̃) | N ⊂ M̃ρ}. The

interest of such deformations is that if P ⊂ M is a subalgebra for which there exists
b ∈ M̃ non-zero with Pb ⊂ bα1(P ) (i.e. P ≺

M̃
α1(P )) and the intertwiner b can be

shown to belong to the M-bimodule L2(spMα1(M), then P ≺M N , more precisely
a reinterpretation of b as an element in the M-bimodule L2(〈M, eN 〉,Tr) produces a
(non-zero) finite dimensional P −N bimodule, which by 5.1 means P ≺M N .

Thus, such deformations can be used to obtain unitary conjugacy between
subalgebras of M , provided one can show that the continuous path αt (P ) in M̃
produces an intertwiner between P and α1(P ). If the path is uniformly continuous
on P then by the remarks at the end of Sections 4 and 5 one can find intertwin-
ers between αt (P ) and αt+dt (P ), for “incremental” dt , then try to patch them. To
have uniform continuity and do the patching certain assumptions must be made, as
explained below.

6.3. Malleability and property (T) ([P01a], [P03], [P04a]). Malleability proper-
ties and their importance in studying group actions and algebras were discovered
in (2.1 of [P01a]), inspired by some considerations in (4.3.2 of [P86]). The formal
way the concept is defined in (2.1 in [P01a] and 1.4, 1.5 in [P03]) is as follows: An
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action � � (B, τ) is malleable if there exist an embedding B ⊂ B̃ with an action
� � B̃ extending � � B, and a continuous path αt of automorphisms of B̃ com-
muting with the �-action, such that α0 = id

B̃
, α1(B) ⊥ B (in the sense of [P83])

and B̃ = spBα1(B). In case B = L∞(Y ) this amounts to B̃ 	 L∞(Y ) ⊗ L∞(Y )
with � � L∞(Y )⊗ L∞(Y ) the “double” action. Such deformations αt implement

automorphisms of M̃
def= B̃ � �, still denoted αt , so this does fit into the general

framework 6.2 forM = B ��, N = L�. Moreover, the condition spBα1(B) dense
in B̃ implies spMα1(M) dense in M̃ , insuring that any intertwiner of P, α1(P ) in M̃
produces an intertwiner of P,N in M .

Examples of actions satisfying the malleability condition are all generalized Ber-
noulli actions � � TI , corresponding to some action of � on a countable set I ,
and the non-commutative Bernoulli and Bogoliubov actions on the hyperfinite II1
factorR ([P01a], [P03]). It was recently noticed in ([Fu06]) that Gaussian actions are
malleable as well (see [CW81] or [CCJJV01] for the definition of such actions).

More “lax” conditions for malleable deformations, where spBα1(B) is no longer
required dense in B̃, were considered in (4.2 of [P03]) and (6.1 of [P01a]). In
such cases, an element b intertwining P into α1(P ) can be shown to belong to
L2(spMα1(M)) whenever some appropriate relative weak mixing condition of � �

B̃ wrt� � L2(spBα1(B)) holds true (e.g. 4.2.1 in [P03], 2.9 in [P05], 6.1 in [P01a]).
All generalized Bernoulli actions � � (B0, τ0)

I , with B0 an arbitrary finite, AFD
(equivalently amenable, by [C76]) von Neumann algebra, have malleable deforma-
tions satisfying the relative weak mixing requirement. Same for the “free Bernoulli
actions”� � (B0, τ0)

∗I = ∗i∈I (B0, τ0)i with AFD base (B0, τ0) (cf. 6.1 in [P01a]).

Typically, if � � B is a malleable action as above, or more generally M is
malleable over N , corresponding to M = B � �, N = L�, the rigidity condition
required on the subalgebra P ⊂ M is the relative property (T) as defined in 6.1. If
P = L�, where � � X is another action with M = L∞(Y )�� = L∞(X)� � as
in (3.1), one requires that � itself has property (T). By rigidity, αt (P ) and αt+dt (P )

are then uniformly close, for “incremental” dt , so there is a non-zero intertwiner
between them (for groups, this is trivial by the observations in Section 4). Patching
these intertwiners gives an intertwiner between P and α1(P ), which from the above
shows that P = L� can be intertwined into N = L�. But there are actually big
difficulties in doing the “patching”, as the intertwiners are apriori partial isometries
and not unitaries, so when gluing them repeatedly we may end up getting 0. The
malleable deformations with a symmetry, called s-malleable, were introduced in (2.1,
6.1 of [P01a], 1.4 of [P03]) to overcome this issue. All above examples carry natural
such symmetry, and so do the “free”-deformations found in ([IPeP05). In turn, much
less than property (T) for � is enough to obtain an intertwiner between L� and L�
through this argument. Thus, if the �-action is mixing then it is sufficient that � has
an infinite subgroup H ⊂ � with the relative property (T) and some weak normality
condition, for instance existence of a chain of normal inclusions from H to � (H is
w-normal in �).
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6.4. Malleability in free product algebras. A malleable deformation was also used
in ([P01a]) to prove a cocycle rigidity result for actions of property (T) groups � on
B = LF� 	 LF∞, by free Bernoulli shifts. Inspired by (4.3.2 of [P86]) it gives an
explicit construction of an action α of R on B̃ = B ∗ B which commutes with the
double action of� on B̃ and checks α1(B ∗C) = C∗B. The cocycle rigidity is proved
by using the general scheme 6.2, with M = B � �, M̃ = B̃ � �, N = L� and the
natural extension to M̃ of the deformationαt . But this malleable deformation no longer
satisfies the “tight” generating condition spBα1(B) dense in B̃, and “descending” the
intertwiner between B, α1(B) from B̃ to L2(Bα1(B)) requires more work.

Another malleable deformation in free product framework was discovered in
([IPeP05]), but for the acting group rather than for the action. Thus, let� = �1∗�2 �

(B, τ) and denoteM = B��, M̃ = B�(�∗F2), with F2 acting trivially onB. Then
M̃ can also be viewed as the amalgamated free product (B��1 ∗Z)∗B (B��1 ∗Z).
If u1 ∈ L(Z ∗ 1) ⊂ L(F2), u2 ∈ L(1 ∗ Z) ⊂ L(F2) are the canonical generating
unitaries and hj = h∗

j are so that exp(ihj ) = uj , then hj commute with B. Thus

αt = Ad(exp(ith1)) ∗B Ad(exp(ith2)) implements an action of R on M̃ leaving B
fixed and satisfying α1 = Ad(u1) ∗ Ad(u2), α1(L�) = u1L�1u

∗
1 ∗ u2L�2u

∗
2 ⊥ L�.

6.5. A general notion of rigidity for subalgebras. The above considerations justify
considering the following:

Definition 6.5.1 ([P04b]). LetM be a II1 factor, P ⊂ M a von Neumann subalgebra
and L a family of subunital subtracial c.p. maps of M . We say that the inclusion
Q ⊂ M is rigid with respect to (wrt) L if given any deformation of idM by c.p. maps
φn ∈ L we have ‖φn(x)− x‖2 → 0 uniformly for x ∈ (P )1.

Note that the rigidity of P ⊂ M as defined in 6.1 amounts to condition 6.5.1 for
L the family of all subunital subtracial c.p. maps on M , the particular case P = M

of which amounts to the Conne–Jones definition of property (T) for the II1 factor M
([CJ85]). Also, the malleability/rigidity arguments above only used the rigidity of the
inclusion P ⊂ M̃ wrt L = {αt }t ⊂ Aut(M̃), where α is the malleable deformation.

Besides its rôle in deformation/rigidity approach to proving statements such as
(3.1), the idea of defining various notions of rigidity for inclusions of algebrasP ⊂ M

has other applications as well. Thus, if the family L has an abstract description,
depending only on the isomorphism class of P ⊂ M , then the rigidity of P ⊂ M wrt
L is, of course, an isomorphism invariant for P ⊂ M . This point of view gives rise to
useful applications to OE ergodic theory. For instance, a new OE invariant for a free
ergodic m.p. action� � X (more generally for equivalence relations R�) was defined
in ([P01b]) by requiring that the inclusion L∞(X) ⊂ L∞(X) � � (resp L∞(X) ⊂
L(R�)) is rigid (see also [PeP04]). From 6.1 it follows that if � ⊂ SL(2,Z) is non-
amenable then � � T2 = Ẑ2 has this property. More examples were constructed
in ([Va05]). This notion of relative property (T) for free ergodic actions played an
important rôle in the proof that free groups have uncountably many OE-inequivalent
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actions in ([GP03]). Another particular case of 6.5.1 recovers a concept considered in
([An87], [P86]): A II1 factorM has the property (T) relative to a subalgebra P ⊂ M

(or P is co-rigid in M) if M ⊂ M is rigid wrt the family of all subunital subtracial
P -bilinear c.p. maps on M . Again, by the definition, this notion is an isomorphism
invariant for the inclusion P ⊂ M , so in case P = L∞(Y ) ⊂ L∞(Y ) � � = M , it
gives an OE invariant for the free action � � Y . For such inclusions, it is shown in
([P86]) that co-rigidity is equivalent to the property (T) of �.

6.6. Example ([P04c]). We end this discussion with a simple but very suggestive
example related to definition 6.5.1: Let M be a II1 factor of the form M = Q ⊗ R,
where R is the hyperfinite II1 factor and Q is a non(�) II1 factor ([MvN43]). Let
L be the family of all conditional expectations onto non(�) II1 subfactors P ⊂ M

with the property that P ′ ∩M 	 R and M = P ∨ (P ′ ∩M). It is easy to see that
Q ⊂ M is rigid wrt L. Recovering the building data means in this case to show
that if M = P0 ⊗ R0 is another decomposition with P0 non(�) and R0 	 R then
there exists a unitary element u ∈ M such that uP0u

∗ = Qt , uR0u
∗ = R1/t , for

some t > 0, where the identification Q ⊗ R = Qt ⊗ R1/t is self-explanatory. To
prove this, one takes Pn = P0 ⊗ M2n×2n(C) where M2n×2n(C) ↗ R0 and apply the
rigidity of Q ⊂ M with respect to the deformation EPn to conclude that for a large
enough n, the unit ball ofQ is almost contained inPn. By the intertwining criteria 5.1,
there exists u ∈ U(M) that conjugatesQ into Pn, which from the split-off conditions
implies the result.

Similarly, one can show that if M is a II1 factor with Q ⊂ M a von Neumann
algebra such that {Ad(u) | u ∈ U(Q)} has spectral gap wrt Q′ ∩ M (i.e. there
exist u1, . . . , un ∈ U(Q) and c > 0 such that �i‖uixu∗

i − x‖2 ≥ c‖x‖2 for all
x ∈ Q′ ∩M⊥), then Q′ ∩M ⊂ M is rigid wrt L = Aut(M) ([P06]).

7. vNE/OE rigidity from relative property (T) and H

We formally state here the result discussed in 6.1, which uses Haagerup-type defor-
mation of the acting group and relative property (T) of the action. This is a typical
vNE/OE rigidity result, in the terminology established in (3.1), as it shows that for a
certain class of group measure space II1 factors, any algebra isomorphism comes from
an orbit equivalence of the actions, modulo perturbation by an inner automorphism.

Theorem 7.1 ([P01b]). Let � � (X,μ), � � (Y, ν) be ergodic (not necessarily
free) m.p. actions and assume L∞(X) ⊂ L(R�) is rigid while L(R�) has property
H relative to L∞(Y ). If θ : L(R�) 	 L(R�) is an algebra isomorphism then there
exists u ∈ U(L(R�)) such that Ad(u)(θ(L∞(X))) = L∞(Y ).

The next corollary lists some concrete examples when the assumptions of 7.1 are
satisfied.
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Corollary 7.2. Let � ⊂ SL(2,Z) be a non-amenable subgroup and � � T2 = Ẑ2

the action induced by the restriction to� of the SL(2,Z) action on Z2. Let� � (Y, ν)

be a free ergodic m.p. action of a group� having Haagerup’s compact approximation
property, e.g.� ⊂ SL(2,Z). If θ : L∞(X)�� 	 (L∞(Y )��)t , then there exists a
unitary element u in the target algebra such that Ad(u)�θ takesL∞(X) ontoL∞(Y )t .

It is easy to check that both the rigidity of a Cartan inclusion A ⊂ M and the
property H ofM relative toA are stable to amplifications. Thus, the class HT of factors
with Cartan subalgebras satisfying both conditions is stable to amplifications. By 7.1,
given an HT factor M there exists a unique equivalence relation R

HT

M associated to
its unique (up to conjugacy) HT Cartan subalgebra. Thus, for the factors in this
class, all OE invariants for R

HT

M are isomorphism invariants for the factor M and

F (R
HT

M ) = F (M). In particular, since Gaboriau showed in ([G00], [G01]) that the
equivalence relation of any free ergodic action Fn � X, 2 ≤ n < ∞, has trivial
fundamental group and that for different n’s the Fn-actions are OE-inequivalent, we
derive:

Corollary 7.3. 1�. If � ⊂ SL(2,Z) is finitely generated nonamenable group then the
factorM = L(Z2 ��) = L∞(T2)�� has trivial fundamental group, F (M) = {1}.

2�. If Fn ⊂ SL(2,Z) is some embedding of the free group with n generators, then
the II1 factorsL(Z2�Fn) = L∞(T2)�Fn are mutually non-isomorphic, 2 ≤ n ≤ ∞.

Corollary 7.3 gave the first examples of II1 factors with trivial fundamental group
([P01b]). In particular, this solved a longstanding problem of Kadison (Problem 3 in
[Ka67]), asking whether there exist II1 factorsM with the property that Mn×n(M) �	
M for all n ≥ 2. By 7.3, the group factor LG, arising from the arithmetic group
G = Z2 � SL(2,Z), does satisfy this property, in fact F (LG) = {1}. The corollary
also gives the first examples of non-isomorphic group measure space factors associated
with actions Fn � X of free groups Fn with different number of generators, n =
2, 3, . . . . It is an open problem whether LFn �	 LFm for n �= m, despite remarkable
progress in the study of free group factors throughVoiculescu’s free probability theory
([Vo90], [Vo94]). Using these techniques, it was shown in ([R94], [Dy93]) that “LFn,
2 ≤ n ≤ ∞, are all non-isomorphic” ⇔ “two of them are non-isomorphic” ⇔
“F (LFn) �= R∗+ for some 2 ≤ n < ∞” ⇔ “F (LFn) = {1} for all 2 ≤ n < ∞”.
The same techniques have led to the proof that Q ⊂ F (LF∞) in ([Vo90]) and finally
F (LF∞) = R∗+ in ([R94]).

8. vNE strong rigidity from property (T) and malleability

We now state rigidity results obtained by using malleability of actions as “deforma-
bility property” and the property (T) of the acting group as the “rigidity property”,
discussed in 6.3. These statements are exactly of the type (3.1). They are the first
vNE Strong Rigidity results pertaining to von Neumann algebras.
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The source groups � considered below are required to be ICC and to have infinite
w-normal subgroups H ⊂ � with the relative property (T). Examples are all the ICC
property (T) groups and the groups Z2 � �0, with �0 ⊂ SL(2,Z) non-amenable (cf.
[K67], [Ma82], [Bu91]; see [Va05] for more examples). If � satisfies the property
(e.g. � ICC with property (T)), then � × H ′ satisfies the property as well for all H ′
ICC.

Theorem 8.1 ([P03], [P04a]). Assume � is ICC and has an infinite normal subgroup
with the relative property (T). Let � � (X,μ) be an arbitrary free ergodic m.p.
action. Let� be an arbitrary ICC group and� � (Y, ν) a Bernoulli action, or more
generally a free, relative weak mixing quotient of a Bernoulli �-action.

If θ : L∞(X) � � 	 (L∞(Y ) � �)t is an isomorphism of II1 factors, for some
0 < t ≤ 1, then t = 1 and θ is of the form θ = Ad(u) � θγ � θ�,δ , where: u is
a unitary element in L∞(Y ) � �; θγ ∈ Aut(L∞(Y ) � �) is implemented by some
γ ∈ Hom(�,T); θ�,δ : L∞(X)�� 	 L∞(Y )�� is implemented by isomorphisms
� : (X,μ) 	 (Y, ν), δ : � 	 � which give a conjugacy of � � X, � � Y .

More generally, the above statement holds true for target actions � � Y that
are relative weak mixing quotients of actions that are s-malleable and clustering.
An action � � (Y, ν) is a quotient of an action � � (Y ′, ν′) if there exists a �-
invariant m.p. surjection (Y ′, ν′) → (Y, ν), equivalently a �-invariant m.p. embed-
dingL∞(Y ) ⊂ L∞(Y ′). The quotient is relative weak mixing if there exists gn → ∞
in� such that limn ‖EL∞(Y )(xgn(y))‖2 = 0 for all x, y ∈ L∞(Y ′), with y ⊥ L∞(Y )
(cf. Furstenberg and Zimmer). The clustering condition is a certain multi-mixing
condition which is satisfied, like s-malleability, by all Bernoulli actions.

The proof of this result is in three parts: The malleability of � � Y combined
with the rigidity assumption on � allows a deformation/rigidity argument in M̃ =
L∞(Y × Y ) � �. Taking t = 1, M = L∞(Y ) � � = L∞(X) � � for simplicity,
this gives rise to a non-zero L� − L� Hilbert bimodule H ⊂ L2(M) which is
finite dimensional as a right L�-module. Using intertwining technique, from H one
gets a unitary element u ∈ M that conjugates L� into L�. The second part of the
proof uses this information to derive that L∞(X) can be unitarily conjugated onto
L∞(Y ), by using ultrapower algebra techniques, “asymptotic analysis” of Fourier
expansions and 5.1 (repeatedly). The final part of the proof consists in showing that if
both the Cartan subalgebras and the group algebras can be (separately) conjugated by
unitaries, then there exists a unitary that conjugates L∞(X) onto L∞(Y ) and carries
the canonical unitaries of the source factor onto scalar multiples of the canonical
unitaries of the target factor.

It has been recently shown in ([P06]) that in fact 8.1 holds true for any group of
the form � = HH ′ withH non-amenable andH ′ infinite (e.g. � non-amenable with
infinite center, or � = H × H ′), and even for groups � that have a non-amenable
subgroup H whose centralizer is infinite and w-normal in �.

Taking the source and target group actions to satisfy both sets of conditions, and
taking into account that a factor arising from the Bernoulli �-action with diffuse base
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is the same as the group factor of the wreath product Z � �, from 8.1 we derive a
positive answer to a wreath product version of Connes’ rigidity conjecture (3.2):

Corollary 8.2. Let �i be an ICC group having an infinite normal subgroup with the
relative property (T) and denote Gi = Z � �i the corresponding wreath product,
i = 0, 1. Then LG0 	 LGt1 implies t = 1,G0 	 G1 and �0 	 �1. In particular, all
such factors have trivial fundamental group.

We mention that (6.4 and 7.13 in [PV06]) provides a class W of “generalized”
wreath product groups for which a (3.2′)-type statement (i.e. a version of the strong
Connes rigidity conjecture) holds true, i.e. any isomorphism θ : LG1 	 LGt2,
G1,G2 ∈ W , entails t = 1 and θ = Ad(u) � θγ � θδ , for some γ ∈ Hom(G2,T) and
δ : G1 	 G2. In particular, if G ∈ W then Out(LG) = Hom(G,T)� Out(G).

Arguments similar to the ones used in the first part of the proof of 8.1 allow showing
that for any countable subgroup S ⊂ R∗+ there exist II1 factors and equivalence
relations from ergodic m.p. actions of countable groups which have S as fundamental
group.

Theorem 8.3 ([P03]). Let S ⊂ R∗+ be a countable subgroup and {sn}n ⊂ S a set of
generators. Let � be an ICC group having an infinite w-normal subgroup with the
relative property (T). For eachn, letμn be the probability measure on {0, 1} satisfying
μn({0})/μn({1}) = sn and let Sn be the equivalence relation on ({0, 1}, μn)� given by
(tg)g ∼ (t ′g)g iff there exists a finite subsetF ⊂ � such that tg = t ′g for allg ∈ �\F and
�g∈Fμ0(tg) = �g∈Fμ0(t

′
g). Let R0 be the product of the equivalence relations Sn on

the product probability space (X,μ) = �n({0, 1}, μn)� and R be the equivalence
relation generated by R0 and the Bernoulli �-action � � X (which leaves R0
invariant). If F (L�) = {1}, for instance if � = H � �0 with �0 ⊂ SL(2,Z) finite
index subgroup (cf. 7.3), then F (L(R)) = F (R) = S.

A construction similar to 8.3 can be used to prove that in fact any subgroup
S ⊂ R∗+ can be realized as the fundamental group of a non-separable II1 factor ([P03]),
solving completely a problem raised by Murray–von Neumann in ([MvN43]). This
construction of concrete equivalence relations R with arbitrary countable fundamental
group, obtained through II1 factor methods, is completely new for OE theory as well.

When applied to isomorphisms θ coming from an OE R� 	 (R�)
t , 8.1 becomes

an OE strong rigidity result. In fact, one can even derive an OE Strong Rigidity for
embeddings of equivalence relations:

Theorem 8.4 ([P04a]). Let � � X, � � Y be as in 8.1. If � : (X,μ) 	 (Y, ν)

takes each �-orbit into a �-orbit then there exist a subgroup �0 ⊂ � and α ∈ [�]
such that α �� conjugates � � X, �0 � Y .
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9. Cocycle superrigidity from property (T) and malleability

If in Theorem 8.4 we take � to have property (T) and � to give an orbit equivalence
of � � X, � � Y , and use that property (T) is an OE invariant, then the statement
becomes an OE Strong Rigidity where all conditions are on one side, a type of result
labelled “OE superrigidity” in Section 3. In fact, if we assume all conditions are
say on the side of the source group action � � X, then the deformation/rigidity
arguments in the proof of 8.1 get simplified considerably, allowing us to prove a
cocycle superrigidity result from which the OE superrigidity is a mere consequence.

To state the result, recall that if V is a Polish group then a V-valued measur-
able (left) cocycle for � � X is a measurable map w : � × X → V satisfying
w(g1, g2t)w(g2, t) = w(g1g2, t) for all g1, g2 ∈ �, t ∈ X. Cocyclesw,w′ are equiv-
alent if there is a measurable u : X → V such thatw′(g, t) = u(gt)w(g, t)u(t)−1 for
all g, t (a.e.). Note thatw is independent of t ∈ X iff it is a group morphism � → V.

A Polish group V is of finite type if it is isomorphic to a closed subgroup of the
group of unitary elements U(N) of a finite von Neumann algebra N (equivalently of
a II1 factor). We denote by Ufin the class of Polish groups of finite type. All countable
discrete groups and all separable compact groups are of finite type. But by ([KaSi82])
a connected locally compact group V is of finite type iff V = K×V withK compact
and V 	 Rn.

Theorem 9.1 (P05]). Assume� has an infinite w-normal subgroupH with the relative
property (T) and that� � (X,μ) = (X0, μ0)

I is a generalized Bernoulli action with
|Hi| = ∞ for all i ∈ I .

Then � � X is Ufin-cocycle superrigid, i.e. for all V ∈ Ufin, any V-valued
cocycle for � � X is equivalent to a group morphism � → V. Moreover, same
is true if � � X is a relative weak mixing quotient of an action satisfying these
conditions.

The above statement actually holds true for all malleable actions which are weak
mixing on the subgroupH , and for all relative weak mixing quotients of such actions.
The proof uses a version of the general deformation/rigidity argument explained in 6.2,
in the group measure space von Neumann algebra M = L∞(X) ⊗ V � �, where
V is a II1 factor with V = V ⊂ U(V ) and � � L∞(X) ⊗ V is the product of the
action � � L∞(X) and the trivial action of � on V . Also, the larger algebra M̃ in
which we perform the deformation is (L∞(X) ⊗ V ⊗ L∞(X)) � �. We use the
observation that a measurable function w : � ×X → U(V ) is a cocycle for � � X

iff the g �→ u′
g = wgug is a representation of the group � inM , where ug denote the

canonical unitaries inM , and wg = w(g, ·). With the notations in 6.2, the algebra N
corresponds to L� ⊗ V while P corresponds to the von Neumann algebra generated
by u′

g, g ∈ �. Due to the more concrete form of this set-up, the deformation/rigidity

argument in M̃ gives in fact an intertwiner of the �-representations u′
g and α1(u

′
g),

which lies in L∞(X) ⊗ V ⊗ L∞(X). After the usual “re-interpretation” of this
intertwiner, we get u ∈ U(L∞(X)⊗ V ) such that uu′

hu
∗ ∈ 1 ⊗ V � �. This means
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uwhh(u)
∗ ∈ V , so we have untwisted w as a U(V )-valued cocycle for H � X.

But then it follows automatically untwisted as a V-valued cocycle, due to the weak
mixing property. Applying the w-normality ofH ⊂ � and the weak mixing property
again, it follows untwisted on all �.

The II1 factor framework is used again to show that if a group action � � X

is cocycle superrigid then it is OE superrigid, i.e. any OE � : X 	 Y of this action
with an arbitrary free action � � Y comes from a conjugacy. More precisely, let
w = w� : � × X → � be the Zimmer cocycle associated to �, which to t ∈ X,
g ∈ � assigns the unique (by freeness) h ∈ � such that �(gt) = h�(t) ([Z80],
[Z84]). Sincew takes values in�, which is discrete and thus in the class Ufin, by 9.1
it can be untwisted. The II1 factor setting allows to re-interpret the “untwister” of
this cocycle as a natural “conjugator” of the two actions, thus showing that cocycle
superrigidity with arbitrary discrete targets implies OE superrigidity:

Theorem 9.2 ([P05]). Let� � X be a free, weakly mixing, cocycle superrigid action,
e.g. an action as in 9.1. Assume � has no finite normal subgroups. Let � � (Y, ν)

be an arbitrary free ergodic m.p. action and� : R� 	 Rt
� an orbit equivalence, for

some t > 0.
Then n = 1/t is an integer and there exist a subgroup�0 ⊂ � of index [� : �0] =

n, a subset Y0 ⊂ Y of measure ν(Y0) = 1/n fixed by �0 � Y , an automorphism
α ∈ [�] and a group isomorphism δ : � 	 �0 such that α �� takes X onto Y0 and
conjugates the actions � � X,�0 � Y0.

In fact, 9.1 even implies the superrigidity of embeddings of R� into equiva-
lence relations R� of arbitrary free ergodic actions (in the spirit of 8.4), as well as
for morphisms of R� onto R� that are bijective on each orbit, i.e. for local OE
morphisms (see [P05] for details). Theorem 9.1 also shows that the T-valued first
cohomology group H1(R�) of a Bernoulli �-action is equal to Hom(�,T), thus re-
covering a result from ([P01a], [PSa03]). This implies that given any abelian groupL
one can construct free quotients of Bernoulli �-actions with first cohomology group
H1(R�) = Hom(�,T)×L (cf. [P04b]). Thus, any group� with an infinite w-normal
subgroup with the relative property (T) has uncountably many “concrete” non-OE free
ergodic m.p. actions. Another application of 9.1 shows that the equivalence relations
R described in the statement of 8.3 have the property that for all t > 0, Rt cannot be
implemented by a free ergodic action of a group (5.10 in [P05]). The first examples
of equivalence relations with this property were found in ([Fu99b]).

The Cocycle Superrigidity 9.1 was recently used in ([Fu06]) to show that if �,�
are lattices in a higher rank semisimple Lie group G then the action � � G/� cannot
be realized as a quotient of a Bernoulli �-action, more generally of a s-malleable
weak mixing action. Also, 9.1 was used in ([Th06]) to answer some open problems
in descriptive set theory, showing for instance that the universal countable Borel
equivalence relation E∞ cannot be implemented by a free action of a countable
group. Moreover, a new Ufin-cocycle superrigidity result was obtained in ([P06]), by
combining malleability with spectral gap rigidity (see final comment in 6.6 above).
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It shows that if � � X is a generalized Bernoulli action and H ⊂ � is a subgroup
such that H � X has spectral gap (thus H is automatically non-amenable) then any
V-valued cocycle for � � X, where V ∈ Ufin, can be untwisted on the centralizer
H ′ ofH in �. Thus, ifH ′ is w-normal in � (e.g. � = H ×H ′) andH ′ � X is weak
mixing then the cocycle follows untwisted on all�. In particular, such� � X are OE
superrigid. This adds to the rigidity phenomena involving product groups discovered
in recent years in ergodic theory, Borel equivalence relations and II1 factors (e.g.
[MoS02], [MoS04], [OzP04], [HjKe05]).

10. Bass–Serre type rigidity for amalgamated free products

The malleable deformation explained in the second part of 6.4 is used in ([IPeP05])
to prove a series of rigidity results, through the deformation/rigidity approach. These
results can be viewed as von Neumann algebra versions of the “subgroup theorems”
and “isomorphism theorems” for amalgamated free products of groups in Bass–Serre
theory. The main “subalgebra theorem” shows that, under rather general conditions,
any rigid von Neumann subalgebra Q ⊂ M = M1 ∗B M2 can be conjugated by an
inner automorphism of M into either M1 or M2. For simplicity, we only formulate
the result in the case M = (B � �1) ∗B (B � �2) = B � (�1 ∗ �2).

Theorem 10.1 ([IPeP05]). Let � � (B, τ) be an action of a group � = �1 ∗ �2
on a finite von Neumann algebra (B, τ) and denote Mi = B � �i , i = 1, 2, M =
B � � = M1 ∗B M2. Let Q ⊂ M be a rigid inclusion. Assume no corner qQq of
Q can be embedded into B and that the normalizer of Q in M generates a factor P .
Then there exists a unique i ∈ {1, 2} such that uQu∗ ⊂ Mi for some u ∈ U(M),
which also satisfies uPu∗ ⊂ Mi .

Taking the action � � B in 10.1 to come from an action on a probability space,
the theorem can be used to prove Bass–Serre type vNE and OE rigidity results for
actions of free products of groups, as follows:

Theorem 10.2 ([IPeP05]). Let �i,�j , 1 ≤ i ≤ n ≤ ∞, 1 ≤ j ≤ m ≤ ∞, be ICC
groups having normal, non virtually abelian subgroups with the relative property (T).
Denote � = �1 ∗ · · · , � = �1 ∗ · · · and let � � (X,μ), � � (Y, ν) be free m.p.
actions, ergodic on each�i,�j , i, j ≥ 1. DenoteM = L∞(X)��,N = L∞(Y )��,
Mi = L∞(X)��i ⊂ M ,Nj = L∞(Y )��j ⊂ N the corresponding group measure
space factors. If θ : M 	 Nt is an isomorphism, for some t > 0, then m = n

and there exists a permutation π of indices j ≥ 1 and unitaries uj ∈ Mt
2 such

that Ad(uj )(θ(Mj )) = Nt
π(j), Ad(uj )(θ(L∞(X))) = (L∞(Y ))t for all j ≥ 1. In

particular, R� 	 Rt
� and R�j 	 Rt

�π(j)
for allj ≥ 1.

In particular, taking the isomorphism θ between the group measure space factors in
10.2 to come from an orbit equivalence of the actions, one gets the following converse
to a result in ([G05]):
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Corollary 10.3. Let �i,�j , 1 ≤ i ≤ n ≤ ∞, 1 ≤ j ≤ m ≤ ∞, � � (X,μ),
� � (Y, ν) be as in 10.2. If R� 	 Rt

� then n = m and there exists a permutation
π of the set of indices i ≥ 1 such that R�i 	 Rt

�π(i)
for all i ≥ 1.

In turn, applying 10.1 to �-actions on the hyperfinite II1 factor B = R and using
results from ([P90]) one can prove:

Theorem 10.4 ([IPeP05]). 1�. For any �0 = SL(n0,Z), n0 ≥ 2 and any group �1
having an infinite normal subgroup with the relative property (T) there exist properly
outer actions �0 ∗ �1 � R such that:

(a) R ⊂ R � �0 is a rigid inclusion;

(b) �1 � R is a non-commutative Bernoulli action, i.e. R can be represented as
R =⊗g∈�1 (Mn×n(C), tr)g , n ≥ 2, with �1 acting on it by Bernoulli shifts;

(c) �1 ⊂ Out(R) is freely independent with respect to the normalizer N0 of �0 in
Out(R).

2�. If�0 ∗�1 � R is an action as in 1� andM = R�(�0 ∗�1), then F (M) = {1}
and Out(M) = Hom(�0,T) × Hom(�1,T). In particular, given any separable
compact abelian groupK , there exist free actions of � = SL(3,Z) ∗ (SL(3,Z)× K̂)
on R such that M = R � � satisfies F (M) = {1} and Out(M) = K .

Part 2� of the above theorem gives the first examples of II1 factors with calculable
outer automorphism group, in particular of factors with trivial outer automorphism
group, thus answering in the affirmative a well known problem posed by Connes in
1973. However, since the proof of part 1� uses a Baire category argument, 10.4.2� is
actually an existence result. By using a refinement of techniques in ([P03], [P04a])
and results from ([Oz04]), some concrete examples of group measure space factors
with trivial outer automorphism group were recently constructed in ([PV06]) from
generalized Bernoulli actions of � = SL(4,Z) � Z4 on (X,μ) = ({0, 1}, μ0)

�/�0 ,
with �0 a certain abelian subgroup of � and μ0(0) �= μ0(1). In fact, ([PV06]) gives
also concrete examples of factors M with Out(M) any prescribed finitely generated
group.

Note that when applied to the case B = C, 10.1 becomes a von Neumann algebra
analogue of Kurosh’s classical theorem for free products of groups, similar to Ozawa’s
pioneering result of this type in ([Oz04]; see also his paper in these proceedings), but
covering a different class of factors and allowing amplifications. For instance, if
Mi = L�i, 2 ≤ i ≤ n, L�j , 2 ≤ j ≤ m, are factors from ICC groups having

infinite normal subgroups with relative property (T), then M1 ∗ M2 ∗ · · · ∗ Mm

θ	
(N1 ∗N2 ∗ · · · ∗Nn)t implies m = n and θ(Mi) inner conjugate to Nt

i for all i, after
some permutation of indices. When combined with results in ([DyR00]) and to the
fact that P = L(Z2 � SL(2,Z)) has trivial fundamental group ([P01b]), this can be
used to show that for all subgroups S = {sj }j ⊂ R∗+, M = ∗jP sj has fundamental
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group equal to S. This provides a completely new class of factors M with F (M) an
arbitrary subgroup S ⊂ R∗+, than the ones in ([P03]). Indeed, by Voiculescu’s striking
result in ([V94], cf. also [Sh04]) the factors ∗jP sj have no Cartan subalgebras, while
the ones in ([P03]) arise from equivalence relations.
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