
WARPED PRODUCTS

PETER PETERSEN

1. Definitions

We shall define as few concepts as possible. A tangent vector always has the
local coordinate expansion

v = dxi (v)
@

@xi

and a function the differential
df =

@f

@xi

dxi

We start with a Riemannian metric (M, g) . In local coordinates we obtain the
metric coefficients g

ij

g = g
ij

dxidxj = g

✓
@

@xi

,
@

@xj

◆
dxidxj

1.1. The Gradient. The gradient of a function f : M ! R is a vector field dual
to the differential df

g (rf, v) = df (v)

In local coordinates this reads

g
ij

dxi (rf) dxj (v) =
@f

@xj

dxj (v)

showing that

g
ij

dxi (rf) =
@f

@xj

Using gij for the inverse of g
ij

we then obtain

dxi (rf) = gij
@f

@xj

and
rf = gij

@f

@xj

@

@xi

.

One can easily show that:

gij = g
�
dxi, dxj

�
= g

�
rxi,rxj

�
.

Note that
gikg

kj

= �i
j

implies
@gik

@xl

g
kj

+ gik
@g

kj

@xl

= 0,

@gik

@xl

g
kj

= �gik
@g

kj

@xl

1
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and
@gij

@xs

= �gik
@g

kl

@xs

glj .

A slightly more involved calculation shows that

@ det g
ij

@xs

= gkl
@g

kl

@xs

det g
ij

1.2. The Divergence. To motivate our definition of the Hessian of a function we
first define the divergence of a vector field using a dynamic approach. Specifically,
by checking how the volume form changes along the flow of the vector field:

L
X

dvol = div (X) dvol

The volume form is a metric concept just like the metric and in positively oriented
local coordinates it has the form

dvol =
p

det g
kl

dx1 ^ · · · ^ dxn

Thus

L
X

dvol = L
X

⇣p
det g

kl

dx1 ^ · · · ^ dxn

⌘

= D
X

⇣p
det g

kl

⌘
dx1 ^ · · · ^ dxn

+
p
det g

kl

X
dx1 ^ · · · ^ L

X

dxi ^ · · · ^ dxn

=
D

X

�p
det g

kl

�
p
det g

kl

dvol

+
p
det g

kl

X
dx1 ^ · · · ^ dD

X

xi ^ · · · ^ dxn

=
D

X

�p
det g

kl

�
p
det g

kl

dvol +
p
det g

kl

X
dx1 ^ · · · ^ d

�
dxi (X)

�
^ · · · ^ dxn

=
D

X

�p
det g

kl

�
p
det g

kl

dvol +
p
det g

kl

X
dx1 ^ · · · ^ @dxi (X)

@xi

dxi ^ · · · ^ dxn

=

 
D

X

�p
det g

kl

�
p
det g

kl

+
@dxi (X)

@xi

!
dvol

=
1p

det g
kl

@
�p

det g
kl

dxi (X)
�

@xi

dvol

The Laplacian is now naturally defined by

�f = div (rf)

1.3. The Hessian. A similar approach can also be used to define the Hessian:

Hessf =
1

2
Lrf

g
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The local coordinate calculation is a bit worse, but yields something nice in the end

Hessf

✓
@

@xi

,
@

@xj

◆
=

1

2
(Lrf

g)

✓
@

@xi

,
@

@xj

◆

=
1

2

⇣
L
g

kl

@f

@x

k

@

@x

l

g
⌘✓ @

@xi

,
@

@xj

◆

=
1

2
gkl

@f

@xk

⇣
L @

@x

l

g
⌘✓ @

@xi

,
@

@xj

◆
+

1

2

@
⇣
gkl @f

@x

k

⌘

@xi

g
lj

+
1

2

@
⇣
gkl @f

@x

k

⌘

@xj

g
li

=
1

2
gkl

@f

@xk

@g
ij

@xl

+
1

2

@
⇣
gkl @f

@x

k

⌘

@xi

g
lj

+
1

2

@
⇣
gkl @f

@x

k

⌘

@xj

g
li

=
1

2

✓
gklg

lj

@2f

@xi@xk

+ gklg
li

@2f

@xj@xk

◆
+

1

2

✓
gkl

@g
ij

@xl

+
@gkl

@xi

g
lj

+
@gkl

@xj

g
li

◆
@f

@xk

=
@2f

@xi@xj

+
1

2
gkl
✓
@g

ij

@xl

� @g
lj

@xi

� @g
li

@xj

◆
@f

@xk

This is usually rewritten by introducing the Christoffel symbols of the first and
second kind

�
ijl

=
1

2

✓
@g

lj

@xi

+
@g

li

@xj

� @g
ij

@xl

◆
,

�k

ij

=
1

2
gkl
✓
@g

lj

@xi

+
@g

li

@xj

� @g
ij

@xl

◆
.

Observe that this formula gives the expected answer in Cartesian coordinates, and
that at a critical point the Hessian does not depend on the metric.

Next we should tie this in with our definition of the Laplacian. Computing the
trace in a coordinate system uses the inverse of the metric coefficients

tr (Hessf) = gijHessf

✓
@

@xi

,
@

@xj

◆

= gij
@2f

@xi@xj

+
1

2
gijgkl

✓
@g

ij

@xl

� @g
lj

@xi

� @g
li

@xj

◆
@f

@xk
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On the other hand

�f = div (rf)

=
1p

det g
kl

@
⇣p

det g
kl

gij @f

@x

j

⌘

@xi

= gij
@2f

@xi@xj

+
@gij

@xi

@f

@xj

+ gij
@f

@xj

1p
det g

kl

@
�p

det g
kl

�

@xi

= gij
@2f

@xi@xj

� gikglj
@g

kl

@xi

@f

@xj

+
1

2
gij

@f

@xj

1

det g
kl

@ (det g
kl

)

@xi

= gij
@2f

@xi@xj

� gikglj
@g

kl

@xi

@f

@xj

+
1

2
gij

@f

@xj

gkl
@g

kl

@xi

= gij
@2f

@xi@xj

� gijgkl
@g

jl

@xi

@f

@xk

+
1

2
gkl

@f

@xk

gij
@g

ij

@xl

= gij
@2f

@xi@xj

+ gijgkl
✓
1

2

@g
ij

@xl

� @g
jl

@xi

◆
@f

@xk

= gij
@2f

@xi@xj

+
1

2
gijgkl

✓
@g

ij

@xl

� @g
lj

@xi

� @g
li

@xj

◆
@f

@xk

= tr (Hessf)

2. Examples

Starting with a Riemannian metric (N, h) a warped product is defined as a metric
on I ⇥N, where I ⇢ R is an open interval, by

g = dr2 + �2 (r)h

where � > 0 on all of I. One could also more generally consider

 2 (r) dr2 + �2 (r)h

However a change of coordinates defined by relating the differentials d⇢ =  (r) dr
allows us to rewrite this as

d⇢2 + �2 (r (⇢))h.

Important special cases are the basic product

g = dr2 + h

and polar coordinates
dr2 + r2ds2

n�1

on (0,1)⇥ Sn�1 representing the Euclidean metric.

2.1. Conformal Representations. The basic examples are still sufficiently broad
that we can reduce almost all problems to these cases by a simple conformal change:

dr2 + �2 (r)h =  2 (⇢)
�
d⇢2 + h

�
,

dr =  (⇢) d⇢,

� (r) =  (⇢)
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or

dr2 + �2 (r)h =  2 (⇢)
�
d⇢2 + ⇢2h

�
,

dr =  (⇢) d⇢,

� (r) = ⇢ (⇢)

The first of these changes has been studied since the time of Mercator. The
sphere of radius R can be written as

R2ds2
n

= R2
�
dt2 + sin2 (t) ds2

n�1

�

= dr2 +R2 sin2
⇣ r

R

⌘
ds2

n�1

The conformal change envisioned by Mercator then takes the form

R2ds2
n

= R2 2 (⇢)
�
d⇢2 + ds2

n�1

�

As

 (⇢) d⇢ = dt,

 (⇢) = sin (t)

this means that we have
d⇢ =

dt

sin (t)
Thus ⇢ is determined by one of these obnoxious integrals one has to look up.

Switching the spherical metric to being conformal to the polar coordinate rep-
resentation of Euclidean space took even longer and probably wasn’t studied much
until the time of Riemann

R2ds2
n

= R2 2 (⇢)
�
d⇢2 + ⇢2ds2

n�1

�

= R2 4

(1 + ⇢2)2
�
d⇢2 + ⇢2ds2

n�1

�

Hyperbolic space is also conveniently defined using warped products:

g = dr2 + sinh2 (r) ds2
n�1, r 2 (0,1)

it too has a number of interesting other forms related to warped products:

dr2 + sinh2 (r) ds2
n�1 =

4

(1� ⇢2)2
�
d⇢2 + ⇢2ds2

n�1

�
, ⇢ 2 (0, 1)

And after using inversions to change the unit ball into a half space we can rewrite
this as

1

x2

�
dx2 + canRn�1

�
= ds2 + e2scanRn�1

This works as follows. Let the half space model be H = (�1, 0)⇥ Rn�1 with the
metric 1

x

2

�
dx2 + canRn�1

�
. Define

F (x, z) = (1, 0) +
2 (x� 1, z)

|x� 1|2 + |z|2

=

 
1 +

2 (x� 1)

|x� 1|2 + |z|2
,

2z

|x� 1|2 + |z|2

!

=

✓
1 +

2 (x� 1)

r2
,
2z

r2

◆
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as the inversion in the sphere of radius
p
2 centered at (1, 0) 2 R⇥Rn�1. This maps

H to the unit ball since
|F (x, z)|2 = 1 +

4x

r2
= ⇢2.

Next we check what F does to the metric. We have

F 1 = 1 +
2 (x� 1)

r2
,

F i =
2zi

r2
, i > 1.

and
4

(1� ⇢2)2

 
�
dF 1

�2
+
X

k>1

�
dF k

�2
!

=

�
r2
�2

4x2

 
2dx

r2
� 2 (x� 1) 2rdr

(r2)2

!2

+
X

k>1

�
r2
�2

4x2

 
2dzk

r2
� 2zk2rdr

(r2)2

!2

=
1

x2

✓
dx� (x� 1) 2rdr

r2

◆2

+
1

x2

X

k>1

✓
dzk � zk2rdr

r2

◆2

=
1

x2

 
dx2 +

X

k>1

�
dzk
�2
!

+
1

x2

✓
(x� 1) 2rdr

r2

◆2

+
1

x2

X

k>1

✓
zk2rdr

r2

◆2

� 1

x2
dx

(x� 1) 2rdr

r2
� 1

x2

X

k>1

dzk
zk2rdr

r2

� 1

x2

(x� 1) 2rdr

r2
dx� 1

x2

X

k>1

zk2rdr

r2
dzk

=
1

x2

�
dx2 + canRn�1

�
+

1

x2
r2
✓
2rdr

r2

◆2

� 1

x2
rdr

2rdr

r2

� 1

x2

2rdr

r2
rdr

=
1

x2

�
dx2 + canRn�1

�

Showing that F also transforms the conformal unit ball model to the conformal
half space model.

2.2. Singular Points. The polar coordinate conformal model

dr2 + �2 (r)h =  2 (⇢)
�
d⇢2 + ⇢2h

�

can be used to study smoothness of the metric as we approach a point r0 2 @I where
� (r0) = 0. We assume that ⇢ (r0) = 0 in the reparametrization. When h = ds2

n�1

we then note that smoothness on the right hand side

 2 (⇢)
�
d⇢2 + ⇢2ds2

n�1

�
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only depends on  2 (⇢) being smooth. Thinking of ⇢ as being Euclidean distance
indicates that this is not entirely trivial. In fact we must assume that

 (0) > 0

and
 (odd) (0) = 0

Translating back to � we see that

�0 (0) = ±1,

�(even) (0) = 0.

Better yet we can also prove that when h is not ds2
n�1, then it isn’t possible to

remove the singularity. Assume that g is smooth at the point p 2 M corresponding
to ⇢ = 0, i.e., we assume that on some neighborhood U of p we have

U � {p} = (0, b)⇥N,

g = d⇢2 + ⇢2h

The ⇢ = 1 level corresponds naturally to N. Now observe that each ⇢ curve in M
emanating from p has a unique unit tangent vector at p and also intersects N in
a unique point. Thus unit vectors in T

p

M and points in N can be identified by
moving along ⇢ curves. This gives the isometry from Sn�1, the unit sphere in T

p

M,
to N.

3. Characterizations

We start by offering yet another version of the warped product representation.
Rather than using r and �, the goal is to use only one function f. Starting with a
warped product

dr2 + �2 (r)h

we construct the function f =
´
�dr on M. Since

df = �dr

we immediately see that

dr2 + �2 (r)h =
1

�2 (r)
df2 + �2 (r)h

The gradient of f is

rf = �rr = �
@

@r
so the Hessian becomes

(Hessf) (X,Y ) =
1

2

⇣
L
�

@

@r

g
⌘
(X,Y )

=
1

2
�
⇣
L @

@r

g
⌘
(X,Y ) +

1

2
(D

X

�) g (rr, Y ) +
1

2
(D

Y

�) g (rr,X)

=
1

2
�
⇣
L @

@r

g
⌘
(X,Y ) +

1

2
�0 (D

X

r) g (rr, Y ) +
1

2
�0 (D

Y

r) g (rr,X)

=
1

2
�
⇣
L @

@r

g
⌘
(X,Y ) + �0dr2 (X,Y )
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This is further reduced

Hessf =
1

2
�L @

@r

g + �0dr2

=
1

2
�L @

@r

�
dr2 + �2 (r)h

�
+ �0dr2

=
1

2
�D @

@r

�
�2 (r)

�
h+ �0dr2

= �0�2h+ �0dr2

= �0g

In other words: it is possible to find a function f whose Hessian is conformal to the
metric. Using

�0 =
d�

dr
=

d�

df

df

dr
=

d�

df
� =

1

2

d |rf |2

df
we have obtained a representation that only depends on f and |rf |

g =
1

|rf |2
df2 + |rf |2 h,

Hessf =
1

2

d |rf |2

df
g

Before stating the main theorem we need to establish a general result.

Lemma 3.1. If f is a smooth function on a Riemannian manifold, then

Hessf (rf,X) =
1

2
D

X

|rf |2 .

Proof. At points where rf vanishes this is obvious. At other points we can the
assume that f = x1 is the first coordinate in a coordinate system. Then

rf = g1i
@

@xi

and
|rf |2 = g1ig

ij

g1j

= g11

With that information the calculation becomes

Hessf

✓
rf,

@

@xj

◆
= g1iHessx1

✓
@

@xi

,
@

@xj

◆

=
1

2
g1igkl

✓
@g

ij

@xl

� @g
lj

@xi

� @g
li

@xj

◆
@x1

@xk

=
1

2
g1ig1l

✓
@g

ij

@xl

� @g
lj

@xi

� @g
li

@xj

◆

= �1

2
gi1g1l

@g
li

@xj

+
1

2
g1ig1l

@g
ij

@xl

� 1

2
g1ig1l

@g
lj

@xi

=
1

2

@g11

@xj

+
1

2
g1ig1l

@g
ij

@xl

� 1

2
g1lg1i

@g
ij

@xl

=
1

2

@ |rf |2

@xj

The formula now follows by expanding X in coordinates. ⇤
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We can now state and prove our main result.

Theorem 3.2. If there are smooth functions f,� on a Riemannian manifold so
that

Hessf = �g

then the Riemannian structure is a warped product around any point where rf 6= 0.

Proof. We first need to show that � only depends on f. This uses the previous
lemma:

1

2
D

X

|rf |2 = Hessf (rf,X) = �g (rf,X)

So we see that |rf |2 is locally constant on level sets of f by taking X ? rf. Thus
we can locally assume that

|rf |2 = b (f) .

If we let X = rf, then we obtain

�b =
1

2
Drf

b =
1

2
g (rb,rf) =

1

2

db

df
b

or
2� =

db

df

We now claim that
g =

1

b
df2 + bh

where h is defined such that b (c)h is simply the restriction of g to the level set
f = c. In particular, we have that

g|
p

=

✓
1

b
df2 + bh

◆
|
p

, when f (p) = c

Next we observe that
Lrf

g = 2�g

and

Lrf

✓
1

b
df2 + bh

◆
=

db

df

✓
1

b
df2 + bh

◆

= 2�

✓
1

b
df2 + bh

◆

Thus g and 1
b

df2+bh both solve the same differential equation with the same initial
values at f = c, showing that the two metrics must agree. ⇤

We can also handle singular points if we assume they are isolated.

Corollary 3.3. If there are smooth functions f,� on a Riemannian manifold so
that

Hessf = �g,

rf |
p

= 0,

� (p) 6= 0

then the Riemannian structure is a warped product around p.
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Proof. As we’ve assumed the Hessian to be nondegenerate at p it follows that there
are coordinates in a neighborhood around p such that

f
�
x1, ..., xn

�
= f (p) + � (p)

⇣�
x1
�2

+ · · ·+ (xn)
2
⌘
.

Thus the level sets near p are spheres, and we know as before that

g =
1

b
df2 + bh,

b (f) = |rf |2

Since g is a smooth metric at p we can then also conclude that h = ds2
n�1. ⇤

The final goal is to characterize the three standard geometries at least locally.

Corollary 3.4. Assume that there is a function f on a Riemannian manifold such
that

f (p) = 0,

rf |
p

= 0.

(1) If
Hessf = g

then the metric is Euclidean in a neighborhood of p.
(2) If

Hessf = (1� f) g

then the metric is the unit sphere metric in a neighborhood of p.
(3) If

Hessf = (1 + f) g

then the metric is hyperbolic in a neighborhood of p.

Proof. Note that in each of three cases � is already a function of f. Thus we can
find

b (f) = |rf |2

by solving the initial value problem
db

df
= 2� (f) ,

b (0) = 0

The solution is obviously unique so it actually only remains to be checked that the
three standard geometries have functions with the described properties. This works
as follows using the standard warped product representations:

Euclidean space

dr2 + r2ds2
n�1,

f (r) =
1

2
r2

The unit sphere

dr2 + sin2 rds2
n�1,

f (r) = 1� cos r
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Hyperbolic space
dr2 + sinh2 rds2

n�1,

f (r) = �1 + cosh r

In all three cases r = 0 corresponds to the point p. ⇤

4. Generalizations

In view of what we saw above it is interesting to investigate what generalizations
are possible.

Transnormal functions simply satisfy:

|rf |2 = b (f)

Note that the equation

Hessf (rf,X) =
1

2
D

X

|rf |2

shows that this is locally equivalent to saying that rf is an eigenvector for Hessf .
Wang proved that such functions further have the property that the only possible
critical values are the maximum and minimum values, moreover the corresponding
max/min level sets are submanifolds. Such functions can be reparametrized as
f = f (r) , where r is a distance function, i.e., |rr|2 ⌘ 1. Note that it is easy to
define r as a function of f

r =

ˆ
dfp
b

It is important that b is differentiable for these properties to hold as any strictly
increasing function on R is transnormal for some continuous b. In this case there
can certainly be any number of critical points that are merely inflection points.

Isoparametric functions are transnormal functions where in addition
�f = a (f) .

These functions in addition have the property that the min/max sets for r are
minimal submanifolds. These functions were introduced and studied by E. Cartan.

Even stricter conditions would be that the function is transnormal and the eigen-
values of Hessf are functions of f. A very good and general model case for this sit-
uation is a cohomogeneity 1 manifold with f = f (r) and r : M ! M/G = I ⇢ R.
For this class of functions it is a possibility that the eigenspace distributions for the
Hessian are not integrable. Specifically select

�
M4, g

�
with U (2) symmetry, e.g.,

C bundles over S2, R4 with the Taub-NUT metric, or CP 2. The generic isotropy
of U (2) is U (1) . The subspace corresponding to U (1) is then a 2-dim distribution
that must lie inside an eigenspace for Hessf. This distribution is however not inte-
grable as it corresponds to the horizontal space for the Hopf fibration. As long as
the metric isn’t invariant under the larger group SO (4) the Hopf fiber direction,
i.e., the direction tangent to the orbits but perpendicular to this distribution, will
generically correspond to an eigenvector with a different eigenvalue.

Finally one can assume that the function is transnormal and satisfies
R (X,Y )rf = 0

for all X,Y ? rf. The curvature condition is automatic in the three model cases
with constant curvature so it doesn’t imply that f is isoparametric. But it is quite
restrictive as it forces eigenspaces to be integrable distributions. It is also equivalent
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to saying that Hess(r) is a Codazzi tensor where r is the distance function so that
f = f (r) . A good model case is a doubly warped product

M = I ⇥N1 ⇥N2

g = dr2 + �21 (r)h1 + �22 (r)h2,

f = f (r) .

Note that the functions f coming from warped products satisfy all of the condi-
tions mentioned above.

Another interesting observation that might aid in a few calculations is that a
general warped product

 2g
B

+ �2g
F

= �2
�
��2 2g

B

+ g
F

�

on a Riemannian submersion M ! B, where g
B

is a metric on B and g
F

repre-
sents the family of metrics on the fibers, and  ,� functions on B. Here the metric
��2 2g

B

+g
F

is again a Riemannian submersion with the conformally changed met-
ric ��2 2g

B

on the base. Thus general warped products are always conformally
changed on the total space of a Riemannian submersion, where the conformal factor
has a gradient that is basic horizontal.

5. Geodesics

We obtain formulas for geodesics on warped products that mirror those of geodesics
on surfaces of revolution.


