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During the 1950s, a famous theorem in geometry and some perplexing examples
in topology were discovered that turned out to have unexpected connections. In
geometry, the development was the Quarter Pinched Sphere Theorem. ([Berg1],
[Kling], and [Rau])

Theorem (Rauch-Berger-Klingenberg, 1952-1961) If a simply connected, complete
manifold has sectional curvature between 1=4 and 1, i.e.,

1=4 < sec � 1;

then the manifold is homeomorphic to a sphere.

The topological examples were [Miln]

Theorem (Milnor, 1956) There are 7-manifolds that are homeomorphic to, but
not di¤eomorphic to, the 7-sphere.

The latter result raised the question as to whether or not the conclusion in the
former is optimal. After a long history of partial solutions, this problem has been
�nally solved.

Theorem (Brendle-Schoen, 2007) Let M be a complete, Riemannian manifold
and f : M �! (0;1) a C1�function so that at each point x of M the sectional
curvature satis�es

f (x)

4
< secx � f (x) :

Then M is di¤eomorphic to a spherical space form.

Prior to this major breakthrough, there were many partial results. Starting with
Gromoll and Shikata ([Grom] and [Shik]) and more recently Suyama ([Suy]) it was
shown that if one allows for a stronger pinching hypothesis � � sec � 1 for some
� close to 1; then, in the simply connected case, the manifold is di¤eomorphic to a
sphere. In the opposite direction, Weiss showed that not all exotic spheres admit
quarter pinched metrics [Weis].
Unfortunately, this body of technically di¢ cult geometry and topology might

have been about a vacuous subject. Until now there has not been a single example
of an exotic sphere with positive sectional curvature.
To some extent this problem was alleviated in 1974 by Gromoll and Meyer

[GromMey].
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Theorem (Gromoll-Meyer, 1974) There is an exotic 7�sphere with nonnegative
sectional curvature and positive sectional curvature at a point.

A metric with this type of curvature is called quasi-positively curved, and positive
curvature almost everywhere is referred to as almost positive curvature. In 1970
Aubin showed the following. (See [Aub] and also [Ehrl] for a similar result for
scalar curvature.)

Theorem (Aubin, 1970) Any complete metric with quasi-positive Ricci curvature
can be perturbed to one with positive Ricci curvature.

Coupled with the Gromoll-Meyer example, this raised the question of whether
one could obtain a positively curved exotic sphere via a perturbation argument.
Some partial justi�cation for this came with Hamilton�s Ricci �ow and his observa-
tion that a metric with quasi-positive curvature operator can be perturbed to one
with positive curvature operator (see [Ham]).
This did not change the situation for sectional curvature. For a long time, it

was not clear whether the appropriate context for this problem was the Gromoll-
Meyer sphere itself or more generally an arbitrary quasi-positively curved manifold.
The mystery was due to an appalling lack of examples. For a 25�year period the
Gromoll-Meyer sphere and the �ag type example in [Esch1] were the only known
examples with quasi-positive curvature that were not known to also admit positive
curvature.
This changed around the year 2000 with the body of work [PetWilh], [Tapp1],

[Wilh2], and [Wilk] that gave us many examples of almost positive curvature. In
particular, [Wilk] gives examples with almost positive sectional curvature that do
not admit positive sectional curvature, the most dramatic being a metric on RP 3�
RP 2: We also learned in [Wilh2] that the Gromoll-Meyer sphere admits almost
positive sectional curvature. (See [EschKer] for a more recent and much shorter
proof.) Here we show that this space actually admits positive curvature.

Theorem The Gromoll-Meyer exotic sphere admits positive sectional curvature.

On the other hand, we know from the theorem of Brendle and Schoen that the
Gromoll-Meyer sphere cannot carry pointwise, 14�pinched, positive curvature. In
addition, we know from [Weis] that it cannot carry

sec � 1 and radius >
�

2

and from [GrovWilh] that it also can not admit

sec � 1 and four points at pairwise distance > �

2
:

We still do not know whether any exotic sphere can admit

sec � 1 and diameter >
�

2
:

The Diameter Sphere Theorem says that such manifolds are topological spheres
([Berg3], [GrovShio]). We also do not know the di¤eomorphism classi�cation of �al-
most 14�pinched�, positively curved manifolds. According to [AbrMey] and [Berg4]
such spaces are either di¤eomorphic to CROSSes or topological spheres.
The class with sec � 1 and diameter> �

2 includes the globally
1
4�pinched, simply

connected, class, apparently as a tiny subset. Indeed, globally 1
4�pinched spheres
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have uniform lower injectivity radius bounds, whereas manifolds with sec � 1 and
diameter > �

2 can be Gromov-Hausdor¤ close to intervals.
In contrast to the situation for sectional curvature, quite a bit is known about

manifolds with positive scalar curvature, Ricci curvature, and curvature operator.
Starting with the work of Hitchin, it became clear that not all exotic spheres can
admit positive scalar curvature. In fact, the class of simply connected manifolds
that admit positive scalar curvature is pretty well understood, thanks to work of
Lichnerowicz, Hitchin, Schoen-Yau, Gromov-Lawson and most recently Stolz [Stol].
Since it is usually hard to understand metrics without any symmetries, it is also
interesting to note that Lawson-Yau have shown that any manifold admitting a non-
trivial S3 action carries a metric of positive scalar curvature. In particular, exotic
spheres that admit nontrivial S3 actions carry metrics of positive scalar curvature.
Poor and Wraith have also found a lot of exotic spheres that admit positive Ricci
curvature ([Poor] and [Wrai]). By contrast Böhm-Wilking in [BohmWilk] showed
that manifolds with positive curvature operator all admit metrics with constant
curvature and hence no exotic spheres occur. This result is also a key ingredient in
the di¤erentiable sphere theorem by Brendle-Schoen mentioned above.
We construct our example as a deformation of a metric with nonnegative sec-

tional curvature, so it is interesting to ponder the possible di¤erence between the
classes of manifolds with positive curvature and those with merely nonnegative cur-
vature. For the three tensorial curvatures, much is known. For sectional curvature,
the grim fact remains that there are no known di¤erences between nonnegative and
positive curvature for simply connected manifolds. Probably the most promising
conjectured obstruction for passing from nonnegative to positive curvature is admit-
ting a free torus action. Thus Lie groups of higher rank, starting with S3�S3, might
be the simplest nonnegatively curved spaces that do not carry metrics with posi-
tive curvature. The Hopf conjecture about the Euler characteristic being positive
for even dimensional positively curved manifolds is another possible obstruction to
S3�S3 having positive sectional curvature. The other Hopf problem about whether
or not S2 � S2 admits positive sectional curvature is probably much more subtle.
Although our argument is very long, we will quickly establish that there is a

good chance to have positive curvature on the Gromoll-Meyer sphere, �7. Indeed,
in the �rst section, we start with the metric from [Wilh2] and show that by scaling
the �bers of the submersion �7 �! S4; we get integrally positive curvature over
the sections that have zero curvature in [Wilh2]. More precisely, the zero locus in
[Wilh2] consists of a (large) family of totally geodesic 2�dimensional tori. We will
show that after scaling the �bers of �7 �! S4; the integral of the curvature over
any of these tori becomes positive. The computation is fairly abstract, and the
argument is made in these abstract terms, so no knowledge of the metric of [Wilh2]
is required.
The di¢ culties of obtaining positive curvature after the perturbation of section

1 cannot be over stated. After scaling the �bers, the curvature is no longer nonneg-
ative, and although the integral is positive, this positivity is to a higher order than
the size of the perturbation. This higher order positivity is the best that we can
hope for. Due to the presence of totally geodesic tori, there can be no perturbation
of the metric that is positive to �rst order on sectional curvature [Stra]. The tech-
nical signi�cance of this can be observed by assuming that one has a C1 family of
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metrics fgtgt2R with g0 a metric of nonnegative curvature. If, in addition,

@

@t
secgt P

����
t=0

> 0

for all planes P so that secg0 P = 0; then gt has positive curvature for all su¢ ciently
small t > 0: Since no such perturbation of the metric in [Wilh2] is possible, it will
not be enough for us to consider the e¤ect of our deformation on the set, Z; of zero
planes of the metric in [Wilh2]. Instead we will have to check that the curvature
becomes positive in an entire neighborhood of Z: This will involve understanding
the change of the full curvature tensor.
According to recent work of Tapp, any zero plane in a Riemannian submersion

of a biinvariant metric on a compact Lie group exponentiates to a �at. Thus any
attempt at perturbing any of the known quasipositively curved examples to positive
curvature would have to tackle this issue [Tapp2].
In contrast to the metric of [EschKer], the metric in [Wilh2] does not come from

a left (or right) invariant metric on Sp (2) : So although the Gromoll�Meyer sphere
is a quotient of the Lie group Sp (2) ; we do not use Lie theory for any of our
curvature computations or even for the de�nition of our metric. Our choice here is
perhaps a matter of taste. The overriding idea is that although none of the metrics
considered lift to left invariant ones on Sp (2) ; there is still a lot of structure. Our
goal is to exploit this structure to simplify the exposition as much as we can.
Our substitute for Lie theory is the pull-back construction of [Wilh1]. In fact,

the current paper is a continuation of [PetWilh], [Wilh1], and [Wilh2]. The reader
who wants a thorough understanding of our argument will ultimately want to read
these earlier papers. We have, nevertheless, endeavored to make this paper as self-
contained as possible by reviewing the basic de�nitions, notations, and results of
[PetWilh], [Wilh1], and [Wilh2] in sections 2, 3, and 4. It should be possible to skip
the earlier papers on a �rst read, recognizing that although most of the relevant
results have been restated, the proofs and computations are not reviewed here. On
the other hand, Riemannian submersions play a central role throughout the paper;
so the reader will need a working knowledge of [On].
After establishing the existence of integrally positive curvature and reviewing the

required background, we give a detailed and technical summary of the remainder
of the argument in section 5. Unfortunately, aspects of the speci�c geometry of the
Gromoll-Meyer sphere are scattered throughout the paper, starting with section 2;
so it was not possible to write section 5 in a way that was completely independent
of the review sections. Instead we o¤er the following less detailed summary with
the hope that it will su¢ ce for the moment.
Starting from the Gromoll-Meyer metric the deformations to get positive curva-

ture are

(1): The (h1 � h2)�Cheeger deformation, described in section 3
(2): The redistribution, described in section 6.
(3): The (U �D)�Cheeger deformation, described in section 3
(4): The scaling of the �bers, described in section 1
(5): The partial conformal change, described in section 10
(6): The �(U;D) Cheeger deformation and a further h1�deformation.

We let g1; g1;2; g1;2;3; ect. be the metrics obtained after doing deformations (1),
(1) and (2), or (1), (2), and (3) respectively.
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It also makes sense to talk about metrics like g1;3; i.e. the metric obtained from
doing just deformations (1) and (3) without deformation (2).
All of the deformations occur on Sp (2) : So at each stage we verify invariance of

the metric under the various group actions that we need. For the purpose of this
discussion we let g1; g1;2; g1;2;3; ect. stand for the indicated metric on both Sp (2)
and �7:
g1;3 is the metric of [Wilh2] that has almost positive curvature on �7. g1;2;3 is

also almost positively curvature on �7, and has precisely the same zero planes as
g1;3: Some speci�c positive curvatures of g1;3 are redistributed in g1;2;3. The reasons
for this are technical, but as far as we can tell without deformation (2) our methods
will not produce positive curvature. It does not seem likely that either g1;2 or g1;2;3
are nonnegatively curved on Sp (2) ; but we have not veri�ed this.
Deformation (4), scaling the �bers of Sp (2) �! S4; is the raison d�être of this

paper. g1;2;3;4 has some negative curvatures, but has the redeeming feature that the
integral of the curvatures of the zero planes of g1;3 is positive. In fact this integral
is positive over any of the �at tori of g1;3:
The role of deformation (5) is to even out the positive integral. The curvatures

of the �at tori of g1;3 are pointwise positive with respect to g1;2;3;4;5:
To understand the role of deformation (6); recall that we have to check that we

have positive curvature not only on the 0�planes of g1;3; but in an entire neighbor-
hood (of uniform size) of the zero planes of g1;3: To do this suppose that our zero
planes have the form

P = span f�;Wg :
We have to understand what happens when the plane is perturbed by moving its
foot point, and also what happens when the plane moves within the �bers of the
Grassmannian.
To deal with the foot points, we extend � and W to families of vectors F� and

FW on Sp (2) : These families can be multivalued and FW contains some vectors
that are not horizontal for the Gromoll-Meyer submersion. All pairs f�;Wg that
contain zero planes of

�
�7; g1;3

�
are contained in these families, and the families

are de�ned in a �xed neighborhood of the 0�locus of g1;3: All of our arguments are
valid for all pairs fz; V g with z 2 F� and V 2 FW , provided z and V have the same
foot point. In this manner, we can focus our attention on �berwise deformations of
the zero planes.
To do this we consider planes of the form

P = span f� + �z;W + �V g
where �; � are real numbers and z and V are tangent vectors. Ultimately we show
that all values of all curvature polynomials

P (�; �) = curv (� + �z;W + �V )

are positive.
Allowing �; � , z and V to range through all possible values describes an open

dense subset in the Grassmannian �ber. The complement of this open dense set
consists of planes that have either no z component or no W component. These
curvatures can be computed as combinations of quartic, cubic, and quadratic terms
in suitable polynomials P (�; �) : In sections 12 and 13 we show that these combina-
tions/curvatures do not decrease much under our deformations (in a proportional
sense); so the entire Grassmannian is positively curved.
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The role of the Cheeger deformations in (6) is that any �xed plane with a non-
degenerate projection to the vertical space of �7 �! S4 becomes positively curved,
provided these deformations are carried out for a su¢ ciently long time. Although
the zero planes P = span f�;Wg all have degenerate projections to the vertical
space of �7 �! S4; there are of course nearby planes whose projections are nonde-
generate. Exploiting this idea we get

Proposition 0.1. If all curvature polynomials whose corresponding planes have de-
generate projection onto the vertical space of �7 �! S4 are positive on

�
�7; g1;2;3;4;5

�
;

then
�
�7g1;2;3;4;5;6

�
is positively curved, provided the Cheeger deformations in (6)

are carried out for a su¢ ciently long time.

Proof. The assumptions imply that a neighborhood N of the 0�locus of g1;3 is
positively curved with respect to g1;2;3;4;5: The complement of this neighborhood
is compact, so g1;2;3;4;5;6 is positively curved on the whole complement, provided
the Cheeger deformations in (6) are carried out for enough time. Since Cheeger
deformations preserve positive curvature g1;2;3;4;5;6 is also positively curved on N .
So g1;2;3;4;5;6 is positively curved. �
Thus the deformations in (6) allow us the computational convenience of assuming

that the vector �z�is in the horizontal space of �7 �! S4:
In the sequel, we will not use the notation g1; g1;2; g1;2;3, ect. . Rather we will

use more suggestive notation for these metrics, which we will specify in Section 5.
Acknowledgments: The authors are grateful to the referee for �nding a mistake
in an earlier draft in Lemma 5.3, to Karsten Grove for listening to an extended
outline of our proof and making a valuable expository suggestion, to Kriss Tapp
for helping us �nd a mistake in an earlier proof, to Bulkard Wilking for helping us
�nd a mistake in a related argument and for enlightening conversations about this
work, and to Paula Bergen for copy editing.

1. Integrally Positive Curvature

Here we show that it is possible to perturb the metric from [Wilh2] to one that
has more positive curvature but also has some negative curvatures. The sense in
which the curvature has increased is speci�ed in the theorem below. The idea is
that if we integrate the curvatures of the planes that used to have zero curvature,
then the answer is positive after the perturbation. The theorem is not speci�c to
the Gromoll-Meyer sphere.

Theorem 1.1. Let (M; g0) be a Riemannian manifold with nonnegative sectional
curvature and

� : (M; g0) �! B

a Riemannian submersion. Further assume that G is an isometric group action on
M that is by symmetries of � and that the intrinsic metrics on the principal orbits
of G in B are homotheties of each other.
Let T � M be a totally geodesic, �at torus spanned by geodesic �elds X and W

such that X is horizontal for � and D� (W ) = Hw is a Killing �eld for the G�action
on B: We suppose further that X is invariant under G; D� (X) is orthogonal to
the orbits of G; and the normal distribution to the orbits of G on B is integrable.
Let gs be the metric obtained from g0 by scaling the lengths of the �bers of � byp

1� s2:
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Let c be an integral curve of d� (X) from a zero of jHwj to a maximum of jHwj
along c;whose interior passes through principle orbits. ThenZ

c

curvgs (X;W ) = s4
Z
c

(DX (jHwj))2 :

In particular, the curvature of spanfX;Wg is integrally positive along c; provided
Hw is not identically 0 along c:

Here and throughout the paper we set

curv (X;W ) � R (X;W;W;X) :

The formulas for the curvature tensor of metrics obtained by warping the �bers
of a Riemannian submersion by a function on the base were computed by Detlef
Gromoll and his Stony Brook students in various classes over the years. We were
made aware of them via lecture notes by Carlos Duran [GromDur]. They will appear
shortly in the textbook [GromWals]. In the case when the function is constant, these
formulas are necessarily much simpler and can also be found in [Bes], where scaling
the �bers by a constant is referred to as the �canonical variation�. To ultimately get
positive curvature on the Gromoll-Meyer sphere, we have to control the curvature
tensor in an entire neighborhood in the Grassmannian, so we will need several of
these formulas. In fact, since the particular �W�that we have in mind is neither
horizontal nor vertical for �; we need multiple formulas just to �nd curv(X;W ) :
For vertical vectors U; V 2 V and horizontal vectors X;Y; Z 2 H; for � :M ! B

we have

(Rgs (X;V )U)
H

=
�
1� s2

�
(R (X;V )U)

H
+
�
1� s2

�
s2AAXUV

Rgs(V;X)Y =
�
1� s2

�
R(V;X)Y + s2 (R(V;X)Y )

V
+ s2AXAY V

Rgs (X;Y )Z =
�
1� s2

�
R (X;Y )Z + s2 (R (X;Y )Z)

V
+ s2RB (X;Y )Z(1.2)

The superscripts H and V denote the horizontal and vertical parts of the vectors, R
and A are the curvature and A-tensors for the unperturbed metric g; Rgs denotes
the new curvature tensor of gs; and RB is the curvature tensor of the base.
To eventually understand the curvature in a neighborhood of the Gromoll-Meyer

0-locus, we will need formulas for

Rgs (W;X)X and

(Rgs (X;W )W )
H

where X is as above and W is an arbitrary vector in TM:

Lemma 1.3. Let
� : (M; g0) �! B

be as above. Let X be a horizontal vector for � and let W be an arbitrary vector in
TM: Then

Rgs (W;X)X =
�
1� s2

�
R(W;X)X + s2 (R(W;X)X)

V

+s2RB
�
WH; X

�
X + s2AXAXW

V

(Rgs (X;W )W )
H

=
�
1� s2

�
(R (X;W )W )

H

+
�
1� s2

�
s2AAXWVWV + s2RB

�
X;WH�WH
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Remark 1.4. Notice that the �rst curvature terms vanish in both formulas on the
totally geodesic torus.

Proof. We split W =WV +WH and get

Rgs (W;X)X = Rgs
�
WV ; X

�
X +Rgs

�
WH; X

�
X

=
�
1� s2

�
R(WV ; X)X + s2

�
R(WV ; X)X

�V
+ s2AXAXW

V

+
�
1� s2

�
R
�
WH; X

�
X + s2

�
R
�
WH; X

�
X
�V
+ s2RB

�
WH; X

�
X

=
�
1� s2

�
R(W;X)X + s2 (R(W;X)X)

V
+ s2RB

�
WH; X

�
X + s2AXAXW

V

To �nd the other curvature we use

Rgs (X;W )W = Rgs
�
X;WV�WV +Rgs

�
X;WH�WV

+Rgs
�
X;WV�WH +Rgs

�
X;WH�WH

Since AXAWHWV and AWHAXW
V are vertical the above curvature formulas imply�

Rgs
�
X;WH�WV�H =

�
1� s2

� �
R
�
X;WH�WV�H�

Rgs
�
X;WV�WH�H =

�
1� s2

� �
R
�
X;WV�WH�H :

In addition we have�
Rgs

�
X;WV�WV�H =

�
1� s2

� �
R
�
X;WV�WV�H + �1� s2� s2AAXWVWV�

Rgs
�
X;WH�WH�H =

�
1� s2

� �
R
�
X;WH�WH�H + s2RB �X;WH�WH:

Therefore

(Rgs (X;W )W )
H
=
�
1� s2

�
(R (X;W )W )

H
+
�
1� s2

�
s2AAXWVWV+s2RB

�
X;WH�WH

as claimed. �

Now let X and W be as in the theorem. We set Hw = D�
�
WH� and V =WV .

To prove the theorem we need to �nd curvB (X;Hw) and AXV:

Lemma 1.5.

RB (Hw; X)X = �
�
DXDX jHwj

jHwj

�
Hw

Proof. Since X is invariant under G; [X;Hw] � 0: Since X is also a geodesic �eld

RB (Hw; X)X = �rXrHwX:

Similarly, since the normal distribution to the orbits of G on B is integrable we can
extend any normal vector z to a G�invariant normal �eld Z, and get that all terms
of the Koszul formula for

hrHwX;Zi
vanish. In particular, rHwX is tangent to the orbits of G:
If K is another Killing �eld we have that X commutes with K as well as Hw;

and [K;Hw] is perpendicular to X as it is again a Killing �eld. Combining this
with our hypothesis that the intrinsic metrics on the principal orbits of G in B are
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homotheties of each other, we see from Koszul�s formula that rHw
X is proportional

to Hw and can be calculated by

hrHw
X;Hwi = hrXHw;Hwi

=
1

2
DX jHwj2

= jHwjDX jHwj ; so

rHwX =
DX jHwj
jHwj

Hw:

Thus

RB (Hw; X)X = �rX
�
DX jHwj
jHwj

Hw

�
= �DX

�
DX jHwj
jHwj

�
Hw �

�
DX jHwj
jHwj

rXHw

�
= �

 
jHwjDXDX jHwj � (DX jHwj)2

jHwj2

!
Hw �

�
DX jHwj
jHwj

�2
Hw

= �
�
DXDX jHwj

jHwj

�
Hw:

�

Lemma 1.6.
RB (X;Hw)Hw = � jHwjrX (grad jHwj) :

Proof. Let Z be any vector �eld. Using that Hw is a Killing �eld we get

hrHwHw; Zi = �hrZHw;Hwi

= �1
2
DZ hHw;Hwi

= �1
2
DZ jHwj2

= � jHwjDZ jHwj
= �hjHwj grad jHwj ; Zi

showing that
rHw

Hw = � jHwj grad jHwj :
Thus

RB (X;Hw)Hw = rXrHw
Hw �rHw

rXHw

= �rX (jHwj grad jHwj)�rHw

�
DX jHwj
jHwj

Hw

�
= � (DX jHwj) grad jHwj � (jHwjrXgrad jHwj)�

DX jHwj
jHwj

rHw
Hw

= � (DX jHwj) grad jHwj � (jHwjrXgrad jHwj) +
DX jHwj
jHwj

jHwj grad jHwj

= � (jHwjrXgrad jHwj)

�
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It follows that

curvB (X;Hw) =


RB (Hw; X)X;Hw

�
= �

�
DXDX jHwj

jHwj

�
hHw;Hwi

= � jHwj (DXDX jHwj) :(1.7)

Next we focus on jAXV j2 :

Lemma 1.8.

AXV = �
DX jHwj
jHwj

Hw:

Proof. Since X and W are commuting geodesic �elds on a totally geodesic �at
torus, rXW = 0:
So

AXV = (rXV )H

= (rXW �rXHw)
H

= � (rXHw)
H

= �rBHw
X

= �DX jHwj
jHwj

Hw

�

Combining this A�tensor formula with equation 1.7 and Lemma 1.3 yields

curvgs (X;W ) =
�
1� s2

�
curv (X;W ) + s2curvB (X;Hw)� s2 jAXV j2 + s4 jAXV j2

=
�
1� s2

�
curv (X;W )� s2 (jHwj (DXDX jHwj))� s2 (DX jHwj)2 + s4 (DX jHwj)2

Since curv (X;W ) = 0; this further simpli�es to

(1.9) curvgs (X;W ) = �s2 (DX (jHwjDX jHwj)) + s4 (DX jHwj)2 :

If c is an integral curve of X from a zero of Hw to a maximum of jHwj along c;
then the �rst term integrates to 0 along c; yieldingZ

c

curvgs (X;W ) = s4
Z
c

(DX jHwj)2

as desired.
As we�ve mentioned, to get positive curvature on the Gromoll-Meyer sphere we

will have to understand the full curvature tensor. Combining the calculations above
we have

Lemma 1.10. Let X and W be as in Theorem 1.1. Then

Rgs (W;X)X = �s2
�
DXDX jHwj

jHwj

�
Hw � s2

DX jHwj
jHwj

AXHw

(Rgs (X;W )W )
H

= �
�
1� s2

�
s2
DX jHwj
jHwj

AHw
WV � s2 jHwjrX (grad jHwj) :
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Remark 1.11. The two A�tensors AXHw and AHw
WV involve derivatives of vec-

tors that are not tangent or normal to the totally geodesic tori. They cannot be
determined abstractly, and are in fact dependent on the particular geometry. We
give estimates for them in the case of the Gromoll-Meyer sphere in Lemma 9.2
below.

2. Review of the geometry of Sp (2)

The next three sections are a review of [PetWilh], [Wilh1], and [Wilh2].
We let h : S7 �! S4 and ~h : S7 �! S4 be the Hopf �brations corresponding to

the right Ah and left A~h actions of S3 on S7.
Points on S7 are denoted by pairs of quaternions written as column vectors. The

quotient map for action on the right is

h :

�
a
c

�
7! (a�c;

1

2
(jaj2 � jcj2));

and the quotient map for action on the left is

~h :

�
a
c

�
7! (�ac;

1

2
(jaj2 � jcj2)):

The image is S4( 12 ) � H� R [Wilh1].

Proposition 2.1. (The Pullback Identi�cation) Sp(2) is di¤eomorphic to the total
space of the pullback of the Hopf �bration S7 h�! S4 via S7 �I�h�! S4, where S4 �I�!
S4 is the antipodal map. In fact, the biinvariant metric on Sp(2) is isometric (up
to rescaling) to the subspace metric on the pullback

(�I � h)�
�
S7
�
� S7 (1)� S7 (1) ;

where S7 (1) is the unit 7-sphere and S7 (1)� S7 (1) has the product metric.

In [GromMey] it was shown that �7 is the quotient of the S3-action on Sp(2)
given by

A2;�1

�
q;

�
a b
c d

��
=

�
qa�q qb
qc�q qd

�
:

We let q2;�1 : Sp(2) �! �7 denote the quotient map. It was observed by Gro-
moll and Meyer that �7 is the S3�bundle over S4 of �type (2;�1)�, using the
classi�cation convention of [Miln]. The submersion p2;�1 : �7 �! S4 is induced byeh � p2jSp(2) : Sp (2) �! S4;

where p2 : S7 � S7 �! S7 is projection onto the second factor.
The Gromoll-Meyer metric on �7 is induced by the biinvariant metric via q2;�1.

The metric studied in [Wilh2], g�1;�2;lu1 ;ld1 , is induced via q2;�1 by the perturbation of
the biinvariant metric that was studied in [PetWilh]. We will review the de�nition
of this metric in the next section.
The isometry group of the metric discovered by Gromoll and Meyer is O(2) �

SO (3) : The O(2)-action is induced on �7 by the action AO(2) on Sp (2) de�ned as

O(2)� Sp(2) �! Sp(2)

(A;U) 7! AU:
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The SO(3)-action is induced on �7 by the S3�action Ah2 on Sp (2) de�ned as

S3 � Sp (2) �! Sp (2)�
q;

�
a b
c d

��
7�!

�
a b�q
c d�q

�
:

As in [Wilh1] we have

Proposition 2.2. Every point in �7 has a point in its orbit under ASO(2) � Ah2

that can be represented in Sp(2) by a point of the form��
cos t
� sin t

�
p;

�
� sin t
cos t

��
with t 2

�
0; �4

�
; p; � 2 S3 � H; and Re (�) = 0.

Since only Ah2 acts by isometries with respect to the metrics we study, the points
in the previous proposition have to be multiplied by SO (2) to get

Proposition 2.3. Every point in �7 has a representative point (N1p;N2) in its
orbit under Ah2 that in Sp(2) has the form

(N1p;N2) =

�
cos � sin �
� sin � cos �

���
cos t
� sin t

�
p;

�
� sin t
cos t

��
=

��
cos � cos t+ � sin � sin t
� sin � cos t+ � cos � sin t

�
p;

�
sin � cos t+ � cos � sin t
cos � cos t� � sin � sin t

��
with t 2

�
0; �4

�
; � 2 [0; �] ; p; � 2 S3; and Re (�) = 0.

We have a similar representation in S7:

Corollary 2.4. Every point in S7 has a point in its orbit under A~h � Ah of the
form

N =

�
cos � sin �
� sin � cos �

��
cos t
� sin t

�
=

�
cos � cos t+ � sin � sin t
� sin � cos t+ � cos � sin t

�
with t 2

�
0; �4

�
; � 2 [0; �] ; � 2 S3; and Re (�) = 0.

The h��ber of N consists of the points�
Np : p 2 S3

	
:

We need a basis for the tangent space of Sp (2) that is well adapted to the
Gromoll-Meyer sphere and its symmetry group. It turns out that a left invariant
framing is ill suited for this purpose; rather we use a basis that comes from S7 via
the embedding Sp (2) � S7 � S7: To get the correct basis we point out

Proposition 2.5. SO (2)�Ah acts on S7 by symmetries of ~h: The action induced
on S4 has Z2�kernel and induces an e¤ective SO (2)� SO (3) action that respects
the join decomposition S4 = S1�S2: The SO (2)�factor acts in the standard way on
S1 and as the identity on S2: The SO (3) action is standard on the S2�factor and
the identity on the S1�factor. (See [GluWarZil], cf also the proof of Proposition 1.2
in [Wilh1].)
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Remark 2.6. At a representative point

(N1p;N2) =

�
cos � sin �
� sin � cos �

���
cos t
� sin t

�
p;

�
� sin t
cos t

��
=

��
cos � cos t+ � sin � sin t
� sin � cos t+ � cos � sin t

�
p;

�
sin � cos t+ � cos � sin t
cos � cos t� � sin � sin t

��
;

the parameter �; is the �S1��coordinate in S1 � S2; � is the S2�coordinate, t is
the distance to the singular S1 in S1 � S2 and p parameterizes the �bers of p2;�1 :
�7 �! S4; giving us a partial coordinate system (t; �; �; p) for �7. We denote the
singular S1 in S1 � S2 by S1R and we denote the singular S2 by S2Im: The points in
S1R are represented in Sp (2) by the points with t = 0; and S

2
Im corresponds to the

set where t = �
4 : Thus

S1R = ~h � p2jSp(2)
���

cos �
� sin �

�
p;

�
sin �
cos �

��
2 Sp (2) : � 2 [0; �] ; p 2 S3

�
and

S2Im = ~h � p2jSp(2)
��

1p
2

�
cos � + � sin �
� sin � + � cos �

�
p;
1p
2

�
sin � + � cos �
cos � � � sin �

��
2 Sp (2) :

� 2 [0; �] ; �; p 2 S3; and Re (�) = 0
	
:

Throughout the paper, 
1 and 
2 will be purely imaginary unit quaternions that
satisfy 
1
2 = �. Using such a choice for 
1 and 
2 gets us a basis for the vertical
space of h at N � S7 by setting

v = N�p;

#1 = N
1p;

#2 = N
2p:

The �bers of h and ~h have a one-dimensional intersection when t > 0 and coincide
when t = 0: v is tangent to this intersection.
We get a basis for the horizontal space of h by selecting a suitable vector per-

pendicular to N: When � = 0 a natural choice is

N̂ =

�
� sin t
� cos t

�
:

For general � we just multiply by an element in SO (2) and get

N̂ =

�
cos � sin �
� sin � cos �

��
� sin t
� cos t

�
=

�
� cos � sin t+ � sin � cos t
sin � sin t+ � cos � cos t

�
:

With this choice we de�ne the basis for the horizontal space as

x = N̂p;

y = N̂ ��p

�1 = N̂
1p;

�2 = N̂
2p:

These vectors are well-adapted to the Gromoll-Meyer sphere since x is normal
to the S1�S2s in S1 �S2 = S4; y is tangent to the S1s in S1�S2 � S1 �S2 = S4;
and the �s are tangent to the S2s in S1 � S2 � S1 � S2 = S4:
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We call x; y; and v, ��vectors, and we call �1; �2; #1; and #2, 
�vectors.
When t = 0, our formula for Np becomes

Np =

�
cos �
� sin �

�
p

which has no \��. So the vectors

v; #1; #2

become indistinguishable. This re�ects the fact that the �bers of h and ~h coincide
when t = 0: Similarly our formulas for the vectors

x; �1; �2

become indistinguishable at t = 0: This re�ects the fact that the set where t = 0 in
S4 is the �singular�S1 � S1�S2 = S4; i.e. the place where the S2s are �collapsed�.
On the other, hand at t = 0, y becomes�

� sin �
� cos �

�
��p =

�
sin �
cos �

�
p

and hence is well de�ned, re�ecting the fact that y is tangent to the circles of the
join decomposition.

Proposition 2.7. On S7 the �combined Hopf action�A~h�Ah leaves the splitting

span fx; �1; �2g � span fyg � span fv; #1; #2g

invariant and leaves the splitting

span fxg � span fyg � span f�1; �2g � span fvg � span f#1; #2g

invariant when t > 0:

Proof. Since A~h acts by symmetries of h; it at least preserves the horizontal and
vertical splitting of h. But it also leaves its own horizontal and vertical spaces in-
variant. The A~h�invariance of span fvg� span f#1; #2g when t > 0 follows from the
fact that span fvg is the intersection of the two vertical spaces and span f#1; #2g its
orthogonal complement in the vertical space of h: The A~h�invariance of span fxg�
span fyg � span f�1; �2g when t > 0 follows from the fact that at the level of S4;
A
~h preserves our join decomposition. Finally, span fyg is A~h�invariant when t = 0

since on S4; the set where t = 0 is the �xed point set of A~h; and span fyg is the
tangent space to this �xed point set.
A similar argument gives us the statement for Ah: �

As observed in [PetWilh], TSp (2) has a splitting

TSp (2) = V1 � V2 �H;

where V1 and V2 are the vertical spaces for the Hopf �brations that describe

Sp (2) � (�I � h)�
�
S7
�
� S7 (1)� S7 (1) ;

and H is the orthogonal complement of V1 � V2 with respect to the biinvariant
metric.
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The vectors

(v; 0) = (N1�p; 0) ;

(#1; 0) = (N1
1p; 0) ;

(#2; 0) = (N1
2p; 0)

form an orthogonal basis for V1: Similarly,

(0; v) = (0; N2�) ;

(0; #1) = (0; N2
1) ;

(0; #2) = (0; N2
2)

form a orthogonal basis for V2:
To get a basis for H at representative points we de�ne

N̂1 =

�
cos � sin �
� sin � cos �

��
� sin t
� cos t

�
;

N̂2 =

�
cos � sin �
� sin � cos �

��
� cos t
� sin t

�
and

x2;0 =
�
N̂1p; N̂2

�
;

y2;0 =
�
N̂1��p; N̂2�

�
�
�1;�1

�
=

�
N̂1
1p; N̂2
1

�
�
�2;�2

�
=

�
N̂1
2p; N̂2
2

�
We refer the reader to [Wilh1] for the computations that show that x2;0; y2;0;

�
�1;�1

�
;

and
�
�2;�2

�
are tangent to Sp (2). A corollary of the previous proposition is

Corollary 2.8. The Gromoll-Meyer action A2;�1 �Ah2 leaves
span

�
x2;0; (�1; �1) ; (�2; �2)

	
� span

�
y2;0

	
�span f(v; 0) ; (#1; 0) ; (#2; 0)g � span f(0; v) ; (0; #1) ; (0; #2)g

invariant and leaves the splitting

span
�
x2;0

	
� span

�
y2;0

	
� span f(�1; �1) ; (�2; �2)g

�span f(v; 0)g � span f(#1; 0) ; (#2; 0)g � span f(0; v)g � span f(0; #1) ; (0; #2)g
invariant when t > 0:

3. Cheeger Deformations

The metric studied in [Wilh2] is induced via q2;�1 by the perturbation of the
biinvariant metric that was studied in [PetWilh]. We start by reviewing its con-
struction.
In [Cheeg] a general method for perturbing the metric g on a manifold M of

nonnegative sectional curvature was proposed. Various special cases of this method
were �rst studied in [Berg2], [BourDesSent], and [Wal].
If G is a compact group of isometries of (M; g), then we let G act on G�M by

q � (p;m) = (pq�1; qm):
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If b is a biinvariant metric on G, then for each l > 0 we get a product metric l2b+g
on G�M: The quotient of this action then induces a new metric, gl; of nonnegative
sectional curvature on M . It was observed in [Cheeg] that we may expect the new
metric to have fewer 0�curvatures and symmetries than the original metric, g = g1.
The quotient map of this action is denoted by

(3.1) qG�M : G�M �!M:

In [PetWilh] we studied the e¤ect of perturbing the biinvariant metric on Sp(2)
using Cheeger�s method and the S3�S3�S3�S3 action induced by the commuting
S3-actions

Au
�
p1;

�
a b
c d

��
=

�
p1a p1b
c d

�
;

Ad
�
p2;

�
a b
c d

��
=

�
a b
p2c p2d

�
;

Ah1
�
q1;

�
a b
c d

��
=

�
a�q1 b
c�q1 d

�
;

Ah2
�
q2;

�
a b
c d

��
=

�
a b�q2
c d�q2

�
:

If � 2 TM , then �̂ 2 T (G �M) denotes the horizontal vector, with respect to

qG�M ; satisfying dp2
�
�̂
�
= �; where p2 : G�M �!M is the projection onto the

second factor. Similarly if P � TM is a tangent plane, then P̂ � T (G�M) is the
horizontal plane satisfying dp2(P̂ ) = P . Cheeger�s observation was that ([Cheeg],
cf [PetWilh], Proposition 1.10)

Proposition 3.2. (i): If the curvature of P is positive with respect to g1,
then the curvature of

dqG�M (P̂ )

is positive with respect gl.
(ii): The curvature of dqG�M (P̂ ) is positive with respect to gl if the A-tensor
of qG�M is nonzero on P̂ .

(iii): If G = S3, then the curvature of dqG�M (P̂ ) is positive if the projection
of P onto TOG is nondegenerate.

(iv): If the curvature of P̂ is 0 and AqG�M vanishes on P̂ , then the curvature
of dqG�M (P̂ ) is 0.

Remark 3.3. According to [Tapp2], no new positive curvature can be created via
(ii) if M is a Lie group with a biinvariant metric.

Following [PetWilh] and [Wilh2], our computations will be based on deformations
of the biinvariant metric on Sp (2) : The biinvariant metric induced by Sp (2) �
S7(1)�S7(1) is called b: The biinvariant metric we use is scaled so that the vectors
x2;0 etc. have unit length. Thus we use 12b; also called b 1p

2
in [PetWilh] and [Wilh2],

which is induced by Sp (2) � S7( 1p
2
)�S7( 1p

2
), where S7( 1p

2
) is the sphere of radius

1p
2
.

The e¤ect of the Cheeger perturbation Ah1 � Ah2 is to scale V1 and V2 and to
preserve the splitting V1 � V2 � H and 1

2bjH . The amount of the scaling is < 1

and converges to 1 as the scale on the S3-factor in
�
S3 � S3

�
� Sp(2) converges to

1 and converges to 0 when the S3 � S3 factor is scaled to a point. We will call
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the resulting scales on V1 and V2, �1 and �2. To simplify the exposition, we set
� = �1 = �2 and call the resulting metric g� .
It follows that g� is the restriction to Sp(2) of the product metric S7� �S7� where

S7� denotes the Berger metric obtained from S7( 1p
2
) by scaling the �bers of h by

�
p
2.
The following results can be found in [PetWilh].

Proposition 3.4. Let g�;l denote a metric obtained from the biinvariant metric on
Sp(2) via Cheeger�s method using the S3�S3�S3�S3-action, Au�Ad�Ah1�Ah2 .
Then Au�Ad�Ah1�Ah2 is by isometries with respect to g�;l. In particular, A2;�1

is by isometries with respect to g�;l, and hence g�;l induces a metric of nonnegative
curvature on the Gromoll-Meyer sphere, �7.

Proposition 3.5. Let AH : H � M �! M be an action that is by isometries
with respect to both g1 and gl. Let HAH

denote the distribution of vectors that are
perpendicular to the orbits of AH .
P is in HAH

with respect to g1 if and only if dqG�M (P̂ ) is in HAH
with respect

to gl. In fact,
g1 (u;w) = gl (u; dqG�M (ŵ))

for all u;w 2 TM:

Notational Convention: Let

qG�M : G� (M; g1) �! (M; gl)

be a Cheeger submersion. Suppose that � :M �! B is a Riemannian submersion
with respect to both g1 and gl. It follows that z is horizontal for � :M �! B with
respect to g1 if and only if dqG�M (ẑ) is horizontal for � with respect to gl: To keep
the notation simpler, we can think of this correspondence as a parameterization of
the horizontal space, H�;gl ; of � with respect to gl by the horizontal space, H�; g1

of � with respect to g1. We can then denote vectors and planes in H�; gl by the
corresponding vectors and planes in H�; g1 . We will do this for the

�
Au �Ad

�
�

Cheeger deformation, but not for the
�
Ah1 �Ah2

�
�Cheeger deformation.

Note that if t 2 [0; �4 ) then the orthogonal projection pVh;V~h : Vh �! V~h with
respect to the unit metric on S7 is an isomorphism. In fact the matrix of pVh;V~h
with respect to the ordered bases v; #1; #2 and v; ~#1; ~#2 is0@ 1 0 0

0 cos(2t) 0
0 0 cos(2t)

1A :

The horizontal space of q2;�1 with respect to g� is given by

Proposition 3.6. [Wilh2] For t 2 [0; �4 ) the horizontal space of q2;�1 with respect
to g� at the representative point (N1p;N2) is spanned by�

x2;0; y2;0;

�
�1; �1 + tan(2t)

#1
�2

�
;

�
�2; �2 + tan(2t)

#2
�2

�
; 

� v

�2
;
v

�2
�
p�1Vh;V~h

(�p�pN2)

�2

!
;

 
�#1
�2
;
#1
�2
�
p�1Vh;V~h

(�p
1pN2)

�2

!
; 

�#2
�2
;
#2
�2
�
p�1Vh;V~h

(�p
2pN2)

�2

!)
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Notation: We will call the seven vectors in Proposition 3.6, x2;0; y2;0; �2;01 ;

�2;02 , v2;�1, #2;�11 ; and #2;�12 respectively. We will call the span of the �rst four
H2;�1 and the span of the last three V2;�1.
Although our partial framing of TSp (2) is well adapted to study the Gromoll-

Meyer sphere it is neither left nor right invariant. For example, the left invariant
�eld that equals x2;0 at

Q =

��
cos t
� sin t

�
;

�
� sin t
cos t

��
is

(LQ)�

��
0
�

�
0

��
=

�
cos t
� sin t

� sin t
cos t

��
0
�

�
0

�
=

�
� sin t
� cos t

� cos t
� sin t

�
= x2;0:

Since � varies, x2;0 is not left invariant.
Note also that one should think of f�1; �2g as de�ning a global distribution rather

than as global vector �elds. The fact that S2 is not parallelizable corresponds to the
fact that 
1 is not canonically determined by �: Consequently, any statement that
we make about a single unit 
 2 span f
1; 
2g is valid for any 
 2 span f
1; 
2g :
Similarly any statement about a single unit � 2 span f�1; �2g is valid for any � 2
span f�1; �2g ; and any statement about a single # 2 span f#1; #2g is valid for any
# 2 span f#1; #2g :

4. Zero Curvatures of �7

In this �nal review section we discuss the zero curvatures of
�
�7; g�;l

�
: The

description that we give is more geometric than that of [Wilh2]. We give a brief
idea of why the zeros occur, but for a full justi�cation we combine [Wilh2] and
[Tapp2] with new computations of the zero curvatures when t = 0: These were not
given in [Wilh2] because they were not needed. We give them here to fully justify
our description and also because they give a �avor of some of the important issues
of [Wilh2].
From Proposition 3.1, we see that a 0�plane for g�;l must have a degenerate

projection onto the tangent spaces to the orbits of all four S3�actions, Au; Ad; Ah1 ;
and Ah2 :
There is a vector �eld tangent to Sp (2) that is normal to the orbits of all four

actions. We call this �eld �:When restricted to an S7�factor, � is the �eld that is
normal to the S3 � S3s in the join decomposition S7 = S3 � S3; that corresponds
to writing a point in S7 as �

a
c

�
with a; c 2 H:

� is of course in span
�
x2;0; y2;0

	
; but the combination is quite complicated.

� =
(sin 2t cos 2�) x2;0 � (sin 2�) y2;0p

sin2 2t cos2 2� + sin2 2�
:

So � does not have much to do with our join decomposition S4 = S1R � S2Im: Rather
it is the geodesic �eld that is the gradient of the distance from the point where
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(t; �) = (0; 0) : In our coordinate system for S4; the antipodal point to (t; �) = (0; 0)
is (t; �) =

�
0; �2

�
: So � is the �eld that is tangent to the meridians between these

two points. Thus � is multivalued at the two poles. This corresponds to the fact
that our formula for � is 0

0 at these poles.
Unfortunately � is everywhere normal to the Gromoll-Meyer action. Fortunately

the vectors
ZV � fU 2 TSp (2) jcurvb (�; U) = 0g

are typically not horizontal for the Gromoll-Meyer submersion p2;�1. However,
from [Tapp2] we know that every time a vector U is horizontal for p2;�1; we get a
zero plane in �7; even with respect to g�;l:
The projection to S4 of the points in �7 that have zero curvature planes con-

taining � are

Theorem 4.1. The points in S4 over which there is a horizontal vector for q2;�1 :
Sp (2) �! �7 that is in ZV are the meridians emmanating from (t; �) = (0; 0) that
make an angle that is � �

6 with the meridians that go from (t; �) = (0; 0) through
S2Im:

The set is therefore 4�dimensional with a four dimensional complement. In
[Wilh2] it is described as the sublevel set L (t; �) � 1; where L : S4 �! R is

L(t; �) =

(
2 cos(2t) sin(2�)p

sin2 2�+sin2 2t cos2 2�
if (t; �) 6= (0; 0) or

�
0; �2

�
0 if (t; �) = (0; 0) or

�
0; �2

� :

Combining this with the main theorem of [Tapp2] and Proposition 4.7 below gives
us Theorem 4.1.
Of course there can also be zero planes that do not contain �: Since � (generically)

spans the orthogonal complement of the orbit of the S3�S3�S3�S3 action, such
planes necessarily have a nondegenerate projection onto the tangent space to the
entire orbit of S3 � S3 � S3 � S3; but a degenerate projection onto the orbit of
each individual S3�action. In addition, the plane must have zero curvature for the
biinvariant metric and be horizontal for the Gromoll-Meyer submersion, it is not
surprising that such planes are fairly rare.

Theorem 4.2. The set of points Z in S4 over which there is a 0�plane in �7is the
union of the points described in Theorem 4.1 with the points where cos 2� = 0:

To get a quick idea of how these other zeros occur, we point out that the hori-
zontal vectors for q2;�1 : Sp (2) �! �7 that are also perpendicular to the orbits of
Ah1 �Ah2 are

span
�
x2;0; y2;0

	
when t > 0 and

span
n
x2;0; y2;0; �2;01 ; �2;02

o
when t = 0:
Since � 2 span

�
x2;0; y2;0

	
, the issue boils down to its complementary vector

� � �� in span
�
x2;0; y2;0

	
: Fortunately � does have a projection onto the tangent

space to the orbits of Au�Ad: Combining this with the other requirements for zero
planes it is argued in [Wilh2], that the points in S4 over which there are 0 planes
are those described in the previous theorem.
The actual zero planes have the form
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Theorem 4.3. If P is a plane with 0 curvature at a point where (t; sin 2�) 6= (0; 0)
and cos 2� 6= 0, then P has the form

P = span f�;Wg
where

W 2 V1 � V2:
If � has the form

� = x2;0 cos'+ y2;0 sin';

then W has the form

cos�
� v
�2
;
v

�2

�
+ sin�

 
�#1
�2
;
�#1
�2
cos +

�#2
�2
sin 

!
where

 = � � 2';
�#1; �#2 2 span f#1; #2g ; correspond to spherical combinations �
1; �
2 of f
1; 
2g that
satisfy ��
1 = �
2; and (cos�; sin�) is the point in the �rst quadrant of R2 that is
on the unit circle and on the ellipse parameterized by

(4.4) � 7�!
�
cos�

2
;
sin�

L (t; �)

�
:

When cos 2� = 0; there are zero planes of the form described above. In addition
there are zero planes of the form

P = span
�
x2;0;W

	
where

W =

 
v

�2
1

2
+

#

�2

p
3

2
;
v

�2
1

2
� #

�2

p
3

2

!
:

Remark 4.5. There is a further conjugacy condition for a vector of the form of W
to actually be horizontal for q2;�1 : �7 �! S4: Because of this, in a given �ber of
�7 �! S4 over a point in Z � S4 most points do not in fact have zero curvatures,
and at most points where there is a zero curvature, there is just one zero curvature.
None of these issues will be important for us, so we will not review them.

Remark 4.6. The unit circle and the ellipse in question do not intersect when
L (t; �) > 1: When this happens the corresponding W s are not horizontal for the
Gromoll-Meyer submersion.

4.1. Zero Curvatures at t = 0. When t = 0; all points have positive curvature
except for certain points with cos 2� sin 2� = 0: The lack of 0�planes in �7 is
caused by the zero planes of Sp (2) not intersecting the horizontal distribution of
the Gromoll�Meyer submersion. The reason for this is the fact that the unit circle
and the ellipse in (4.4) do not intersect when L (t; �) > 1: So the corresponding W s
are not horizontal for the Gromoll-Meyer submersion. For example, if t = 0 and
sin 2� 6= 0; then � = �y2;0 and L (0; �) = 2: For span

�
y2;0;W

	
to have 0 curvature,

with respect to g� , W must have the form

cos� (v; v) + sin� (#; #) = (N1�p;N2�)

for some purely imaginary � 2 S3 � H:
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When t = 0; we have Vh = V~h so none of the horizontal vectors�
N1�p;�N2� + p�1Vh;V~h (�p�pN2)

�
can have the required form

(N1�p;N2�) :

When (t; �) = (0; 0) or
�
0; �2

�
, the de�nition of � is ambiguous: The de�nition of

x2;0 is also ambiguous since the � coordinate is nonexistent at t = 0: In fact, the
three vectors x2;0; �2;01 ; and �2;02 project under p2;�1 �q2;�1 to a basis for the normal
space of S1R � S4: Declaring that a particular purely, imaginary unit quaternion
is ���amounts to declaring that a particular unit normal vector to S1R is �x

2;0�.
This choice is somewhat irrelevant since, on the level of S4; the isometric action
Ah2 �xes S1R and acts transitively on the normal space. Thus, to �nd 0 curvatures
when (sin 2t; sin 2�) = (0; 0) ; we only need to consider planes of the form

P = span fz;Wg
where z 2 span

�
x;2;0; y2;0

	
and W 2 V2;�1: There will of course be other 0�planes,

but they are the images of these under Ah2 :
Since L (0; �) � 2; when � 6= 0; �2 ; there are no 0�curvatures when t = 0; provided

� is not 0; �4 ;
�
2 ; or

3�
4 : The details can be found in [Wilh2], but the basic reason

is contained in the remark above, when � 6= 0; �2 ; then � = y2;0; and the W s that
together with y form 0 planes are not horizontal at t = 0:
The structure of the 0�planes when (t; �) = (0; 0) or

�
0; �2

�
was claimed in [Wilh2,

p. 556] to be

Proposition 4.7. Let
�' = x2;0 cos'+ y2;0 sin'

for some ' 2
���
2 ;

�
2

�
: If (t; �) = (0; 0) or

�
0; �2

�
and jsin'j � 1

2 , then there are
values of p for which �' is in 0�planes of the form

P = span
�
�';W

	
where

W = cos� (v; v) + sin� (#1; #1 cos + #2 sin )

and
 = � � 2':

Any other 0�plane is the image of one of these under Ah2 :

The details of this were not given in [Wilh2], since it was not crucial to the goal
of that paper. Since we will need to use it, we will prove it here.
The value of cos� is determined by '; the relationship can be inferred from our

proof.

Proof. As explained in [Wilh2] it is enough to consider planes of the form

P = span fz;Wg
where z is horizontal for p2;�1 : �7 �! S4 and W 2 V1 � V2 is horizontal for
q2;�1 : Sp (2) �! �7: Since t = 0; we can use the isometries Ah2 to further reduce
our consideration to planes with z 2 span

�
x2;�1; y2;�1

	
: In other words we may

replace z with
�' = x2;0 cos'+ y2;0 sin':
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Using Proposition 4.6 in [Wilh2], this then forces W to have the form listed in the
statement. It only remains to check what W s are horizontal for q2;�1 when t = 0:
We explained above that when �' = y2;0; the required W is not horizontal.
When �' = x2;0; the required W is

W =

 
v

2
+

p
3

2
#;
v

2
�
p
3

2
#

!
:

We see that W can be realized in the form�
N1�p;�N2� + p�1Vh;V~h (�p�pN2)

�
by choosing

� =

 
1

2
�+

p
3

2



!
and p so that

�p�p = �:

Now we consider the general problem of realizing

W = cos� (v; v) + sin� (#1; #1 cos + #2 sin )

in the form �
N1�p;�N2� + p�1Vh;V~h (�p�pN2)

�
:

The �rst coordinate,
v cos�+ sin�#1;

of W forces us to set
� = � cos�+ 
1 sin�:

The question then becomes whether there is a choice of p that will achieve the
desired second coordinate. The second coordinate of W can be written

(4.8) v cos�+ (#1 cos + #2 sin ) sin� = N2� cos�+N2
 sin�:

for 
 = 
1 cos + 
2 sin : On the other hand if we set

�p�p = � cos� + 
0 sin�

then

�N2� + p�1Vh;V~h (�p�pN2) = �N2 (� cos�+ 
1 sin�) + (�p�p)N2
= �N2� cos��N2
1 sin�+ (� cos� + 
0 sin�)N2
= N2 (�� cos�+ � cos�) +N2 (�
1 sin�+ 
0 sin�)

since N2 is real and therefore commutes with all quaternions.
Equating this with 4.8 gives us the equations

� cos� = �� cos�+ � cos�;

 sin� = �
1 sin�+ 
0 sin�

or

cos� = 2 cos�;


0 sin� = (
 + 
1) sin�:
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We can always choose p so that 
0 points in the direction of 
+
1: The issue is that
since 
 + 
1 has a variable length, sometimes there are solutions and sometimes
there are not. In fact, if we set

L = j
 + 
1j ;

then our equations become

cos� =
cos�

2
;

sin� =
sin�

L
:

So the question becomes whether or not the unit circle (cos�; sin�) intersects the
ellipse whose parametrization is

� 7�!
�
cos�

2
;
sin�

L

�
:

Thus when jLj � 1 there are solutions and when L > 1 there are no solutions. So
it remains to analyze how L depends on ':
Since


 = 
1 cos + 
2 sin ;

 = � � 2';

we have


 = 
1 cos (� � 2') + 
2 sin (� � 2')
= �
1 cos 2'+ 
2 sin 2':

Thus

L2 = j
1 + 
j
2

= 1� 2 cos 2'+ 1:

So our condition, L � 1 for 0 curvature is

2� 2 cos 2' � 1

�2 cos 2' � �1

or

cos 2' � 1

2

Keeping in mind that ' 2
�
��
2 ;

�
2

�
; we get

��
3
� 2' � �

3

or

�1
2
� sin' � 1

2
:

�
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5. Further Summary

Having scaled the �bers of �7 �! S4; we can get pointwise positive curvature
along any single (formerly) �at torus via a conformal change. The idea is that the
Hessian of the conformal factor needs to cancel the s2 term in Equation 1.9,

(5.1) curvgs (X;W ) = �s2 (DX (jHwjDX jHwj)) + s4 (DX jHwj)2 :

Unfortunately, there is no conformal change that will produce pointwise positive
curvature along all of the tori simultaneously. The problem is that only the com-
ponent of W that is horizontal for �7 �! S4 appears in our curvature formula.
Along any one torus, the vector Hw is a Killing �eld for the SO (3)�action on S4;
but the precise Killing �eld, and more importantly the ratio jHwj

jW j varies from torus
to torus, so the size of the required Hessian varies as well.
This di¢ culty is overcome by using only a �partial�conformal change. The re-

striction of the metric to the distribution span f(N�p;N�)g is not modi�ed. The
metric only changes on the orthogonal complement of span f(N�p;N�)g : The de-
tails are carried out in Section 10.
A further di¢ culty is created by the fact that the pieces of the zero locus with

L (t; �) � 1 and cos 2� = 0 intersect at certain points over points in S4 where t � �
6

and cos 2� = 0: A description of this intersection is given in [Wilh2], Theorem
E(iv,v).
The di¢ culty this creates is that the natural choices of conformal factors do not

agree on this intersection.
To circumvent this di¢ culty, in Sections 7, 8, and the appendix we analyze the

e¤ect on Equation 5.1 of running the h2�Cheeger perturbation for a long time. If
� is the parameter of this perturbation, then it turns out that making � small has
the e¤ect of concentrating all of the terms on the right hand side of equation 5.1,
�s2 (DX (jHwjDX jHwj)) + s4 (DX jHwj)2 ; around t = 0: We will make � small
enough so that we can choose a (partial) conformal factor that is constant near the
intersection of the two pieces of the zero locus, and hence not have to worry about
the con�ict that the intersection creates.
The intersection of the two pieces of the zero locus, also creates a notational

con�ict. To simplify the exposition we will henceforth write explicitly only about the
planes at points where L (t; �) � 1:With the obvious modi�cations in notation and
a few simpli�cations, the argument simultaneously will give us positive curvature
near the planes where cos 2� = 0:
Unfortunately, to really move the support of the partial conformal change away

from the intersection we have to make � depend on s: In the end we will pick
� = O

�
s6=7

�
: This means that our ultimate metric is not obtained as an in�ni-

tesimal perturbation of any (known) metric with nonnegative curvature. This fact
will further complicate our exposition. Before we can explain why, some further
clari�cation is needed.
Imagine that we have a deformation in which all of the former zero curvature

planes, span f�;Wg ; are positively curved. Next comes the daunting challenge of
establishing that an entire neighborhood (of uniform size) of these planes in the
Grassmannian is positively curved. We have to consider what happens when we
move the base point of our plane and also when we move the plane with out moving
the base point.
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To deal with points that are close to, but not on the old zero locus, we expand
our de�nition of W to include certain vectors in TSp (2) that are close to, but not
on the old zero locus.
At points with 0�curvature,

W = (N1�p;N2�) ;

is determined by the requirements that curv(Sp(2);g�;l) (�;W ) = 0 and that W be
horizontal for the Gromoll-Meyer submersion. The points in

�
�7; g�;l

�
with positive

curvature are images of points in Sp (2) at which no horizontal W solves

curv�;l (�;W ) = 0:

For the purpose of this discussion only, we require j�j = j�j = 1, and we let Z4
be the set of (t; �) for which there is some zero plane in �7: For (t; �) 2 Z4 the
size of the 
�component of � depends only on (t; �) ; and not on (�; p) : At points
in Sp (2) with (t; �) 2 Z4; we let W be any vector in TSp (2) proportional to such
a (N1�p;N2�) ; with the size of the 
�component of � determined by (t; �) and
curv(Sp(2);g�;l) (�;W ) = 0: Note that such W are not required to be horizontal for
the Gromoll-Meyer submersion, there are no such horizontalW s when (�; p) is such
that �7 is positively curved at (t; �; �; p) ; and W is of course multivalued.
At points in Sp (2) with (t; �) =2 Z4, we let W be any vector of the form

(N1�p;N2�) with curv(Sp(2);g�;l) (�;W ) = 0 and �; � 2 span f
1; 
2g : Of course,
when (t; �) =2 Z4, W is never horizontal for the Gromoll�Meyer submersion.
In all of our subsequent statements we assume that spanf�;Wg is any one of

these planes, whether or not it corresponds to a zero plane in �7: In this way
we will only have to worry about deforming our planes within the �bers of the
Grassmannian.
We get positive curvature on the Gromoll-Meyer sphere by proving

Theorem 5.2. There is a neighborhood N of the set of all f�;Wg in the Grass-
mannian of Sp (2), a choice of (�; l), and a deformation gnew of g�;l; that is invari-
ant under the Gromoll-Meyer action, so that

curvgnew jN > 0

and curvgnew > 0 on horizontal planes in the complement of N: In particular,
curvgnew > 0 on all horizontal planes.

We can now explain why the fact that our deformation is not in�nitesimal will
further complicate our exposition.
If our deformation is in�nitesimal, then we only have to understand the �qua-

dratic perturbations�of our planes in the Grassmannian.
To explain what this means precisely, let fgsg be a C1 family of metrics on a

compact manifold with g0 having nonnegative curvature, and let any zero curvature
plane with respect to g0 be represented by span f�;Wg : We represent a general
plane near span f�;Wg in the form P = span f� + �z;W + �V g where z ? �;
V ?W; and �; � 2 R: The curvature is then a quartic polynomial

P (�; �) = curv (� + �z;W + �V )

in � and � .
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Let Rs be the curvature tensor of gs, let Rold be the curvature tensor with respect
to g0; and let Rdi�;s = Rs � Rold: Let P old and P di�;s have the obvious meaning.
It is not hard to see

Lemma 5.3. At all points for which g0 has some 0�curvatures, gs is positively
curved for all su¢ ciently small s provided for all 0�planes, span f�;Wg ;with respect
to g0;

@

@s
curvdi�;s (�;W ) js=0 = 0

@2

@s2
curvdi�;s (�;W ) js=0 > 0;

P old (�; �) > 0;

for all (�; �) 6= (0; 0) ; and

PQ (�; �) � curvdi�;s (�;W ) + 2�Rdi�;s (�;W;W; z) + 2�Rdi�;s (W; �; �; V )
+�2curvold (z;W ) + 2��

�
Rold (�;W; V; z) +Rold (�; V;W; z)

�
(5.4)

+�2curvold (�; V )

> 0

for all su¢ ciently small s and all �; � 2 R:

Remark 5.5. In the abstract setting of this lemma, we can not guarantee that
the metrics become positively curved because we know nothing about points that are
close to, but not on the point wise 0�curvature locus of g0: This is not a concern for
the Gromoll-Meyer sphere because we have explained how to extend span f�;Wg to
a family of planes in Sp (2) that includes all points in a neighborhood of the point
wise 0�locus (and also includes planes that are not horizontal for �7 �! S4):
It should also be emphasized that we never establish the hypotheses of this Lemma

for our deformation. This is because our deformation is not in�nitesimal. We have
never the less included the result because it suggests a reasonable frame work for
our computations.

Proof. Since we do not use this, we give only a sketch of the proof.
The idea is that all of the other terms of P (�; �) are either positive, 0 or too

small to matter. Since g0 is nonnegatively curved, the constant and linear terms
are 0 when s = 0: Since ��Rdi�;s�� = O (s)

the quadratic, cubic, and quartic terms of P di�;s are smaller than

sO
�
�2 + �� + �2 + ��2 + �2� + �2�2

�
and hence are smaller than the corresponding terms of P old; if s is su¢ ciently small.
On the one hand, the minimum of 5.4 occurs in the region where

max f�; �g = O (s) ;

and the size of this minimum is O
�
s2
�
; so in this region the cubic, and quartic

terms of P are too small too matter. On the other hand, when max f�; �g > O (s) ;
the linear terms have order

O (s)max f�; �g



AN EXOTIC SPHERE WITH POSITIVE CURVATURE 27

and since P old (�; �) > 0 our curvature has order

� O
�
�2 + �2

�
;

so the linear terms are too small to matter. �

Since our deformation is not in�nitesimal, we will need to understand the full
polynomial P (�; �) : In fact, all of the possible values of all of the possible P (�; �)s
only describe the curvatures of an open dense subset in the Grassmannian. The
curvatures of the complement of this open dense set are described by quadratic
sub-polynomials of the P (�; �) that are proportional to sums of quartic, cubic, and
pure quadratic terms of the various P (�; �)s.
We will establish positive curvature on the Gromoll-Meyer sphere by showing

that all of these polynomials and sub-polynomials are positive.
Since � = O

�
s6=7

�
; we still have that s is much smaller than �: Morally this

means that even though our deformation is not in�nitesimal, it is still fairly short
term. The upshot of this is that many of the higher order coe¢ cients of P di� will
be too small to matter. Those that are large will turn out to be comparable (in a
favorable way) to terms in P old: We carry this out in sections 12 and 13.
It turns out that the metric we have outlined thus far is not actually positively

curved. The problem is that we do not actually get inequality 5.4 everywhere. To
correct this problem we make a further modi�cation of the metric in section 6. We
call this the �redistribution�perturbation, and the resulting metric is g�;re:
Finally, there is one further Cheeger deformation that we use that was not used

in the earlier papers. The diagonal of U and D; which we will call �(U;D) :
The purpose of this �nal Cheeger deformation is that coupled with the h1�Cheeger
deformation it will allow us to see that any plane whose projection onto the vertical
space is nondegenerate is positively curved. Although none of the original zero
planes have this feature, this observation will still be useful, since it will allow
us to immediately see that many of the possible perturbations of spanf�;Wg are
positively curved. Modulo an identi�cation this diagonal perturbation is also used
in [EschKer].
The positively curved metric that we obtain can probably be constructed via

several orderings of our deformations. However, to make our construction unam-
biguous, we will adopt the following order:

(1): The (h1 � h2)�Cheeger deformation
(2): The redistribution, described in section 6.
(3): The (U �D)�Cheeger deformation.
(4): The scaling of the �bers.
(5): The partial conformal change.
(6): The �(U;D) Cheeger deformation and a further h1�deformation.

We will accordingly discuss the redistribution perturbation next. Although this
is the logical order, it is not entirely clear that this order of exposition is optimal.
The real need for the redistribution only becomes clear after one has done the
subsequent computations; moreover, the desired change in the curvature is also only
clear after further computations have been carried out. The reader may therefore
wish to skip the next section, until its need becomes clear. We have written the rest
of the paper in a su¢ ciently abstract form so that with the exception of subsection
8.1 this should be possible. The exceptional subsection concerns an e¤ect of the
redistribution that is not discussed in section 6.
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Since our deformation is fairly short term, we have divided our curvature com-
putations into to those required to prove 5.4 and those required to understand the
higher order terms of P (�; �) : The part necessary to prove 5.4 is Sections 6�11, by
the end of which we will have proven

Lemma 5.6. (Main Lemma) Let g�;re;l be the metric obtained after carrying out
the deformations 1�3 above. Let gnew be the metric obtained after carrying out the
deformations 1�5 above. Set

Rdi� = Rnew �R�;re;l:

Then for any choice of V and z as above with z horizontal for p2;�1 : �7 �! S4

and any �; � 2 R;

PQ (�; �) = curv
di� (�;W ) + 2�Rdi� (�;W;W; z) + 2�Rdi� (W; �; �; V )

+�2curv�;re;l (z;W ) + 2��
�
R�;re;l (�;W; V; z) +R�;re;l (�; V;W; z)

�
+�2curv�;re;l (�; V )

> 0:

Notation: We denote the metrics obtained following deformations 1�5 above
g� ; g�;re; g�;re;l; gs; and gnew respectively. We let notation like curv�;re;l and Rs

have the obviously meaning.
We will not discuss the role of deformation 6, any further. It is a Cheeger de-

formation, so its e¤ect is well understood. In particular, it preserves nonnegative
and positive curvatures, and for us the purpose is that it allows the a priori simpli-
�cation of the polynomial P (�; �) that we discussed above, and was explained in
detail in Proposition 0.1.
The notation O (s) will (as usual) stand for a quantity that converges to 0 faster

than a �xed constant times s: The notation O will stand for a quantity that is too
small to e¤ect whether or not our metric is positively curved.

6. The Redistribution

As we mentioned above the metric obtained by carrying out deformations (1)
and (3)�(6) described above is not positively curved. It is not possible to fully
explain why at this point, but as mentioned above, the Main Lemma does not hold,
in particular, there are choices of � and V so that

PQ (0; �) = curv
di� (�;W ) + 2�Rdi� (W; �; �; V ) + �2curvold (�; V ) < 0:

To �x this problem we discuss the redistribution deformation (2) here. The idea
is that certain (positive) curvatures of the type, curvold (�; V ) ; are redistributed so
that they become larger near t = 0 and relatively smaller away from t = 0: This
is at least a reasonable goal, since (as we�ll see in section 8) curvdi� (�;W ) and
Rdi� (W; �; �; V ) are both concentrated near t = 0:
Within V1� V2 there is a 3�dimensional subdistribution Z; that has zero curva-

ture with �: Z? � V1 � V2 is therefore a three dimensional subdistribution, along
which we redistribute the curvature with � by warping the metric by a function '
whose gradient is proportional to �:
We want to concentrate the curvature near t = 0; so we choose ' to be concave

down near t = 0 and concave up away from t = 0:
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More speci�cally, using '0 for D� (') ; we choose ' so that

'0 (0) = 0

�101 <
'00

�2
< �100 on an interval of size O (�) near t = 0

and

10; 000�3 < '00 < 10; 001�3 on an interval that looks like
�
O (�) ;

1

100

�
:

For this section only, we call the metric obtained by doing only the Cheeger
perturbations (1), (3), and (6) described above gold; and we call the metric obtained
by doing deformations (1), (2), (3), and (6), gnew: Where by (2) we mean, that we
multiply the restriction of the metric to Z? by '2; and do not change the metric
on the orthogonal complement of Z?:
Our choice of '00 allows us to also have

j'0j � O
�
100�3

���'2 � 1�� � O
�
100�3

�
;

'j[O( 1
100 );

�
4 ]

� 1:

Since we carry out this change on Sp (2) before some of our Cheeger deformations
we have to check that the resulting metric is still invariant under the various S3�
actions. To see this, simply note that they all leave V1 � V2 and � invariant. From
this it follows that they all leave Z and Z? invariant, and hence they all leave
gnew�invariant.

Remark 6.1. The constants 100; 101; 10; 000, ect. really just symbolize large
constants that are independent of our choice of metric parameters. We have not
veri�ed that our whole argument actually works with these particular constants.
This question is fairly subtle, but since it is merely academic we have only checked
that the argument works with some �xed constants playing the role of 100; 101;
10; 000, ect.

It is not surprising that the e¤ect of this change in metric is to redistribute
curvold

�
�;Z?

�
toward t = 0: The fact that we can do this without changing other

curvatures in a substantial way, is an amazing fact, that makes our whole argument
work.

Theorem 6.2. gnew induces a metric of nonnegative curvature on �7 whose zero
planes are identical to those of gold: Moreover, for any V 2 Z?

curvnew (�; V ) = curvold (�; V ) + ''00 jV j2old ;

and all other curvatures satisfy

curvnew (z; u) � curvold (z; u) +O (�) curvold (z; u) :

Remark 6.3. Please note that we are not asserting the existence of a new non-
negatively curved metric on Sp (2) ; only on �7: The di¤erence is that we have a
tighter control on the pre-existing 0�curvatures of �7: The result is, nevertheless,
surprising. For a quick explanation of why it holds, we point to the extreme amount
of rigidity present. (Cf [Tapp2].) For example, since the distribution Z is parallel
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along �; it follows that any vector v tangent to Z? can be extended to a �eld V
tangent to Z? so that

(r�V )V1�V2 = 0:
Within this section, we will call such a �eld �vertically parallel�. Along a curve
tangent to H; these �elds look like (N1�;N2�) ; and hence in the language of Lie

groups are the left invariant �elds determined by
�
� 0
0 �

�
: In the directions tan-

gent to V1 � V2, the splitting Z � Z? is right invariant, but not left invariant. So
we will extend these �vertically parallel� to be right invariant along V1�V2: If U is
such a �eld and Z is basic horizontal, then (as O�Neill observed)

[U;Z]
H
= 0:

With respect to the biinvariant metric we have

rZU 2 H; and

Since the orbits of Ah1�Ah2 are totally geodesic, rUZ is also in H; so [U;Z]V1�V2 =
0; and in fact

[U;Z] = 0:

Proposition 6.4. For P 2 Z?; vertically parallel along �;

r�;re� P = '2r��P +
'0

'
P

r�;reP P = r�PP � ''0 jP j
2
� �

For Z 2 H, perpendicular to � and basic horizontal for h1 � h2
r�;reP Z = '2r�PZ;

and for U 2 H and basic horizontal for h1 � h2 and for Z basic horizontal for
h1 � h2 or for Z 2 Z and vertically parallel

r�;reU Z = r�UZ:

Proof. For P 2 Z?; and vertically parallel

2
D
r�;re� P; P

E
�;re

= D� hP; P i�;re
= 2''0 hP; P i�
= 2



r��P; P

�
�
+ 2''0 hP; P i� :

For Q 2 Z? vertically parallel (with respect to g�) and perpendicular to P

2
D
r�;re� P;Q

E
�;re

= 2


r��P;Q

�
�

= 0:

For Q 2 Z; vertically parallel, we also know that [�;Q] = [�; P ] = 0: So

2
D
r�;re� P;Q

E
�;re

= h[�; P ] ; Qi�;re � h[�;Q] ; P i�;re
= 0

= 2


r��P;Q

�
�;re
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For Z in the orthogonal complement H of V1�V2; and basic horizontal for h1�h2

2
D
r�;re� P;Z

E
�;re

= �h[�; Z] ; P i�;re

= �'2 h[�; Z] ; P i�
= 2'2



r��P;Z

�
�;re

= 2'2
D
A�;h1�h2� P;Z

E
�;re

:

Combining equations gives us

r�;re� P = '2r��P +
'0

'
P

as claimed.

hr�;reP P; �i�;re = �
D
r�;re� P; P

E
�;re

= �


r��P; P

�
�
� ''0 hP; P i�

= hr�PP; �i�;re � ''
0 hP; P i�

For Z 2 H and perpendicular to �

2 hr�;reP P;Zi�;re = �DZ hP; P i�;re + 2 h[Z;P ] ; P i�;re
= 2'2 hr�PP;Zi�

However, since hr�PP;Zi� = 0; we conclude that

2 hr�;reP P;Zi�;re = hr
�
PP;Zi� = 0

For Q 2 Z?;

2 hr�;reP P;Qi�;re = 2'2 hr�PP;Qi�
= 2 hr�PP;Qi�;re
= 0

For Q 2 Z

2 hr�;reP P;Qi�;re = 2 h[Q;P ] ; P i�;re
= 2'2 h[Q;P ] ; P i�
= 2'2 hr�PP;Qi�
= 2'2 hr�PP;Qi�;re

However, since hr�PP;Qi� = 0; both sides are again 0: Combining equations we
have

r�;reP P = r�PP � ''0 jP j
2
� �:

For Z; Y 2 H; basic horizontal and Z perpendicular to �

2 hr�;reP Z; Y i�;re = h[Y; Z] ; P i�;re
= '2 h[Y; Z] ; P i�
= 2'2 hr�PZ; Y i�;re
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For Z 2 H, perpendicular to � and for Q 2 Z?

2 hr�;reP Z;Qi�;re = DZ hP;Qi�;re � h[Z;P ] ; Qi�;re � h[Z;Q] ; P i�;re
= 2'2 hr�PZ;Qi�
= 2 hr�PZ;Qi�;re

If Q is chosen to be one of our vertically parallel �elds, then all three terms in the
second expression are 0; so in fact

2 hr�;reP Z;Qi�;re = 2 hr
�
PZ;Qi�;re = 2 hr

�
PZ;Qi� = 0

Similarly for Q 2 Z vertically parallel, we have

2 hr�;reP Z;Qi�;re = �h[Z;P ] ; Qi�;re � h[Z;Q] ; P i�;re
However, since both terms are 0 we have

2 hr�;reP Z;Qi�;re = 2 hr
�
PZ;Qi�;re = 2 hr

�
PZ;Qi� = 0

Combining equations we have

r�;reP Z = '2r�PZ:
Finally, the last equation

r�;reU Z = r�UZ;
follows from the Koszul formula. �

Proposition 6.5. For P 2 Z?

R�;re (P; �) � = '2R� (P; �) � � 3''0Ah1�h2� P � '00

'
P

R�;re (�; P )P = '4R� (�; P )P � (''00) jP j2� �

Proof. For P 2 Z?; vertically parallel, we know that [�; P ] = 0. Since � is a
geodesic �eld

R�;re (P; �) � = �r�;re� r�;reP �

= �r�;re�

�
'2r��P +

'0

'
P

�
= �2''0Ah1�h2� P � '2r�;re� r��P �

''00 � ('0)2

'2
P � '0

'
r�;re� P

= �2''0Ah1�h2� P � '2r�;re� r��P �
''00 � ('0)2

'2
P � ('

0)
2

'2
P � '2'

0

'
r��P

= '2R� (P; �) � � 3''0Ah1�h2� P � '00

'
P

R�;re (�; P )P = r�;re� r�;reP P �r�;reP r�;re� P

= r�;re�

�
r�PP � ''0 jP j

2
� �
�
�r�;reP

�
'2r��P +

'0

'
P

�
Since

r�PP = 0

r�;re� r�PP = r��r�PP = 0:
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We use the third equation of the previous proposition to get

r�;reP

�
'2r��P

�
= '4r�Pr��P:

So

R�;re (�; P )P = '4R�;re (�; P )P �r�;re�

�
''0 jP j2� �

�
�
�
'0

'
r�;reP P

�
= '4R�;re (�; P )P �

�
''00 + ('0)

2
�
jP j2� � +

'0

'
''0 jP j2� �

= '4R�;re (�; P )P � (''00) jP j2� �
�

Proposition 6.6. For W 2 Z; and vertically parallel along � with respect to g�
r�;re� W = r��W = 0

r�;reW W = r�WW = 0:

Proof. For the �rst equation, the point is that for V 2 Z?; and vertically parallel,
[�;W ] = [�; V ] = 0:

For the second equation, when we compute the inner product with P 2 Z?; we
extend W and P to be invariant under Ah1 � Ah2 ; so we can compute their Lie
bracket as though they are right invariant vector �elds in S3: In particular,

h[W;P ] ;W i�;re = h[W;P ] ;W i� = 0
so

hr�;reW W;P i�;re = hr
�;re
W W;P i� = 0:

�

Proposition 6.7.
R�;re (W; �) � = R� (W; �) � = 0

R�;re (�;W )W = R� (�;W )W = 0:

Proof.
R�;re (W; �) � = �r�;re� r�;reW � = 0 = R� (W; �) �

R�;re (�;W )W = r�;re� r�;reW W �r�;reW r�;re� W

= 0 = R� (�;W )W:

�

Proposition 6.8. For z 2 H perpendicular to � and P 2 Z?

R�;re (z; P )P = '4R� (z; P )P � ''0 jP j2� (r
�
z�)

P;?
;

where the superscript P;? denotes the component perpendicular to P:

R�;re (P; z) z = '2R� (P; z) z + II� (z; z)
'0

'
P;

where
II� (z; z) = hr�zz; �i :
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Note that these give consistent answers for the sectional curvatures�

hR�;re (z; P )P; zi = '4 hR� (z; P )P; zi � ''0 jP j2� hr
�
z�; zi

hR�;re (P; z) z; P i = '4 hR� (P; z) z; P i+ II� (z; z) '
0

'
hP; P i�;re

Proof. Choose P to be the vertically parallel extension, then

R�;re (z; P )P = r�;rez r�;reP P �r�;reP r�;rez P

= r�;rez

�
r�PP � ''0 jP j

2
� �
�
�r�;reP

�
'2r�P z

�
Since r�PP = 0

r�;rez (r�PP ) = r�z (r�PP ) = 0:
Also

r�;reP

�
'2r�P z

�
= '4r�P (r�P z) + '2

'0

'
P hr�P z; �i�

= '4r�P (r�P z) + ''0 hr�P z; �i� P

So
R�;re (z; P )P = '4R� (z; P )P � ''0 jP j2� r

�;re
z � � ''0 hr�P z; �i� P:

The last term on the right does not seem to be correct since it is proportional to
P: The formula is nevertheless correct since this term cancels with the P�component
of the second term. Indeed

�''0 jP j2�

*
r�;rez �;

P

jP j�;re

+
�;re

P

jP j�;re
� ''0 hr�P z; �i� P

= �''0 hr�z�; P i� P � ''
0 hr�P z; �i� P

= ''0 h�;r�zP i� P � ''
0 hr�P z; �i� P

= 0

So
R�;re (z; P )P = '4R� (z; P )P � ''0 jP j2� (r

�
z�)

P;?
:

as claimed.
Extend z so that its basic horizontal and tangent to an intrinsic geodesic for the

metric spheres around (t; sin 2�) = (0; 0) : Then

R�;re (P; z) z = r�;reP r�;rez z �r�;rez r�;reP z

= r�;reP r�zz �r�;rez '2r�P z

Since r�zz is proportional to � write

r�zz = II� (z; z) �

r�;reP r�zz = II� (z; z)

�
'2r��P +

'0

'
P

�
= '2r�Pr�zz + II� (z; z)

'0

'
P

Since r�P z is horizontal and z ? �

r�;rez '2r�P z = '2r�zr�P z
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So

R�;re (P; z) z = '2R� (P; z) z + II� (z; z)
'0

'
P:

�
Proposition 6.9. For z 2 H perpendicular to � and for W 2 Z; vertically parallel
with respect to g�

r�;rez W = r�zW 2 H \ (span f�g)? :
If P and Q are in Z? and invariant under Ah1 �Ah2 and W and U are in Z and
invariant under Ah1 �Ah2 ; then

(r�;reW P )
H
= (r�WP )

H
= 0;

(r�;reP Q)
V1�V2 = (r�PQ)

V1�V2 ;

(r�;reW U)
V1�V2 = (r�WU)

V1�V2 ;

(r�;reP W )
Z?

= '�2 (r�PW )
Z?

;

(r�;reW P )
Z
= '2 (r�WP )

Z
;

(r�;reP W )
Z

= O
�
1� '2

�
(r�PW )

Z
;

(r�;reW P )
Z?

= O
�
1� '2

�
(r�WP )

Z?

Proof. For U 2 Z? vertically parallel and z basic horizontal all terms in the Koszul
formula for hrzW;Ui are 0 with respect to both metrics. For U perpendicular to
Z?; all terms in the Koszul formula for hr�;rez W;Ui are the same for both metrics,
so

r�;rez W = r�zW 2 H \ (span f�g)? :
If Z 2 H is basic horizontal, then all terms in the Koszul formulas for

hr�;reW P;Zi�;re and hr
�
WP;Zi�

vanish, so (r�;reW P )
H
= (r�WP )

H
= 0:

If P and Q are in Z? and W is in Z and all three �elds are invariant under
Ah1 �Ah1 ; then

2 hr�;reP Q;W i�;re = h[P;Q] ;W i�;re � h[Q;W ] ; P i�;re + h[W;P ] ; Qi�;re
= h[P;Q] ;W i� � '

2 h[Q;W ] ; P i� + '
2 h[W;P ] ; Qi�

We can compute these Lie brackets as though the �elds are right invariant �elds in
S3, so

�'2 h[Q;W ] ; P i� + '
2 h[W;P ] ; Qi� = 0

and

2 hr�;reP Q;W i = h[P;Q] ;W i�
= 2 hr�PQ;W i�;re

If V is also in Z?; then
hr�;reP Q;V i�;re = '2 hr�PQ;V i� = hr

�
PQ;V i�;re

So
(r�;reP Q)

V1�V2 = (r�PQ)
V1�V2

as claimed.
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A similar argument give us

(r�;reW U)
V1�V2 = (r�WU)

V1�V2

Now suppose Q is in Z? and invariant under Ah1 � Ah2 : Since Z and Z? are
invariant under Ah1 �Ah2

hr�;reP W;Qi�;re = �hW;r
�;re
P Qi�;re = �hW;r

�
PQi�;re = hr

�
PW;Qi� = '�2 hr�PW;Qi�;re

proving the �fth equation.
Similarly, if U is in Z and invariant under Ah1 �Ah2 ;

hr�;reW P;Ui�;re = �hP;r
�;re
W Ui�;re = �hP;r

�
WUi�;re = �'

2 hP;r�WUi� = '2 hr�WP;Ui�;re
proving the sixth equation.
The last two equations have similar proofs. The Koszul formulas only have Lie

Bracket terms, only we must compare terms with multiplied by '2 with terms with
no '2. This leads us to get only the approximate answers that we have asserted. �
Proposition 6.10. For z 2 H perpendicular to � and for W 2 Z;

R�;re (z;W )W = R� (z;W )W 2 H \ (span f�g)?

R�;re (W; z) z = R� (W; z) z;

[R�;re (W; �) z]
H
= [R� (W; �) z]

H
:

[R�;re (W; �) z]
Z
= '2 [R� (W; �) z]

Z
:���[R�;re (W; �) z]Z? ��� = O

�
1� '2

�
jzj jW j :

Proof. Choose z to be basic horizontal and W to be vertically parallel, then

R�;re (z;W )W = r�;rez r�;reW W �r�;reW r�;rez W

Since

r�;reW W = r�WW = 0;

r�;rez r�;reW W = r�zr�WW = 0:

On the other hand, using the previous proposition twice we have

r�;reW r�;rez W = r�Wr�zW 2 H \ (span f�g)?

So
R�;re (z;W )W = R� (z;W )W 2 H \ (span f�g)?

Choose z to be basic horizontal and W to be vertically parallel, then

R�;re (W; z) z = r�;reW r�;rez z �r�;rez r�;reW z

Since
r�;rez z = r�zz 2 H;

r�;reW r�;rez z = r�;reW r�zz = r�Wr�zz
where the last equality follows from the previous proposition and Proposition 6.6.
As before we have

r�;reW z = r�W z 2 H \ (span f�g)? :
So

r�;rez r�;reW z = r�zr�W z:
So

R�;re (W; z) z = R� (W; z) z:
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To prove the �nal three equations we note that since [W; �] = 0;

R�;re (W; �) z = r�;reW r�;re� z �r�;re� r�;reW z:

Since

r�;reW z = r�W z 2 H \ (span f�g)?

r�;re� r�;reW z = r��r�W z:
On the other hand �

r�;re� z
�H

is basic horizontal, so

r�;reW

�
r�;re� z

�H
= r�W

�
r��z

�H 2 H \ (span f�g)? :

Since r�;reW

�
r�;re� z

�V1�V2
and r�W

�
r��z

�V1�V2 are both in V1 � V2; it follows

that �
r�;reW r�;re� z

�H
= r�;reW

�
r�;re� z

�H
= r�W

�
r��z

�H
=
�
r�Wr��z

�H
:

So
[R�;re (W; �) z]

H
= [R� (W; �) z]

H
:

Since �
r�;re� z

�V1�V2
2 Z?;

it follows from the previous proposition that�
r�;reW r�;re� z

�Z
= '2

�
r�Wr��z

�Z
:

We also have r�;re� r�;reW z = r��r�W z: However, since r�W z 2 H \ (span f�g)? ; we
have

�
r��r�W z

�Z
= 0: So

[R�;re (W; �) z]
Z
= '2 [R� (W; �) z]

Z
:

On the other hand, we just have�
r�;reW r�;re� z

�Z?

= O
�
1� '2

� �
r�Wr��z

�Z?

Combining this with
r�;re� r�;reW z = r��r�W z

[R� (W; �) z]
Z?

= 0;

we have ���[R�;re (W; �) z]Z? ��� = O
�
1� '2

�
jzj jW j :

�
A very similar argument gives us

Proposition 6.11.

[R�;re (W; z) �]
H
= [R� (W; z) �]

H
:

[R�;re (W; z) �]
Z
= '2 [R� (W; z) �]

Z
:���[R�;re (W; z) �]Z? ��� = O

�
1� '2

�
jzj jW j :
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Proposition 6.12. For U; V;Q 2 Z [ Z? and mutually perpendicular

(R�;re (U; V )Q)
H
= O ('0) jU j jV j jQj �:

Proof. Extend all three vectors in be invariant under Ah1 �Ah2 : We have

(R�;re (U; V )Q)
H
=
�
r�;reU r�;reV Q�r�;reV r�;reU Q�r�;re[U;V ]Q

�H
:

Our covariant derivative computations and our hypothesis about the three vectors
being mutually perpendicular give us that the H�components of each of r�;reV Q;
r�;reU Q; and [U; V ] are 0: Therefore using Propositions 6.4, 6.6, and 6.9 we have

(r�;reU r�;reV Q)
H

=
D
UZ

?
;r�;reV Q

E '0
'
�;

(r�;reV r�;reU Q)
H

=
D
V Z

?
;r�;reU Q

E '0
'
�; and�

r�;re[U;V ]Q
�H

=
D
QZ

?
; [U; V ]

E '0
'
�:

So
(R�;re (U; V )Q)

H
= O ('0) jU j jV j jQj �

as claimed. �

When all four vectors are tangent to Z and Z? we have

Proposition 6.13. For u; v; w; z 2 Z � Z?;
R�;re (u; v; w; z) = O

�
1� '2

�
R� (u; v; w; z) +O

�
1� '2

�
juj jvj jwj jzj

and
R�;re (u;w;w; u) = O

�
1� '2

�
R� (u;w;w; u)

Proof. If U;W; and Z are in either Z or Z? and invariant under Ah1 � Ah2 ; then
in the Koszul formula for 2 hr�;reU W;Zi ; the derivative terms vanish The new Lie
bracket terms can di¤er from the old ones by a multiplicative factor of O

�
1� '2

�
:

Applying this principle several times yields the result. �

Finally mimicking the proof of O�Neill�s horizontal curvature equation we have

Proposition 6.14. If x; y; z; and u are in H;then

R�;re (x; y; z; u) = O
�
1� '2

�
R� (x; y; z; u)

To complete the proof of Theorem 6.2 it remains to establish the assertion about
nonnegative curvature.
A plane that is perpendicular to either � or W is positively curved, since such

planes were uniformly positively curved before the redistribution, and the redistri-
bution has a small e¤ect on curvatures.
A plane that is not perpendicular to � and not perpendicular to W has the

form P = span f� + �z;W + �V g. Because of the Cheeger deformation (6) we
may assume that z is in the horizontal space for the Gromoll-Meyer submersion
Sp (2) �! S4:
Our curvature is a quartic polynomial

P (�; �) = R (� + �z;W + �V;W + �V; � + �z) :
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We have seen that the constant and linear terms vanish with respect to gnew: So
our polynomial is

P (�; �) = �2Rnew (z;W;W; z) + 2��Rnew (�;W; V; z) + 2��Rnew (�; V;W; z) + �2Rnew (�; V; V; �)

+2�2�Rnew (z;W; V; z) + 2��2Rnew (�; V; V; z) + �2�2Rnew (z; V; V; z)

combining our curvature computations with the fact

1� '2 = O
�
100�3

�
'0 = O

�
100�3

�
�'00 � � �2

100
gives us that

(6.15) P (�; �) �
�
1�O

�
�3
��
P old (�; �)� �2�2

100
Rold (�; V; V; �) +Q (�; �) :

Here Q (�; �) is a quartic polynomial that looks like

Q (�; �) = C���� + C�2��
2� + C��2��

2;

whose coe¢ cients C�� ; C�2� ; and C��2 satisfy

C�� � O (�)
p
Rnew (z;W;W; z)

p
Rnew (�; V; V; �)

C�2� � O (�)
p
Rnew (z;W;W; z)

p
Rnew (z; V; V; z)

C��2 � O (�)
p
Rnew (�; V; V; �)

p
Rnew (z; V; V; z):

These estimates imply that we can replace Q (�; �) in 6.15 with O: For example,
the quadratic

�2Rnew (z;W;W; z) + ��C���� + �
2Rnew (�; V; V; �)

� �2

 
Rnew (z;W;W; z)�

O
�
�2
�
Rnew (z;W;W; z)Rnew (�; V; V; �)

Rnew (�; V; V; �)

!
� �2

�
Rnew (z;W;W; z)�O

�
�2
�
Rnew (z;W;W; z)

�
= �2 (Rnew (z;W;W; z) +O)

Similar arguments allow us to drop the C�2��2� and C��2��2 terms of Q (�; �).
(Cf Theorem 12.1). So 6.15 becomes

(6.15) P (�; �) �
�
1�O

�
�3
��
P old (�; �)� �2�2

100
Rold (�; V; V; �) +O:

We have an inequality instead of an equality because in many cases the curvature
is much bigger. For example from Proposition 6.5 we have that for P 2 Z?

hRnew (P; �) �; P i � '4


Rold (P; �) �; P

�
� (''00) jP j2old

� '4


Rold (P; �) �; P

�
� �2

100
jP j2old

but in many places this curvature is larger. Similarly from Proposition 6.8 we have
that for z 2 H, perpendicular to � and for P 2 Z?

hRnew (P; z) z; P i = '4


Rold (z; P )P; z

�
+ II� (z; z)

'0

'
hP; P inew

The extra term here is nonnegative since both II� (z; z) and '0 are nonpositive.
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The theorem follows from inequality 6.15.

7. The Warping function induced by Sp (2)

As promised, in the next two sections we analyze the e¤ect on Equation 5.1 of
running the h2�Cheeger perturbation for a long time. If � is the parameter of this
perturbation, then we will show that making � small has the e¤ect of concentrating
all of the terms on the right hand side of equation 5.1,

curv (�;W ) = �s2 (D� (jHwjD� jHwj)) + s4 (D� jHwj)2 ;
around t = 0: (In the Gromoll-Meyer sphere � plays the role of X:)
The advantage of doing this is that it will allow us to choose our �partial�

conformal factor so that it is constant away from t = 0; thus avoiding an analysis
of how the partial conformal change e¤ects the intersection of the two pieces of the
zero curvature locus.
Along any integral curve of �; jHwj is the length of a Killing �eld of our SO (3)�

action on S4: Since the principal orbits of this action on S4 are two spheres and
the action on these two spheres is standard, these two spheres are round.
So that our geometry is more easily comparable to the standard round S4; we

look at the Killing �elds �
0;
#

2

�
on Sp (2) and we set

 =

�����
�
0;
#

2

�horiz����� :
To understand the geometric meaning of  ; think of the join decomposition

described in the remark after Proposition 2.5,

S4 = S1R � S2Im:
The S2s of the join decomposition are the principal orbits of the SO (3)�action and
the intrinsic metric on them is  2 times the unit metric.
Along any integral curve of �; Hw is a constant multiple of

�
0; #2

�horiz
we call

this multiple wh; so

Hw = wh

�
0;
#

2

�horiz
jHwj = wh ; and

wh = O

�
1

�2

�
:

Remark 7.1. The exact value of wh depends on which integral curve of � we are
on. The variation can be seen by noticing how sin� varies in Proposition 4.7. It is
for precisely this reason that we cannot use a regular conformal change to even out
the curvature.

Since
���0; #2 ��� = �

2 and  =
����0; #2 �horiz��� ; it is not hard to see that the e¤ect

of the h2�Cheeger perturbation on the geometry of S4 is to shrink the S2s. More
precisely the S3s that are the join of S2Im and any S0 � S1R become very thin
�cigars�. Unfortunately this coarse description is not su¢ cient for our purposes,
since we need to understand the derivatives and second derivatives of  :
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We will prove in subsection 8.1 that the redistribution described in the previous
section has a minimal e¤ect on  : Once this is established, it will be enough to
know the e¤ect of the two Cheeger parameters � and l: For now we just focus on
this.
When we want to emphasize the dependence of  on � and l we will write,  �;l.
To �nd  �;l we recall that the horizontal vectors that project to the S

2s look
like

(cos 2t) �2;0 =

�
(cos 2t) �; (cos 2t) � + sin 2t

#

�2

�
;

here as always, the notational convention on page 17 is in e¤ect. So

 �;l =
1

j(cos 2t) �2;0j�;l

��
0;
#

2

�
; (cos 2t) �2;0

�
=

1

2

sin 2t

j(cos 2t) �2;0j�;l
:

Using the formulas for the projections of �2;0 onto the orbits of Au � Ad from
[Wilh2] we have

��(cos 2t) �2;0��2
�;l
= cos2 2t+

sin2 2t

�2
+

1

2l2
�
1� cos2 2t cos2 2�

�
and

Proposition 7.2.

@

@t
 �;l =

�
1 + 1

2l2 sin
2 2�

�
cos 2t

j(cos 2t) �2;0j3�;l

=

��x2;0��2
�;l
cos 2t

j(cos 2t) �2;0j3�;l
@

@�
 �;l = � 1

4l2
sin 2t cos2 2t sin 4�

j(cos 2t) �2;0j3�;l

@2

@t2
 �;l = �

��x2;0��2
�;l

sin 2t

j(cos 2t) �2;0j5�;l

�
�4
��x2;0��2

�;l
cos2 2t+

2

�2l
+ 4

�
1

�2l

�
cos2 2t

�
@

@�

@

@t
 �;l =

cos 2t sin 4�

l2 j(cos 2t) �2;0j5�;l

�
�1
2

��x2;0��2
�;l
cos2 2t+

1

�2l
sin2 2t

�

@2

@�2
 �;l = �

sin 2t cos2 2t

l2

cos 4�
���x2;0��2

�;l
cos2 2t+ 1

�2l
sin2 2t

�
j(cos 2t) �2;0j5�;l

+
3

2

sin 2t cos4 2t

4l4
sin2 4�

j(cos 2t) �2;0j5�;l
The computations are long, but straightforward. Since the results are not qual-

itatively surprising, we have deferred giving the details until the appendix.

8. Concentrated Curvature Near t = 0

Plugging � = X and jHwj = wh into 1.9 gives us

curvgs (�;W ) = �s2w2h (D� ( D� )) + w
2
hs
4 (D� )

2
:
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If z is the parameter of an integral curve of �; then the leading order, total derivative
term, �s2w2h (D� ( D� )) ; is negative near z = 0, positive for large enough z; and
integrates to 0. The e¤ect of the � perturbation is to concentrate this region of
negativity, and the bulk of the region of positivity near z = 0: Before proving this
we need

Proposition 8.1. Let n be the normalized gradient �eld for dist
�
S1R; �

�
on S4 with

respect to g�;l: If
� = n cos'+ y2;0 sin';

then

D� (cos') = O (t)

D� (sin') = O (t) :

Proof. Let c� be an integral curve of � starting at (t; �) = (0; 0) : Consider the
triangles, 4� whose sides are the geodesic with t = 0; c� ; and the various geodesics
that are integral curves of n starting at (t; �) = (0; �) :
Let '0 be the angle between _c� (0) and n: Then the interior angles of 4� are

�
2 ;

�
2 � '0; and ': So

' = '0 + angle�excess (4�) :

Since area (4�) = O
�
�2
�
; the result follows. �

Proposition 8.2. For t > �
2

�s2w2h (D� ( D� )) > 0

and

curvs (�;W ) j[O(c3=4);�4 ] �
Z

�

curvs (�;W )

provided c� = s6=7 and l = O
�
�
1
3

�
:

Remark 8.3. Together these inequalities imply that all of the negative curvature
of gs occurs on the interval [0; �] and the bulk of the positive curvature occurs on
[�;O (c)] : In particular, gs is positively curved for t > �p

8
and our partial warping

can be carried out on [0; O (c)] :

Remark 8.4. Our proof relies on the computations of the various derivatives of  
that are stated in previous section and proven in the Appendix. They are done in
the Appendix with respect to the metric g�;l; while to justify this proposition we will
need to know them with respect to g�;re;l: So technically this proposition is about an
(as yet) undiscussed metric g�;l;s. I.e. the metric obtained by scaling the �bers of
Sp (2) �! S4 after performing the Cheeger deformation Au �Ad �Ah1 �Ah2 ; but
with out performing the redistribution. We will show in Subsection 8.1 (at the end
of this section) that the e¤ect of the redistribution on the various derivatives of  
is su¢ ciently small so that this proposition remains valid for the actual metric gs:

Proof. From the previous section we have

@

@t
 �;l =

��x2;0��2
�;l
cos 2t

j(cos 2t) �2;0j3�;l
@

@�
 �;l = � 1

4l2
sin 2t cos2 2t sin 4�

j(cos 2t) �2;0j3�;l
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Since the @
@��direction is a linear combination of the vectors y

2;0 and (�v; v) and
D(�v;v) �;l = 0; we get

Dy2;0 �;l = �
1

4l2
sin 2t cos3 2t sin 4�

j(cos 2t) �2;0j3�;l
;

where the extra factor of cos 2t is


@
@� ; y

2;0
�
: So if

� = n cos'+ y2;0 sin'

D� �;l =

��x2;0��2
�;l
cos 2t

j(cos 2t) �2;0j3�;l
cos'� 1

4l2
sin 2t cos3 2t sin 4�

j(cos 2t) �2;0j3�;l
sin'

So

�
D�

�
 �;l

��2 � 2
0@ ��x2;0��4�;l cos2 2t
j(cos 2t) �2;0j6�;l

1A cos2 '+ sin2 2t cos6 2t sin2 4�
8 j(cos 2t) �2;0j6�;l l4

sin2 ':

We can also get an explicit formula for � �;lD�D�

�
 �;l

�
; but its quite compli-

cated, so its easier to estimate it. First notice that erasing various A�tensors we
have

�
D�D�

�
 �;l

�
 �;l

� curvg�
�
�; �2;0u

�
;

where �2;0u = �2;0

j�2;0j . So

� �;lD�D�

�
 �;l

�
�  2�;lcurvg�

�
�; �2;0u

�
=

 2�;l

jcos 2t�2;0j2�;l

�
cos2 2t+

1

2
sin2 2t

�
:

So to determine where the total derivative is positive, it su¢ ces to solve

 2�;l
�
cos2 2t

�
� 2

0@ ��x2;0��4�;l cos2 2t
j(cos 2t) �2;0j4�;l

1A cos2 '+ sin2 2t cos6 2t sin2 4�
8 j(cos 2t) �2;0j4�;l l4

sin2 '

or

sin2 2t

4 j(cos 2t) �2;0j2�;l
� 2

0@ ��x2;0��4
�;l

j(cos 2t) �2;0j4�;l

1A cos2 '+ sin2 2t cos4 2t sin2 4�
8 j(cos 2t) �2;0j4�;l l4

sin2 '

or

sin2 2t

4
� 2

0@ ��x2;0��4
�;l

j(cos 2t) �2;0j2�;l

1A cos2 '+ sin2 2t cos4 2t sin2 4�
8 j(cos 2t) �2;0j2�;l l4

sin2 '

Since l = O
�
�1=3

�
; and on the integral curves of � in the former 0�locus, sin 4� =

O (sin 2�) = O (sin 2t) ; and from the appendix we have��cos 2t�2;0��2
�;l

= 1 +
sin2 2�

2l2
+

�
1

�2
+

1

2l2
�
�
1 +

sin2 2�

2l2

��
sin2 2t

� 1 +
sin2 2t

�2
+
sin2 2t

2l2
;
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the last term and the
��x2;0��4

�;l
factor on the �rst term can be ignored. So (with a

minor adjustment) our inequality is

sin2 2t

4
� 2

 
1

j(cos 2t) �2;0j2�;l

!
or

t2 � 2

1 + sin2 2t
�2

=
2�2

�2 + sin2 2t
;

which happens when t � O
�
�1=2

�
; which is not good enough for our purposes.

However, assuming that t � �1=2 allows us to greatly simplify our estimates for
� �;lD�D�

�
 �;l

�
: Indeed starting with

� = n cos'+ y sin'

we have

D�D� �;l = cos2 '
@2

@t2
 �;l + 2 cos' sin' cos 2t

@

@�

@

@t
 �;l + sin

2 ' cos2 2t
@2

@�2
 �;l

+

��x̂2;0��2
�;l
cos 2t��(cos 2t) �̂2;0��3

�;l

(D� cos')�
1

4l2
sin 2t cos3 2t cos 2� sin 2���(cos 2t) �̂2;0��3

�;l

(D� sin') :

When we consider our formulas for @2

@t2 �;l;
@
@�

@
@t �;l; and

@2

@�2
 �;l from the appen-

dix, and the fact that (D� sin') = O (t) ; we see that the second, third and last
terms are dominated by the �rst term when t � O

�
�1=2

�
:

The fourth term is positive (in �D�D�

�
 �;l

�
); so dropping it gives us that for

t � �1=2

�D�D� �;l � � 9

10
cos2 '

@2

@t2
 �;l

�
��x2;0��2

�;l

�
cos2 '

� sin 2t

j(cos 2t) �2;0j5�;l

5

�2l
:

Similarly, when t � �1=2 we have that the second term in our estimate for�
D�

�
 �;l

��2
is overwhelmed by the �rst. So

�
D�

�
 �;l

��2 � 2
0@ ��x2;0��4�;l cos2 2t
j(cos 2t) �2;0j6�;l

1A cos2 ':
Thus the total derivative is positive when

 �;l
��x2;0��2

�;l

�
cos2 '

� sin 2t

j(cos 2t) �2;0j5�;l

5

�2l
� 2

0@ ��x2;0��4�;l cos2 2t
j(cos 2t) �2;0j6�;l

1A cos2 ':
Since  �;l =

sin 2t
2j(cos 2t)�2;0j ; this is equivalent to

1

2
sin2 2t

5

�2l
� 2

���x2;0��2
�;l
cos2 2t

�
or

sin2 2t � �2l or

4t2 � �2l
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so its enough to have

t � 1

2
�l:

To prove the integral inequality we �rst note that

�
D� �;l

�2 �

0B@ 1 + sin2 2�
l2

2
�
cos 2t+ sin2 2t

�2

�3
1CA

� 1

16
for t 2

h
0;
�

2

i
So Z


�

curvs (�;W ) =

Z

�

w2hs
4 (D� )

2

� O
�
w2hs

4�
�
:

On the other hand, we note that for t > �

jcurvs (�;W )j � 2s2w2h
�� �;lD�D�

�
 �;l

���
So we have to �nd the interval where

2s2w2h
�� �;lD�D�

�
 �;l

��� � O
�
w2hs

4�
�
;

or �� �;lD�D�

�
 �;l

��� � O
�
s2�
�
;

Since

D�D� �;l = cos2 '
@2

@t2
 �;l + 2 cos' sin' cos 2t

@

@�

@

@t
 �;l + sin

2 ' cos2 2t
@2

@�2
 �;l

+

��x̂2;0��2
�;l
cos 2t

j(cos 2t) �2;0j3�;l
(D� cos')�

1

4l2
sin 2t cos3 2t cos 2� sin 2�

j(cos 2t) �2;0j3�;l
(D� sin') ;

we can use our formulas for
��(cos 2t) �2;0��2

�;l
and the second derivatives of  and

from the appendix to get a formula for  �;lD�D�

�
 �;l

�
: So the only unknown

quantities in this (complicated) formula are (D� cos') and (D� sin') ; whose order
is O (1) : The important point is that for generic t; the largest terms in this formula
for  �;lD�D�

�
 �;l

�
are of order �

4

l2 : So we have that for su¢ ciently large t�� �;lD�D�

�
 �;l

��� = O

�
�4

l2

�
using l = O

�
�1=3

�
and � = O

�
s6=7

�
we then get for t su¢ ciently large�� �;lD�D�

�
 �;l

��� � O

�
�4

�2=3

�
= O

�
��7=3

�
= O

�
�
�
s6=7

�7=3�
= O

�
�s2
�

as desired.
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The interval where this holds is
�
O (c) ; �4

�
; where c is the constant so that

c� = s6=7: �

Before leaving the subject of derivatives of  we establish the following estimate,
which will be used in Section 11.

Lemma 8.5.

(8.6)

����  

D�D� 
[D� ( D� )]

���� � �2l
4
:

Remark 8.7. Since

D� ( D� ) =  D�D� + (D� )
2

and the two terms have opposite sign, it su¢ ces to show

 

D�D� 
max

n
 D�D� ; (D� )

2
o
� �2l
4
:

Since we prove this stronger estimate, we doubt that 1
4 is the optimal constant in

8.6; it is, nevertheless, su¢ cient for our purposes.

Proof. We have
 

D�D� 
 D�D� =  2;

and

 2 =
1

4

sin2 2t

j(cos 2t) �2;0j2�;l

=
1

4

sin2 2t�
jx2;0j2�;l cos2 2t+ 1

�2l
sin2 2t

�
=

�2l
4

sin2 2t�
�2l jx2;0j

2
�;l cos

2 2t+ sin2 2t
�

� �2l
4
:

We saw above that
 D�D� � (D� )

2

when t > �l
2 ; so we only have to establish

 

D�D� 
(D� )

2 � �2l
4

when t < �l
2 :

We saw in the previous proof that for t < �l
2 ;��D�D�

�
 �;l

��� � ��x2;0��2
�;l

�
cos2 '

� sin 2t

j(cos 2t) �2;0j5�;l

5

�2l

Similarly we have

�
D�

�
 �;l

��2 � 1:1
0@ ��x̂2;0��4

�;l��(cos 2t) �̂2;0��6
�;l

1A cos2 '
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for t < �l
2 :

So for t < �l
2 ; ����  

D�D� 

�
D�

�
 �;l

��2����
�

1
2

sin 2t
j(cos 2t)�̂2;0j�;l

�
1:1

� jx̂2;0j4
�;l

j(cos 2t)�̂2;0j6�;l

�
cos2 ':

�
jx̂2;0j2�;l sin 2t

j(cos 2t)�̂2;0j5�;l

�
5
�2l

�
cos2 '

�
1:1
��x̂2;0��2

�;l
�2l

10
��(cos 2t) �̂2;0��2

�;l

�

��x̂2;0��2
�;l
�2l

5
��(cos 2t) �̂2;0��2

�;l

� �2l
4
;

as desired. �
8.1. E¤ect of Redistribution on  .

Proposition 8.8. Proposition 8.2 remains true after the redistribution.

Proof. First we get a formula for  after the redistribution in terms of  before
the redistribution. In other words, we will compare  �;l and  �;re;l: For this proof
only we call  �;l;  old; and all other quantities that are computed with respect to
g�;l will have an �old�sub or superscript attached.
All of our derivatives of  in this proof will be in the ��direction so we write  0

for D� :
Keeping in mind that  �;re;l is the length of the horizontal part of the Killing

�eld
�
0; 12#

�
; we see that we just need to compute the inner product of

�
0; 12#

�
with the appropriate horizontal vector. Motivated by our computations of Cheeger
perturbations we see that in fact

 �;re;l =
1

2

sin 2t��cos 2t~�2;0��
�;re;l

where ~�2;0 is in the 
�part of the horizontal space. More speci�cally

cos 2t~�2;0 = cos 2t�2;0 +

�
1� '2

�
'2

�
cos 2t�2;0

�Z?

Since the redistribution occurs before the (U;D)�Cheeger perturbation, the com-

putation of
�
cos 2t�2;0

�Z?

; can be viewed as happening with respect to the metric

with l =1; or more formally it happens within the Sp (2)�factor of
�
S3
�2�Sp (2) ;

where the product metric is the one that gives the (U;D)�Cheeger deformation.

To compute
�
cos 2t�2;0

�Z?

we need its direction within Z?: This direction looks
like

1p
2

�
#3
�
;
#

�

�
;

there is a relationship between #3 and #; but it will not be important here.
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So �����cos 2t�2;0�Z?
���� =

����� 1p
2

�
#3
�
;
#

�

�
;

�
0; sin 2t

#

�2

��
�

1p
2

�
#3
�
;
#

�

�����
=

����12 sin 2t�

�
#3
�
;
#

�

�����
=

1

2

sin 2t

�

and

 2�;re;l =
1

4

sin2 2t��cos 2t~�2;0��2
�;re;l

=
1

4

sin2 2t

jcos 2t�2;0j2old + 2
(1�'2)
'2

D
cos 2t�2;0; (cos 2t�2;0)

Z?
E
+
��� (1�'2)'2 (cos 2t�2;0)

Z?
���2

=
1

4

sin2 2t

jcos 2t�2;0j2old + 1
2
(1�'2)
'2

sin2 2t
�2 + (1�'2)2

4'4
sin2 2t
�2

=
sin2 2t

4 jcos 2t�2;0j2old

1

1 + 1
2

sin2 2t
�2jcos 2t�2;0j2old

(1�'2)
'2 + (1�'2)2

4'4
sin2 2t

�2jcos 2t�2;0j2old

=
sin2 2t

4 jcos 2t�2;0j2old

1

1 + 2
 2old
�2

�
(1�'2)
'2 + (1�'2)2

2'4

�
=  2old

�
1� 2 

2
old

�2
�
1� '2

��
+O

Since �
1� '2

�
= O

�
�3
�

We have
 2�;re;l =  2old +O

and �
 2�;re;l

�0
=
�
 2old

�0
+ 8

 3old
�2

 0old
�
'2 � 1

�
+ 4

 4old
�2

''0 +O

Since we also have �
 2�;re;l

�0
= 2 �;re;l 

0
�;re;l

We get

 0�;re;l =
1
2

�
 2old

�0
+ 4

 3old
�2  

0
old

�
'2 � 1

�
+ 2

 4old
�2 ''

0

 �;re;l
+O:

Using  2�;re;l =  2old +O; this becomes

 0�;re;l =  0old + 4
 2old
�2

 0old
�
'2 � 1

�
+ 2

 3old
�2

''0 +O

Since

'0 = O
�
100�3

�
'2 � 1 = O

�
100�3

�
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and
 0old � O

�
�3
�
cos 2t

we get
 0�;re;l =  0old +O:

It is impossible to get a similar formula for
�
 2�;re;l

�00
in terms of

�
 2old

�00
;

since
�
 2old

�00
has a 0 around O (�) : Instead we will show that the di¤erence���� 2�;re;l�00 � � 2old�00��� is pointwise much smaller than maxn� 0old�2 ; �� old 00old��o :

Combining this with our estimate  0redistr =  0old +O gives us the proposition.
Starting with�

 2�;re;l
�0
=
�
 2old

�0
+ 8

 3old
�2

 0old
�
'2 � 1

�
+ 4

 4old
�2

''0 +O

we have�
 2�;re;l

�00
=

�
 2old

�00
+ 24

 2old
�2

�
 0old

�2 �
'2 � 1

�
+ 8

 3old
�2

 00old
�
'2 � 1

�
+ 32

 3old
�2

 0old''
0

+4
 4old
�2

('0)
2
+ 4

 4old
�2

''00

The second term is everywhere much smaller than
�
 0old

�2
: Similarly we can bound

the third term by ����8 3old�2  00old
�
'2 � 1

����� � ��800� 3old 00old��
which is much smaller than  old 

00
old: The fourth term is����32 3old�2  0old''

0
���� � 3200� 3old 0old

and hence is much smaller than
�
 0old

�2
in the region where t � O (c) that matters.

The �fth term is smaller than O
�
�8
�
and 0 at t = 0 and hence smaller than both�

 0old
�2
and  old 

00
old everywhere t � O (c).

The last term ����4 4old�2 ''00
���� � 400 4old

and hence is smaller than both
�
 0old

�2
and  old 

00
old on (0; 100�) : On the other

hand, on
�
50�; �4

�
; ����4 4old�2 ''00

���� � 40; 000� 4old
and hence is much smaller than  old 

00
old: �

9. Concrete A�Tensor Estimates

In this section we re�ne our formulas for the two key (1; 3)�curvature tensors

Rs (�;W )W and

Rs (W; �) �
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after the �bers are shrunk. We have to go beyond the abstract situation of section
1, to compute the iterated A�tensors of �7 �! S4: Substituting

� = X

whk
 = Hw

into Lemma 1.10 we have

Lemma 9.1.

Rgs (W; �) � = �s2wh
�
D�D� 

 

�
k
 � s2

�
wh

D� 

 
A�k


�
(Rgs (�;W )W )

H
= �s2w2h r� (grad )�

�
1� s2

�
s2wh

D� 

 
Ak
W

V

The possibilities for the iterated A�tensors in the curvature formulas above are a
bit daunting. We can nevertheless get estimates. First let (V1 � V2)GM denote the
intersection V1 � V2 with the horizontal space for the Gromoll�Meyer submersion
q2;�1 : Sp (2) �! �7; and let V2;�1 be the horizontal lift to TSp (2) of the vertical
space of p2;�1 : �7 �! S4: Then away from t = �

4 , the orthogonal projection onto
the vertical space V2;�1 restricts to an isomorphism porthog : (V1 � V2)GM �! V2;�1:
Therefore the following lemma will give us all of the data that we need.

Lemma 9.2. Let II denote the second fundamental form of the S2s in S4; and let
S denote the shape operator.
For U 2 V1 � V2, extend U to be a Killing �eld for the (h1 � h2)�action. Then

for z 2 span
�
x2;0; y2;0

	
; and k
 =  �2;0u ; with

���2;0u �� = 1
AzU

V =
�
r�;re;lz U

�H
� Sz

�
UH
�
;

Ak
U
V =

 

jcos 2t�2;0j

�
r�;re;l(�;�) U

�H
� II

�
k
 ; U

H�+ 4 3
�3
jU�jh2 �

2;0
u;4 +O

where �2;0u;4 is the vector in span
n
�2;0u;1; �

2;0
u;2

o
that is perpendicular to k
 and U�

denotes the ��part of U:

Proof. To prove the �rst equation extend U to be a Killing �eld for the V1 � V2
action. Then

AzU
V =

h
r�;re;lz

�
U � UH

�iH
=

�
r�;re;lz U

�H
�
�
r�;re;lz UH

�H
:

Since UH is a Killing �eld for the h2�action on S4; if we extend z to be a constant
linear combination of x2;0 and y2;0; then

��
z; UH

��H
= 0: So

AzU
V =

�
r�;re;lz U

�H
� Sz

�
UH
�

as claimed.
For the second equation we again extend U to be a Killing �eld for the V1 � V2

action. As before

Ak
U
V =

�
r�;re;lk


�
U � UH

��H
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Now �
r�;re;lk


U
�H

=  
�
r�;re;l
�2;0u

(U)
�H

=
 

jcos 2t�2;0j

�
r�;re;l(�;�) U

�H
+ (0; V )

H

where we have split �2;0u into its horizontal and vertical parts for h1�h2: Thus V is a
vector tangent to the h2 orbits and perpendicular to U: It comes from di¤erentiating
U in the direction of the V2�part of k
 : Since we are taking the horizontal part of
V; only the ��component of U makes a contribution. Since k
 =  �2;0u ; and the

V2�part of �2;0u is
�
0; 2 #

�22

�
; we have

(0; V )
H
=  

0@r�;re;l�
0;2 #

�22

� (0; U�)
1AH

:

If, for example, (0; U�) =
�
0; N��2

�
; then

(0; V ) = 2 2
�
0;
N
4
�4

�
; and���(0; V )H��� =

����2� 2�0; N
4�4

�
; �2;0u;4

�����
where

�
0; N
4�4

�
and �2;0u;4 are perpendicular to k
 : Thus���(0; V )H��� = 4

 3

�4

= 4
 3

�3
jU�jh2 ;

and

(0; V )
H
=

�
4
 3

�3
jU�jh2

�
�2;0u;4 +O

The �O�is present because we did not take the e¤ect of the (U;D)�deformation
into account. The computation is very similar, but since l = O

�
�1=3

�
; the terms

we get do not play a signi�cant role.
For the other term, since U is a Killing �eld for the h2�actionh

r�;re;lk

UH
iH
= II

�
k
 ; U

H� :
So combining equations yields the claim. �

Combining the previous two results gives us

Proposition 9.3. For U 2 Hp2;�1 ;

hRs (W; �) �; Ui = �s2wh
�
D�D� 

 

�
hk
 ; Ui
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For U 2 V1 � V2; U extend U to be a Killing �eld for the (h1 � h2)�action. Then

hRs (W; �) �; Ui = �s2wh
�
D�D� 

 

�
hk
 ; Ui � s2

�
1� s2

�
wh

D� 

 



k
 ; S�

�
UH
��

+s2
�
1� s2

�
wh

D� 

 

D
k
 ;r�;re;l� U

E
:

Let �2;0u;W be the unit vector in span
n
�2;0u;1; �

2;0
u;2

o
that is proportional to the projection

of W onto span
n
�2;0u;1; �

2;0
u;2

o
;and let �2;0

u;W? be perpendicular to �
2;0
u;W : Then

(Rs (�;W )W )
H

= �s2w2hr� ( grad ) + s4w2h (D� ) (grad ) +

�s2wh
D� 

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
+ 4whs

2 [D� ]
 2

�3
jW�jh2 �

2;0
u;W? +O

Proof. From Lemma 9.1 we have

Rgs (W; �) � = �s2wh
�
D�D� 

 

�
k
 � s2

�
wh

D� 

 
A�k


�
So for U 2 Hp2;�1 ;

hRs (W; �) �; Ui = �s2wh
�
D�D� 

 

�
hk
 ; Ui ;

and for U 2 V1 � V2

hRs (W; �) �; Uis = �s2wh
�
D�D� 

 

�
hk
 ; Uis � s

2wh
D� 

 
hA�k
 ; Uis

= �s2wh
�
D�D� 

 

�
hk
 ; Ui�;re;l + s

2
�
1� s2

�
wh

D� 

 



k
 ; A�U

V�
�;re;l

Applying Lemma 9.2

hRs (W; �) �; Ui = �s2wh
�
D�D� 

 

�
hk
 ; Ui � s2

�
1� s2

�
wh

D� 

 



k
 ; S�

�
UH
��

+s2
�
1� s2

�
wh

D� 

 

D
k
 ;r�;re;l� U

E
From Lemma 9.1

(Rgs (�;W )W )
H
= �s2w2h r� (grad )�

�
1� s2

�
s2wh

D� 

 
Ak
W

V

Applying Lemma 9.2

(Rs (�;W )W )
H

= �s2w2h r� (grad ) +
�
1� s2

�
s2wh

D� 

 
II
�
k
 ;W

H�
�
�
1� s2

�
s2wh

D� 

 

 

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
+

+4whs
2
�
1� s2

� D� 

 

 3

�3
jW�jh2 �

2;0
u;W? +O
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where �2;0
u;W? is the unit vector in span

n
�2;01;u; �

2;0
2;u

o
that is perpendicular to WH:

Thus

(Rs (�;W )W )
H

= �s2w2h r� (grad )�
�
1� s2

�
s2w2h (D� ) (grad ) +

� s2whD� 

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
+ 4whs

2 [D� ]
 2

�3
jW�jh2 �

2;0
u;W? +O

= �s2w2hr� ( grad ) + s4w2h (D� ) (grad ) +

� s2whD� 

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
+ 4whs

2 [D� ]
 2

�3
jW�jh2 �

2;0
u;W? +O

�

Corollary 9.4.

h(Rgs (�;W )W ) ; �i = �
�
s2w2h

�
D� ( D� ) + s

4w2h (D� )
2

Proof. For redundancy we compute h(Rgs (�;W )W ) ; �i twice, using each of the
last two formulas of the previous proposition. Since

rredistr� W � 0;

the second formula gives us

Rredistr (W; �) �;W

�
= �s2wh

�
D�D� 

 

�
hk
 ;W i � s2

�
1� s2

�
wh

D� 

 



k
 ; S�

�
WH��

= �s2w2h D�D� � s2
�
1� s2

�
w2h (D� )

2

= �s2w2h
�
 D�D� + (D� )

2
�
+ s4w2h (D� )

2

= �
�
s2w2h

�
D� ( D� ) + s

4w2h (D� )
2

Computing the other way we get

hRgs (�;W )W; �i = �s2w2h hr� ( grad ) ; �i+ s4w2h (D� )
2

= �s2w2h
�
(D� )

2
+  hr�grad ; �i

�
+ s4w2h (D� )

2

= �s2w2h
�
 D�D� + (D� )

2
�
+ s4w2h (D� )

2

= �
�
s2w2h

�
D� ( D� ) + s

4w2h (D� )
2

�

In the remainder of this section we record the e¤ect of the s�deformation on
some key covariant derivatives that we will need later.

Proposition 9.5.
rsWW = �s2w2h grad  ;

rsWW 
 = �s2w2h grad  ; and
rsW
W 
 = �s2w2h grad  

where W 
 is the 
�part of W:
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Proof. Since W is a Killing �eld on Sp (2)

hrsWW;Zi = �hrsZW;W i

= �1
2
DZ hW;W i

= �1
2
DZ jW j2

= � jW jDZ jW j
= �hjW js grad jW js ; Zi

Since

jW j =
q
(1� s2) jW vj2�;re;l + jWhj2�;re;l; and

jW j�;re;l is constant

DZ jW js =
1

2

��
1� s2

�
jW vj2�;re;l +

��Wh
��2
�;re;l

��1=2 �
�s2DZ jW vj2�;re;l

�
=

1

2

s2

jW js
DZ

���Wh
��2
�;re;l

�
=

s2

jW js

��Wh
��
�;re;l

DZ

���Wh
��
�;re;l

�
=

s2

jW js
wh DZ (wh )

=
s2

jW js
w2h DZ ( )

Thus

hrsWW;Zi = � jW jsDZ jW js
= �s2w2h DZ ( )

= �s2w2h hZ; grad  i

So

rsWW = �s2w2h grad  

as claimed.
Since W 
 is also a Killing �eld we have

hrsWW 
 ; Zi = �hrsZW 
 ;W i

= �1
2
DZ hW 
 ;W i :

ButDZ hW 
 ;W i = DZ hW;W i sorsWW 
 = �s2w2h grad  : Similarlyr
s
W
W 
 =

�s2w2h grad  �

Proposition 9.6.

rs�W = rs�W 
 = s2
D� 

 
Hw.
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Proof. For any vertical �eld U with respect to p2;�1 : � �! S4 we haveDU hW; �i =
DW hU; �i = h[U;W ] ; �i = [U; �]horiz = 0: So the Koszul formula gives us

2


rs�W;U

�
s
= D� hW;Uis + h[�;W ] ; Uis + h[U; �] ;W is
= 2

�
1� s2

� D
r�;re;l� W;U

E
�;re;l

= 0:

Breaking W into its horizontal and vertical parts we have

0 =
�
r�;re;l� W

�H
=

�
r�;re;l� V

�H
+
�
r�;re;l� Hw

�H
On the one hand,

�
r�;re;l� Hw

�H
=
�
rs�Hw

�H
: On the other hand, for any basic

horizontal �eld Z

2


rs�V;Z

�
s
= �h[�; Z] ; V is
= �

�
1� s2

�
h[�; Z] ; V i0

=
�
1� s2

�
2
D
r�;re;l� V;Z

E
s

So �
rs�V

�H
=
�
1� s2

� �
r�;re;l� V

�H
and

rs�W =
�
rs�W

�H
=

�
rs�V

�H
+
�
rs�Hw

�H
=

�
r�;re;l� V +r�;re;l� Hw

�H
� s2

�
r�;re;l� V

�H
= �s2

�
r�;re;l� V

�H
= s2

D� jHwj
jHwj

Hw

= s2
D� 

 
Hw

where for the next to last equality we have used Lemma 1.8. A similar argument
gives us rs�W 
 = s2

D� 
 Hw: �

10. Partial Conformal Change

Having carried out deformations (1)�(4), we have apparently made things worse.
Indeed, from Corollary 9.4, we see that near t = 0; some of the planes that used
to have 0�curvature now have negative curvature. The ray of hope is that, as we
discussed in section 1, the integral of the curvatures over the old zero locus is now
positive. In this section, we will even it out to make it positive everywhere. The
metric that we obtain is in fact positively curved; however, after this section we
will only know that it is positively curved along the former zero locus. In the �nal
three sections we check that the curvature is positive everywhere.
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Consider the 1�dimensional subdistribution

�(�) = span f(N�p;N�)g :

We change the metric on Sp (2) by multiplying the restriction to the orthogonal
complement of �(�) by a function e2f : We leave �(�) and its orthogonal com-
plement perpendicular to each other, and we leave the metric restricted to �(�)
unchanged.
In each S7�factor of Sp (2) � S7�S7; our distribution �(�) is the intersection of

the vertical spaces of the two Hopf �brations h and ~h: Since the two Hopf actions are
by symmetries of each other, our distribution �(�) is invariant under the Gromoll-
Meyer action of

�
S3 � S3

�
on Sp (2) ; and also under the symmetry action of S3: So

our new metric will be invariant under all of these actions. In particular, it induces
a metric on �7:
Our notational convention of writing vectors before the

�
Au �Ad

�
�Cheeger de-

formation doesn�t matter much when we talk about �(�) ; since its invariant under
the �Cheeger parameterization�. On the other hand, the orthogonal complement
of �(�) is not invariant, and we continue with our convention of page 17.
We choose

f = C � s2

2�2
 2 + E;

where C is a constant that is a little larger than 1 and E is a function Sp (2) �! R
that is much smaller than s2

�2 
2
�;l in the C

2�topology. The function E has the form

E = I � distS4 ((0; 0) ; �) � pGM

where

pGM : Sp (2) �! S4

is the Gromoll-Meyer submersion, (0; 0) one of the two points in S4 with (sin 2t; sin 2�) =
(0; 0) ; and I : R �! R is a function that satis�es

I 0 (0) = 0;

I 0j[O(c);�4 ] � 0;

I 00 = O

�
s4

�2

�
:

Thus

grad f = � s
2

�2
 grad + gradE

= � s
2

�2
 grad + I 0�:

Remark 10.1. There is a minor problem with our partial conformal change. Our
distribution, �(�) ; is three dimensional at t = 0; and one dimensional everywhere
else. We circumvent this by having our conformal change be a standard conformal
change in a very, very small neighborhood of t = 0; and then �attening out the
�(�) portion. Since we can do this on an arbitrarily small neighborhood of t = 0;
the e¤ect on curvatures can be made to be irrelevant.
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Lemma 10.2. Let rold and rnew denote the covariant derivative before and after
the partial conformal change. If x; y are �elds that are orthogonal to �(�), then

rnewx y = O
�
e2f � 1

� �
roldx y

��(�)
(10.3)

+
�
roldx y

��(�);?
+ (Dxf) y + (Dyf)x� hx; yirf;

where the superscripts �(�) and �(�);? denote the components tangent and perpen-
dicular to �(�) :

Proof. If we replace the �rst two terms on the right hand side of equation 10.3
with roldx y; then we get the formula for the covariant derivative after an actual
conformal change. It can be found in exercise 5a on page 90 in [Pet]. The three
derivative terms come from the three derivative terms in the Koszul formula.
When we test rnewx y by taking its inner product with a vector in the orthogonal

complement of �(�) ; the Koszul formula looks precisely like the one for a standard
conformal change, and so we certainly have that the component of rnewx y that is
perpendicular to �(�) is given by 10.3.
Finding the component tangent to �(�) takes more care. The important point

is that there is no standard �eld that is tangent to �(�) : Indeed, ���changes in
the directions spanf(�1; �1) ; (�2; �2)g : So even though we can compute the precise
formula for the �(�)�component in many cases, we can�t get a general formula
that is much better than equation 10.3. �
To deal with covariant derivatives involving vectors in �(�) we prove

Lemma 10.4. (i): For x and U �elds with

x 2 H [ V1 � V2 and U 2 span f(N�p;N�)g
rnewx U = O

�
e2f � 1

�
roldx U; and

rnewU x = O
�
e2f � 1

�
roldU x:

(ii): For U = (N�p;N�)

rnewU U = roldU U:

Proof. Since at least one of our �elds is in �(�) ; the three derivative terms from
equation 10.3 are not present. For (i) the three Lie bracket terms of the Koszul
formula can be a bit complicated, so again we can�t get general formulas that are
much better than the two we have asserted.
For (ii) the key point is that for Z perpendicular to �(�), the Koszul formula

gives us

2 hrnewU U;Zinew = �DZ hU;Uinew + 2 h[Z;U ] ; Uinew
= �DZ hU;Uiold + 2 h[Z;U ] ; Uiold
= 2

D
roldU U;Z

E
old

Similarly hrnewU U;Uinew =
D
roldU U;U

E
old
: �

For us the really important curvatures are

(R (�;W )W )
H and

R (W; �) �:
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Fortunately we can get precise formulas for the required covariant derivatives.
Note that W is typically neither tangent nor perpendicular to �(�) :We let W 


denote the component of W that is perpendicular to �(�) : With this we have

Lemma 10.5.

rnewW W = roldW W � hW 
 ;W 
irf
rnew� W = rold� W + (D�f)W


 ; and

rnew� � = rold� � + 2 (D�f) � �rf:
Remark 10.6. In other words, if we replace W with W 
 then the formulas for the
three covariant derivatives are precisely the same as that of a standard conformal
change.

Proof. If Z is any standard �eld that is either �;W; or initially perpendicular to
span f�;Wg ; then all three Lie bracket terms in the three Koszul formulas for

hrnewW W;Zi ;


rnew� W;Z

�
; and



rnew� �; Z

�
vanish. So the only change in the Koszul formula comes from the three derivative
terms, and only the 
�component of W e¤ects these terms. �
To get the two key curvature formulas, we will also have to check the �(�)�

components of the various iterated covariant derivatives. Since �(�) is contained
in the vertical space of Sp (2) �! S4; we do not need to worry about the �(�)�
component of

(R (�;W )W )
H

Thus it su¢ ces to check the following.

Proposition 10.7. Before and after the partial conformal change the �(�)�components
of

r�rnew� W; and

rWrnew� �

are 0:

Proof. The bottom line is that all of the Lie Bracket terms in all of the relevant
Koszul formulas are 0: Because of the importance of the result we check this.
Let V be a unit �eld in spanf�(�)g. Since the partial conformal change oc-

curs after the (U;D)�Cheeger deformations, we will have to consider all of these
computations as occurring in

�
S3
�2 � Sp (2) :

For


r�rnew� W;V

�
we �rst note thatrnew� W = rold� W+(D�f)W


 androld� W 2
span fHwg : Next we point out that in both the Sp (2) and the

�
S3
�2
�factors,

[�;V] = 0: It remains to compute each of
h[�;Hw] ;Vi ;
h[V;Hw] ; �i ;
h[�;W 
 ] ;Vi ;
h[V;W 
 ] ; �i

These are all 0 in both the Sp (2) and the
�
S3
�2
�components because in each case

one of the vectors in the inner product is an ��vector and one of the vectors is a

�vector.
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For


rWrnew� �;V

�
; we note that

rnew� � = rold� � + 2 (D�f) � �rf

and rold� � = 0: The terms

h[V;W ] ; �i and
h[V;W ] ;rfi

are 0 since [W;V] is a 
�vector and both � and rf are ��vectors.
The computations that gave us these 0�planes in the �rst place yield that each

of

[W; �] ;

[V; �] ;
[V;rf ]

is 0:
The inner product

h[W;rf ] ;Vi

is 0 in the Sp (2) factor since W is vertically parallel. In the
�
S3
�2
�factor, we point

out that [W;rf ] is a 
�vector so

h[W;rf ] ;Vi = 0:

�

Combining the previous two Lemmas we see that our two key curvature tensors

Rnew (W; �) � and

(Rnew (�;W )W )
H

are obtained from Rold; from the familiar conformal change formulas (cf exercise
5B on page 90 in [Pet]) with W replaced by W 
 :

Proposition 10.8. For any vector U

e�2f hRnew (W; �) �; Ui =


Rold (W; �) �; U

�
�g (W 
 ; U)Hessf (�; �)� g (�; �)Hessf (W 
 ; U) + g (�; U)Hessf (W


 ; �)

+g (W 
 ; U)D�fD�f � g (�; �) g (W 
 ; U) jgradf j2

For any vector Z 2 H2;�1

e�2f hRnew (�;W )W;Zi =


Rold (�;W )W;Z

�
�g (�; Z)Hessf (W 
 ;W 
)� g (W 
 ;W 
)Hessf (�; Z) + g (W


 ; Z)Hessf (�;W

)

+g (W 
 ;W 
)D�fDZf � g (W 
 ;W 
) g (�; Z) jgradf j2

Since our deformation is not in�nitesimal, this result is not enough. By com-
bining our �rst two lemmas on the covariant derivatives of the almost conformal
change we have
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Proposition 10.9. For arbitrary X;Y; Z; and U

e�2fRnew (X;Y; Z; U) = Rold (X;Y; Z; U)

�g (X;U)Hessf (Y; Z)� g (Y; Z)Hessf (X;U)
+g (X;Z)Hessf (Y; U) + g (Y; U)Hessf (X;Z)

+g (X;U)DY fDZf + g (Y;Z)DXfDUf

�g (Y;U)DXfDZf � g (X;Z)DY fDUf

�g (Y;Z) g (X;U) jgradf j2 + g (X;Z) g (Y;U) jgradf j2 ;
+O

�
e2f � 1; jgradf j

�
max

�
Rold (X;Y; Z; U) ; jXj jY j jZj jU j

	
To evaluate curvatures we need to compute the Hessian of f: Recall that � is the

vector in span
�
x2;0; y2;0

	
that is perpendicular to �: Some of the formulas below

are redundant. We include the redundancy for later convenience.

Proposition 10.10.

Hessf (�; �) = �
s2

�2
D� ( D� ) + I

00

Hessf (�; �) =
s2

�2

�
D� ( )D� ( ) +  D� [D� ( )]�  D� ( )O

�
t

l2

��

Hessf
�
�; y2;0

�
= � s

2

�2

�
D� ( )Dy2;0 ( ) +  D�Dy2;0 ( )�  jgrad jO

�
t

l2

��
+I 00



�; y2;0

�

rsW
gradf = �
s4

�2
jgrad j2Hw +

s2

�2
 (D� )r�;re;lW � +O

Hessf (W

 ;W 
) = �s4w

2
h

�2
 2 jgrad j2 +O

Proof. Since

grad f = � s
2

�2
 grad + I 0�:

we have

Hessf (�; �) = � s
2

�2
hr� ( grad ) ; �i+ hr� (I 0�) ; �i

= � s
2

�2

�
(D� )

2
+  hr� (grad ) ; �i

�
+ I 00

= � s
2

�2

�
(D� )

2
+  D�D� 

�
+ I 00

= � s
2

�2
D� ( D� ) + I

00
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Hessf (�; �) = hr�gradf; �i

= � s
2

�2
hr� ( grad ) ; �i+ hr� (I 0�) ; �i

= � s
2

�2
(D� ( ) hgrad ; �i+  hr� (grad ) ; �i)

= � s
2

�2
(D� ( )D� ( ) +  D� h(grad ) ; �i �  h(grad ) ;r��i)

= � s
2

�2

�
D� ( )D� ( ) +  D�D� ( )�  h(grad ) ; �iO

�
t

l2

��
= � s

2

�2

�
D� ( )D� ( ) +  D� [D� ( )]�  D� ( )O

�
t

l2

��
Hessf

�
�; y2;0

�
=



r�gradf; y2;0

�
= � s

2

�2


r� ( grad ) ; y2;0

�
+


r� (I 0�) ; y2;0

�
= � s

2

�2
�
D� ( )



grad ; y2;0

�
+  



r� (grad ) ; y2;0

��
+O

= � s
2

�2
�
D� ( )Dy2;0 ( ) +  D�



(grad ) ; y2;0

�
�  



(grad ) ;r�y2;0

��
+O

To evaluate the next to last term

grad ;r�y2;0

�
= cos'



grad ;rx20y2;0

�
+ sin'



grad ;ry20y2;0

�
= jgrad jO

�
t

l2

�
So

Hessf
�
�; y2;0

�
= � s

2

�2

�
D� ( )Dy2;0 ( ) +  D�Dy2;0 ( )�  jgrad jO

�
t

l2

��
+O

To �nd rW
gradf we note that since gradf 2 span
�
x2;0; y2;0

	
; and r�;re;lW
 � = 0;

we should think of gradf as a linear combination of � and �: Since this combination
is constant in the W direction we have

r�;re;lW
 gradf = hgradf; �ir�;re;lW
 �

=
s2

�2
 (D� )r�;re;lW
 �

We proved in Proposition 9.6 that

rs�W 
 = s2
D� 

 
Hw

= r�;re;l� W 
 + s2
D� 

 
Hw:

A similar argument gives us

rsW
gradf = r�;re;lW
 gradf + s2
Dgradf 

 
Hw

Substituting we get

rsW
gradf =
s2

�2
 (D� )r�;re;lW
 � + s2

hgrad f; grad i
 

Hw
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Since grad f = � s2

�2 grad + I
0� and I 0 = O

�
s4

�2

�
; we get

rsW
gradf =
s2

�2
 (D� )r�;re;lW � � s4

�2
jgrad j2Hw +O

as claimed.
For redundancy we compute

�Hessf (W 
 ;W 
) = �hrW
gradf;W 
i
= + hgradf;rW
W 
i

=

�
� s

2

�2
 grad ;�s2w2h grad  

�
+


�I 0�;�s2w2h grad  

�
= s4

w2h
�2
 2 jgrad j2 +O

�
We can now compute curv (�;W )

Proposition 10.11.

e�2f hRnew (�;W )W; �inew = s4w2h (D� )
2
+ s4

w2h
�2
 2 hgrad ; �i2 + �+O;

where
� � � jW 
 j2 I 00:

In particular, we can choose � so that the zero planes with respect to g�;l have
positive curvature with respect to gnew:

Proof. Our partial conformal change formula gives us

e�2f hRnew (�;W )W; �inew = hRs (�;W )W; �is �Hessf (�; �) jW

 j2 �Hessf (W 
 ;W 
) j�j2

+(D�f)
2 jW 
 j2 � jrf j2 jW 
 j2 j�j2

To evaluate this we combine

h(Rs (�;W )W ) ; �is = �
�
s2w2h

�
D� ( D� ) + s

4w2h (D� )
2
+O

jW 
 j2Hessf (�; �) = � jW 
 j2 s
2

�2
D� ( D� ) + jW 
 j2 I 00

= ��2w2h
s2

�2
D� ( D� )� �

= �w2hs2D� ( D� )� �

Hessf (W

 ;W 
) = �s4w

2
h

�2
 2 jgrad j2 +O

and

� jW 
 j2 jgradf j2 + jW 
 j2 (D�f)
2
= � jW 
 j2 s

4

�4
 2 jgrad j2 + jW 
 j2 s

4

�4
 2 hgrad ; �i2 +O

= �s4w
2
h

�2
 2 jgrad j2 + s4w

2
h

�2
 2 hgrad ; �i2 +O;

to get

e�2f hRnew (�;W )W; �inew = s4w2h (D� )
2
+ s4

w2h
�2
 2 hgrad ; �i2 + �+O

as desired. �
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Proposition 10.12.

e�2fRnew (�;W;W; �) = �s2wh
D� 

jcos 2t�2;0j

D
r�;re;l(�;�)W; �

E
+O

Proof. From Proposition 10.8 we have

e�2fRnew (�;W;W; �) = Rold (�;W;W; �)�g (W 
 ;W 
)Hessf (�; �)+g (W

 ;W 
)D�fD�f

From Proposition 9.3 we haveD�
Rold (�;W )W

�H
; �
E

= �s2w2h hr� ( grad ) ; �i+ s4w2h (D� ) hgrad ; �i

�s2wh
D� 

jcos 2t�2;0j

D
r�;re;l(�;�)W; �

E
Since

grad f = � s
2

�2
 grad + I 0�;

e�2fRnew (�;W;W; �) = �s2w2h hr� ( grad ) ; �i+ s4w2h (D� ) (hgrad ; �i)

�s2wh
D� 

jcos 2t�2;0j

D
r�;re;l(�;�)W; �

E
+�2w2h

s2

�2
hr� ( grad ) ; �i+ g (W 
 ;W 
)D�fD�f +O

= s4w2h (D� ) (D� ) + �
2w2h

s4

�4
 2 (D� ) (D� )

�s2wh
D� 

jcos 2t�2;0j

D
r�;re;l(�;�)W; �

E
+O

= �s2wh
D� 

jcos 2t�2;0j

D
r�;re;l(�;�)W; �

E
+O

�

Let �2;0u;W be the unit vector in span
n
�2;0u;1; �

2;0
u;2

o
that is proportional to the

projection of W onto span
n
�2;0u;1; �

2;0
u;2

o
;and let �2;0

u;W? be perpendicular to �
2;0
u;W :

Proposition 10.13.

e�2fRnew
�
W; �; �; �2;0u;W

�
= �s2wh (D�D� ) + wh 

s2

�2
D� ( D� ) +O

Proof. Indeed for U = �2;0u;W we have

e�2fRnew
�
W; �; �; �2;0u;W

�
= Rold

�
W; �; �; �2;0u;W

�
�
D
W;�2;0u;W

E
Hessf (�; �)�Hessf

�
W;�2;0u;W

�
+
D
W;�2;0u;W

E
(D�f)

2
+

�
D
W;�2;0u;W

E
jgradf j2 :
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Using Propositions 9.3 and 10.10 this becomes

e�2fRnew
�
W; �; �; �2;0u;W

�
= �s2wh

�
D�D� 

 

�D
k
 ; �

2;0
u;W

E
+
D
W;�2;0u;W

E s2
�2
D� ( D� )

+
s4

�2
jgrad j2

D
Hw; �

2;0
u;W

E
+O

�
s2

�2
 (D� )

�
+O

�
s4

�4
jgrad j2  2

�D
Hw; �

2;0
u;W

E
+O

So

e�2fRnew
�
W; �; �; �2;0u;W

�
= �s2wh (D�D� ) + wh 

s2

�2
D� ( D� )

+
s4

�2
wh jgrad j2  +O

�
s2wh (D� )

�
+O

�
s4

�4
wh jgrad j2  3

�
+O

= �s2wh (D�D� ) + wh 
s2

�2
D� ( D� ) +O

�

Proposition 10.14.

e�2f
D
Rnew (�;W )W;�2;0

u;W?

E
= 4whs

2D� 
 2

�3
jW�jh2 +O

Proof. The partial conformal change has no e¤ect here. So this is just what comes
from Proposition 9.3. �

Proposition 10.15. For U perpendicular to span
n
W;�2;0u;W

o
:

(i): If U 2 Hp2;�1 

Rold (W; �) �; U

�
= 0

(ii): If U 2 V1 � V2;

Rold (W; �) �; U

�
= s2whD� 

D
�2;0u ;r�;re;l� U

E
+O

Proof. For U 2 Hp2;�1 ;

Rold (W; �) �; U

�
= �s2wh

�
D�D� 

 

�
hk
 ; Ui ;

and this is 0; if U is also perpendicular to span
n
W;�2;0u;W

o
:

For U 2 V1 � V2; extend U to be a Killing �eld for the (h1 � h2)�action. Then

Rold (W; �) �; U

�
= �s2wh

�
D�D� 

 

�
hk
 ; Ui � s2

�
1� s2

�
wh

D� 

 



k
 ; S�

�
UH
��

+s2
�
1� s2

�
wh

D� 

 

D
k
 ;r�;re;l� U

E
= s2whD� 

D
�2;0u ;r�;re;l� U

E
+O

since U is also perpendicular to span
n
W;�2;0u;W

o
: �
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Corollary 10.16. For U perpendicular to span
n
W;�2;0u;W

o
(i): If U 2 Hp2;�1

hRnew (W; �) �; Ui = O

(ii): If U 2 V1 � V2 and a Killing �eld for the (h1 � h2)�action

hRnew (W; �) �; Ui = �e2fs2whD� 
D
�2;0u ;r�;re;l� U

E
+O

Proof. The partial conformal change does contribute some nonzero terms here, but
they are too small to matter. �

11. Quadratic Perturbations of Planes

Having established that the planes span f�;Wg are now positively curved, we
are left with the daunting problem of establishing that an entire neighborhood of
these planes in the Grassmannian is positively curved. I.e. proving Theorem 5.2.
Our �rst task will be to prove the main lemma (5.6), which we do in this section.
Accordingly, we represent a general plane near span f�;Wg in the form P =

span f� + �z;W + �V g where z ? �; V ? W . The curvature is then a quartic
polynomial

P (�; �) = curv (� + �z;W + �V )

in � and � . As we mentioned in section 5, running the Cheeger perturbations by
h1 and �(U;D) for a long time, allows us to reduce to the case z 2 Hp2;�1 :
Our �rst task is to analyze the �quadratic perturbation�, i.e. to prove the main

lemma, that is we will show that for all �; � 2 R and for all possible choice of z and
V;

PQ (�; �) = curv
di� (�;W ) + 2�Rdi� (�;W;W; z) + 2�Rdi� (W; �; �; V )

+�2curv�;re;l (z;W ) + 2��
�
R�;re;l (�;W; V; z) +R�;re;l (�; V;W; z)

�
+�2curv�;re;l (�; V )

> 0;

where

Rdi� = Rnew �R�;re;l and
curvdi� = curvnew � curv�;re;l:

Because of the e2f�factor in the partial conformal change curvature formulas,
we will ultimately want this to also hold with all of the (�; re; l)�curvature terms
multiplied by e2f : This is actually easier to prove, and is in fact what we will do.
Because e2f is pretty close to 1; our argument also gives the main lemma, but this
is just an academic point.
We have already established that curvdi� (�;W ) = curvnew (�;W ) > 0: By com-

bining

� P �;re;l (�; �) > 0 for all �; � 2 R, and
� The constant and linear terms of P �;re;l are 0

we see that

�2curv�;re;l (z;W )+2��
�
R�;re;l (�;W; V; z) +R�;re;l (�; V;W; z)

�
+�2curv�;re;l (�; V ) > 0

for all �; � 2 R:
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Therefore we only need to focus on the cases where the two linear coe¢ cients
Rdi� (�;W;W; z) and Rdi� (W; �; �; V ) are large enough so that they could possibly
cause a negative curvature. By combining our formulas for the curvature of the
partial conformal change with Propositions 9.3, 10.10, 10.12, 10.13, 10.14, and
Corollary 10.16 we see that these are

� V = U 2 V1 � V2 is perpendicular to span
n
W;�2;0u;W

o
:

� z = �
� V = �2;0u;W
� z = �2;0

u;W? :

In the �rst two cases we will show that the linear terms are not even close to
being large enough to create negative curvature. Because this turns out to be the
case, to dispense with the �rst two possibilities, it will be enough to consider just
the single variable quadratics corresponding to the perturbations spanf�;W + �Ug
and spanf� + ��;Wg :
In the �rst case we consider the single variable quadratic polynomial

P (�) = curvdi� (�;W ) + 2�Rdi� (W; �; �; U) + �2e2fcurv�;re;l (�; U) :

The minimum of this quadratic polynomial is

curvnew (�;W )�


Rdi� (W; �) �; U

�2
e2fcurv�;re;l (�; U)

Combining Proposition 10.11 and Corollary 10.16 we get that

(11.1)

P (�) � e2f
�
s4w2h (D� )

2
+ s4

w2h
�2
 2 hgrad ; �i2 + �

�
�e2fs4w2h (D� )

2

D
�2;0u ;r�;re;l� U

E2
curv�;re;l (�; U)

Using Theorem 6.2 we will prove

Proposition 11.2. For any constant c > O (�) , there a choice of metric g�;re;l so
that with respect to g�;re;lZ

�

(D� )
2

D
�2;0u ;r�;re;l� U

E2
curv�;re;l (�; U)

� c

Z
�

(D� )
2
;

where � is any of the geodesics of length �
4 ; tangent to � along the old zero locus,

starting over either of the two points in S4 with (t; sin 2�) = (0; 0) :
Moreover, for any constant c > O (�) , there is a choice of g�;re;l and a choice

of � so that with respect to g�;re;l
(11.3)

c

�
e2f
�
s4w2h (D� )

2
+ s4

w2h
�2
 2 hgrad ; �i2 + �

��
� e2fs4w2h (D� )

2

D
�2;0u ;r�;re;l� U

E2
curv�;re;l (�; U)

:

In particular, P (�) > 0:

Remark 11.4. At this point we can begin to appreciate the need for the redistri-
bution metric. It allows us to make the negative term in 11.1 as small as we like.
It will become clear after we have considered the case when V = �2;0u;W that without
this redistribution there would in fact be some negative curvatures.
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Proof. From Proposition 6.4 we see that the redistribution has very little e¤ect on

�2;0u ;r�U

�2
: To compute this quantity with respect to g�;l; we must again consider

Sp (2)�
�
S3
�2
: So for the purpose of this proof we suspend the notational convention

on page 17, and revert to the �b�notation for discussing Cheeger deformations.D
�̂2;0u ;r�;l� Û

E2
=


�2;0u ;r��U

�2
Sp(2)

+

��
�̂2;0u

�(S3)2
;r�Û

�2
(S3)2

:

The Sp (2) derivative is given by quaternion multiplication and lives in the orthog-
onal complement H of V1 � V2: So


�2;0u ;r��U
�2
Sp(2)

=
cos2 2t

jcos 2t�2;0j2


(�; �) ;r��U

�2
�

� 1

jcos 2t�2;0j2
curv� (�; U)

Our estimates for the
�
S3
�2
�portion will be e¢ cient, but not optimal. First

notice that if jU j� = O
�
1
�

�
; then�����r�Û�S3����

l

= O

�
1

l

�
;

since ������̂2;0u �(S3)2����
l

=
1

jcos 2t�2;0j2
O

�
t

l

�
we get ��

�̂2;0u
�(S3)2

;r�Û
�2
(S3)2

� 1

jcos 2t�2;0j2
O

�
t2

l2

�
combining estimates we haveD

�̂2;0u ;r�;l� Û
E2

� 1

jcos 2t�2;0j2
�
curv� (�; U) +O

�
t2

l2

��
� 1:1curv�;l (�; U)

From Proposition 6.4 we see that (with an irrelevant adjustment), this estimate

also holds with
D
�̂2;0u ;r�;l� Û

E2
replaced by

D
�̂2;0u ;r�;re;l� Û

E2
: On the other hand,

we see from Theorem 6.2 and O�Neill�s horizontal curvature equation that

curv�;re;l (�; U) � curv� (�; U) + ''00 jU j2� ;

Since (D� )
2 is concentrated on a set that looks like [0; O (�)], we can redistribute

the ratio D
�2;0u ;r�;re;l� U

E2
e2fcurv�;re;l (�; U)

so that it is small where (D� )
2 is large, and large where (D� )

2 is small. The
choice of '00 that we made at the beginning of section 6 will give us the desired
integral inequality (perhaps with an adjustment of the constants 100; 10; 000; : : :):
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To get 11.3 we combine the integral inequality with the fact that we have yet to
impose any conditions on � except,

� = O
�
s4w2h

�
; andZ

�

� = 0:

To get 11.3 we must now require that � be positive and (relatively large) on a region
that looks like

�
const �; �4

�
: The quantity const � is near the in�ection point of the

redistribution function ': �
In the case where z = � we will again see that linear term is overwhelmingly

dominated. Consider the quadratic

P (�) = curvdi� (�;W ) + 2�Rdi� (�;W;W; �) + �2e2fcurvold (�;W )

The minimum is

curvdi� (�;W )� Rdi� (�;W;W; �)
2

e2fcurvold (�;W )

Combining Propositions 10.11 and 10.12 we see that this is

e2f
�
s4w2h (D� )

2
+ s4

w2h
�2
 2 hgrad ; �i2 + �

�
� e2f

s4w2h (D� )
2
D
r�;re;l(�;�)W; �

E2
jcos 2t�2;0j2 curv�;re;l (�;W )

:

(11.5)

Since

curv�;re;l (�;W ) �
D
r�(�;�)W; �

E2
�
+O

�
t2

l6

�
;D

r�;re;l(�;�)W; �
E2
�
D
r�(�;�)W; �

E2
�
+O

�
t2

l4

�
+O

�
t4

l8

�
;D

r�(�;�)W; �
E2
�
� 1;

1

jcos 2t�2;0j2
� 1�

cos2 2t+ sin2 2t
�2

�
=

�2�
�2 cos2 2t+ sin2 2t

� ;
and

l = O
�
�1=3

�
we see that the negative term in 11.5 is much smaller than the positive term,
provided the constant c so that l = c�1=3 is relatively large.
In the �nal two cases, V = �2;0u;W and z = �2;0

u;W? ; the linear terms can be a
substantial fraction of the total, so we will have to be more careful. In particular,
we will have to consider the entire polynomial PQ (�; �) :We start by analyzing the
two mixed quadratic coe¢ cients

R�;re;l
�
�;W; �2;0u;W ; �

2;0
u;W?

�
; R�;re;l

�
�; �2;0u;W ;W; �

2;0
u;W?

�
:

First notice that they are 0 if our only deformations of the biinvariant metric
are the h1 and h2 Cheeger perturbations. We track the e¤ect of the U and D
perturbations by considering the corresponding submersion S3 � S3 � Sp (2) �!
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Sp (2) : As we have observed the components of R�;re;l
�
�;W; �2;0u;W ; �

2;0
u;W?

�
and

R�;re;l
�
�; �2;0u;W ;W; �

2;0
u;W?

�
that come from the Sp (2)�factor of

�
S3
�2 � Sp (2) are

0: For similar reasons the components that come from the S3�factor are 0: The
A�tensors of S3 � S3 � Sp (2) �! Sp (2) and Sp (2) �! �7 might make a nonzero
contribution, but its contribution to the curvature of the entire plane

curv�;re;l
�
� + ��2;0

u;W? ;W + ��2;0u;W

�
is nonnegative so we may drop it. (As long as we drop it from all curvatures.)
Finally we saw in section 6 that the redistribution deformation only has a large
e¤ect on curvatures that have � in two variables. So in the end we see that these
two mixed terms are too small to matter.
Although this simpli�es matters considerably, we still have to consider the rest

of PQ (�; �) as a whole. More speci�cally we have to verify that

curvdi� (�;W )�
Rdi�

�
W; �; �; �2;0u;W

�2
e2fcurv�;re;l

�
�; �2;0u;W

� � Rdi�
�
�;W;W; �2;0

u;W?

�2
e2fcurv�;re;l

�
�2;0
u;W? ;W

� > 0:
To simplify the exposition we compute the sum of the �rst two terms and then

the last term. Using Propositions 10.11 and 10.13 and the fact that

curv�;re;l
�
�; �2;0u;W

�
= �D�D� 

 
+O;

we �nd

curvdi� (�;W )�
Rdi�

�
W; �; �; �2;0u;W

�2
e2fcurv�;re;l

�
�; �2;0u;W

� +O

= e2f
�
s4w2h (D� )

2
+ s4

w2h
�2
 2 hgrad ; �i2 + �

�
�
e4f
�
�s2wh (D�D� ) + wh 

s2

�2D� ( D� )
�2

�e2f D�D� 
 

= e2fs4w2h

�
(D� )

2
+
 2

�2
hgrad ; �i2

�
+ e2f �

+e2fs4w2h

�
 

D�D� 

�
(D�D� )

2 � 2

�2
(D�D� ) D� ( D� ) +

 2

�4
[D� ( D� )]

2

��

= e2fs4w2h

�
(D� )

2
+
 2

�2
hgrad ; �i2

�
+ e2f �

+e2fs4w2h

�
 (D�D� )� 2

 2

�2
D� ( D� ) +

 

D�D� 

 2

�4
[D� ( D� )]

2

�
= e2fs4w2h

�
D� ( D� ) +

 2

�2
(D� )

2 � 2 
2

�2
D� ( D� ) +

 

D�D� 

 2

�4
[D� ( D� )]

2

�
+ e2f �

The integral the �rst term is 0: The integral of the second term is positive and
the integral of the third term is positive as well, since the total derivative is positive
where  is small and negative where  is larger.
The next to last term has a negative integral, but in Lemma 8.5 we showed
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����  

D�D� 
[D� ( D� )]

���� � �2

4
:

so ����  

D�D� 

 2

�4
[D� ( D� )]

2

���� �  2

4�2
jD� ( D� )j

This is an eighth of the third term so

curvdi� (�;W )�
Rdi�

�
W; �; �; �2;0u;W

�2
e2fcurv�;re;l

�
�; �2;0u;W

� +O
� e2fs4w2h

�
D� ( D� ) +

 2

�2
(D� )

2 � 2 
2

�2
D� ( D� ) +

 2

4�2
jD� ( D� )j

�
+ e2f �

= e2fs4w2h

�
D� ( D� ) +

 2

�2
(D� )

2 � 7
4

 2

�2
D� ( D� )

�
+ e2f �

(11.6)

Finally using Proposition 10.14

Rdi�
�
�;W;W; �2;0

u;W?

�2
e2fcurv�;re;l

�
�2;0
u;W? ;W

� = s4w2h (D� )
2

e4f
�
4 

2

�3 jW�j
�2

e2fcurv�;re;l
�
�2;0
u;W? ;W

�
� e2fs4w2h (D� )

2

�
4 

2

�3 jW�j
�2

jcos 2t�2;0j�2 + 4 2�6
;

where the factor of 4 in the denominator comes from the fact that  = 1
2

sin 2t
jcos 2t�2;0j :

Since jW�j2 � 1
4�2 ; we get another factor of 4: So

Rdi�
�
�;W;W; �2;0

u;W?

�2
e2fcurv�;re;l

�
�2;0
u;W? ;W

� � e2fs4w2h (D� )
2  

2

�2

Combining the displays we get

curvdi� (�;W )�
Rdi�

�
W; �; �; �2;0u;W

�2
e2fcurv�;re;l

�
�; �2;0u;W

� � Rdi�
�
�;W;W; �2;0

u;W?

�2
e2fcurv�;re;l

�
�2;0
u;W? ;W

� �
e2fs4w2h

�
D� ( D� ) +

 2

�2
(D� )

2 � 7
4

 2

�2
D� ( D� )�

 2

�2
(D� )

2

�
+ e2f �+O

= e2fs4w2h

�
D� ( D� )�

7

4

 2

�2
D� [ D� ]

�
+ �e2f +O:

So we can choose � so that the right hand side is point wise positive. With some
moments of re�ection we see that this choice of � can be consistent with the choice
required for the proof of Proposition 11.2.
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Remark 11.7. With a careful review of the estimates in this section one can ap-
preciate the necessity of the redistribution. Indeed without the redistribution, we
can�t do much better in Proposition 11.2 thanD

�2;0u ;r�;re;l� U
E2

curv�;re;l (�; U)
� 1:

Tracing through the rest of our estimates one can then see that there can be a vector

in V 2 span
n
V1 � V2; �2;0u;W

o
so that the single variable polynomial

P (�) = curv (�;W + �V )

has some negative values. To see this one must also observe that the integrals of

 2

�2
( D�D� ) and

 2

�2
D� [ D� ]

are something like O
�
1
100

�
times the integral of

 D�D� :

12. Higher Order Terms

To prove that the Gromoll-Meyer sphere is now positively curved it remains to
show that the higher order terms in the curvature polynomial

P (�; �) = curv (� + �z;W + �V ) ;

do not change enough under our deformations to create a nonpositive curvature.
Recall that it is enough to consider the case when z 2 H2;�1: For computational

convenience, we choose z and V so that their components in span
�
x2;0; y2;0

	
are

proportional to y2;0: In addition, we choose V so that its component in V2 is per-
pendicular to the 
-part of W: We further assume that z and V are normalized so
that they are spherical combinations of our standard vectors.
The curvature of P is a quartic polynomial

P (�; �) = R (� + �z;W + �V;W + �V; � + �z)

in � and � .
In addition we must verify the positivity of the quadratic subpolynomials

Q� (�) = curv (� + �z; V ) and

:QW (�) = curv (z;W + �V ) :

We let { : R+ �! R+ stand for a function so that lims!0 { (s) = 0:
Set

Hdi� (�; �) � �2Rdi� (�; V; V; �) + 2��Rdi� (�;W; V; z) + 2��Rdi� (�; V;W; z) + �2Rdi� (z;W;W; z)

+2��2Rdi� (�; V; V; z) + 2�2�Rdi� (z;W; V; z) + �2�2 Rdi� (z; V; V; z) ;

and let P �;re;l (�; �) be the curvature polynomial for g�;re;l:

Theorem 12.1. To verify that P (�; �) > 0, Q� (�) > 0; and QW (�) > 0 for all
�; � ; we may ignore

(a): Any term in a coe¢ cient of Hdi� that is smaller than { (s) times the
corresponding coe¢ cient of P �;re;l:
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(b): Any term in the (��)�coe¢ cient of Hdi� that is smaller than

� (s)
q
curv�;re;l (�; V )

q
curv�;re;l (z;W )

(c): Any term in the
�
�2�

�
�coe¢ cient of Hdi� that is smaller than

� (s)
q
curv�;re;l (z;W )

q
curv�;re;l (z; V )

(d): Any term in the
�
��2

�
�coe¢ cient of Hdi� that is smaller than

� (s)
q
curv�;re;l (�; V )

q
curv�;re;l (z; V ):

Proof. Part (a) follows from the main lemma and the fact that P �;re;l (�; �) > 0;

Q�;re;l� (�) > 0; and Q�;re;lW (�) > 0 for all �; � > 0:
To prove part (b) we �x � and view the �2 and �2 terms of P �;re;l together with

the term in the (��)�coe¢ cient that is smaller than

� (s)
q
curv�;re;l (�; V )

q
curv�;re;l (z;W ):

as a quadratic in �: The minimum is smaller than

�2

0B@curv�;re;l (�; V )� � (s)2
�p

curv�;re;l (�; V )
p
curv�;re;l (z;W )

�2
curv�;re;l (z;W )

1CA
= �2

�
curv�;re;l (�; V )� � (s)2 curv�;re;l (�; V )

�
= �2curv�;re;l (�; V )�O:

Parts (c) and (d) are proven with similar arguments. For part (c), we dominate
the portion of the

�
�2�

�
�coe¢ cient of Hdi� in question with the �2 and �2�2�

coe¢ cients of P �;re;l (�; �) : For part (d), we dominate the portion of the
�
��2

�
�

coe¢ cient of Hdi� in question with the �2 and �2�2�coe¢ cients of P �;re;l (�; �) :
We do not have to consider the Q� (�)s and QW (�)s for part (b). The proofs of

parts (c) and (d) for the Q� (�)s and QW (�)s are essentially the same as the proofs
for P (�; �) : �

Remark 12.2. Since many of the possible coe¢ cients of P �;re;l can be large, many
of the terms that this theorem allows us to ignore are in fact large. Its just that
their e¤ect is swamped by certain terms of P �;re;l.

We let
Rdi�;big

denote the terms of Rdi� that can not be thrown out using the previous theorem.

Theorem 12.3. If z and V are as above and normalized as in our standard basis,
then curvdi�;big (z; V ) and curvdi�;big (z;W ) ; are nonnegative and��Rdi�;big (z; V;W; z)�� �qcurvdi�;big (z; V )qcurvdi�;big (z;W )
All other coe¢ cients of Rdi�;big are 0; unless our perturbation bivector (z; V ) has
a nonzero inner product with either the case when z = y2;0 and V = �2;0u;W or with

the case when z = �2;0u;W and V = y2;0:
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Theorem 12.4. If z = y2;0 and V = �2;0u;W or z = �2;0u;W and V = y2;0; then

Rdi�

�
W; y2;0

�
y2;0;W

�
= e2fs2w2h 

2curvS
4
�
y2;0; �2;0u;W

�
+ { (s)���Rdi�;big ��; �2;0u;W ;W; y2;0���� =

���Rdi�;big ��;W; �2;0u;W ; y2;0����
= e2fs2wh curv

S4
�
y2;0; �2;0u;W

� 

y2;0; �

�
+ { (s)���Rdi�;big �W; y2;0y2;0; �2;0u;W���� = e2fs2wh curv

S4
�
y2;0; �2;0u;W

�
+ { (s)

and all other coe¢ cients of Rdi�;big are 0.

Before discussing the proofs, we show how these two theorems gives us that
P (�; �) > 0; Q� (�) > 0; and QW (�) > 0 for all �; � 2 R; and hence that the
Gromoll-Meyer sphere is positively curved. The proofs that Q� (�) > 0; and
QW (�) > 0 are strictly contained in the proof that P (�; �) > 0;so we only write
out the details that P (�; �) > 0:
We discuss the case of Theorem 12.3 and then those of Theorem 12.4.
From our proof of the main lemma, we have that in the case of Theorem 12.3

P (�; �) � O
�
s4w2h�

�
+ P �;re;l (�; �) + �2curvdi�;big (z;W )

+2�2�
q
curvdi�;big (z; V )

q
curvdi�;big (z;W ) + �2�2curvdi�;big (z; V ) +O:

The sum

�2curvdi�;big (z;W ) + 2�2�
q
curvdi�;big (z; V )

q
curvdi�;big (z;W ) + �2�2curvdi�;big (z; V )

= �2
�q

curvdi�;big (z;W ) + �
q
curvdi�;big (z; V )

�2
is nonnegative so we may drop it.
Thus

P (�; �) � O
�
s4w2h�

�
+ P �;re;l (�; �) +O;

and hence is positive.
In the case of Theorem 12.4, when z = y2;0 and V = �2;0u;W

P (�; �) � O
�
s4w2h�

�
+ P �;re;l (�; �) + �2curvdi�;big

�
y2;0;W

�
+2��Rdi�;big

�
�;W; �2;0u ; y2;0

�
+ 2��Rdi�;big

�
�; �2;0u ;W; y2;0

�
+

+2�2�Rdi�;big
�
y2;0;W; �2;0u ; y2;0

�
+ 2��2Rdi�;big

�
�; �2;0u ; �2;0u ; y2;0

�
+O:

Plugging in our curvature estimates we get

P (�; �) � O
�
s4w2h�

�
+ P �;re;l (�; �) + �2e2fs2w2h 

2curvS
4
�
y2;0; �2;0u;W

�
+4��e2fs2wh curv

S4
�
y2;0; �2;0u;W

� 

y2;0; �

�
+2�2�e2fs2wh curv

S4
�
y2;0; �2;0u;W

�
For �xed � ; we can view the �2 and �2 terms of P �;re;l (�; �) together with

�2e2fs2w2h 
2curvS

4
�
y2;0; �2;0u;W

�
and 4��e2fs2wh curvS

4
�
y2;0; �2;0u;W

� 

y2;0; �

�
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as a quadratic in �: Since
��
y2;0; ���� � 1

2 +O (t) ; the minimum is

�2

0B@curv�;re;l ��; �2;0u ��
h
s2wh curv

S4
�
y2;0; �2;0u;W

�i2
curv�;re;l (y2;0;W ) + s2w2h 

2curvS4
�
y2;0; �2;0u;W

�
1CA+O

� �2curv�;re;l
�
�; �2;0u

�
+O:

Thus we may replace the mixed quadratic �� term with O; and our estimate be-
comes

P (�; �) � O
�
s4w2h�

�
+ P �;re;l (�; �) + �2e2fs2w2h 

2curvS
4
�
y2;0; �2;0u;W

�
+2�2�e2fs2wh curv

S4
�
y2;0; �2;0u;W

�
+O:

For �xed �, we view the �2e2fs2w2h 
2curvS

4
�
y2;0; �2;0u;W

�
term, the 2�2�e2fs2wh curvS

4
�
y2;0; �2;0u;W

�
term and the �2�2 term of P �;re;l (�; �) as a quadratic in � : The minimum is

�2e2f
�
s2w2h 

2curvS
4
�
y2;0; �2;0u;W

�
� s4w2h 2curvS

4
�
y2;0; �2;0u;W

��
+O = �2s2w2h 

2curvS
4
�
y2;0; �2;0u;W

�
+O

So we again have

P (�; �) � O
�
s4w2h�

�
+ P �;re;l (�; �) +O

> 0:

Finally, in the exceptional case when z = �2;0u;W and V = y2;0 we plug in our
curvature estimates and get

P (�; �) � O
�
s4w2h�

�
+ P �;re;l (�; �)

+2��e2fs2wh curv
S4
�
y2;0; �2;0u;W

� 

y2;0; �

�
+O

When t � O
�
�1=2

�
; the (��)�term is dominated by the �2curv

�
�2;0u;W ;W

�
and

�2curv
�
y2;0; �

�
terms of P �;re;l (�; �) : So we may assume that t � O

�
�1=2

�
:

In this case, we view the ��; and �2�2 terms of P (�; �) as a quadratic in ��:
The minimum of this quadratic is

�e2f
�
2s2wh curv

S4
�
y2;0; �2;0u;W

� 

y2;0; �

��2
4curvS4

�
y2;0; �2;0u;W

� +O

Since
��
y2;0; ���� � 1

2 +O (t) our minimum is

� �e2fs4w2h 2
�
1

4
curvS

4
�
y2;0; �2;0u;W

�
+ curvS

4
�
y2;0; �2;0u;W

�
t

�
= �e2f 1

4
s4w2h 

2

��
D�D� 

 
+
t2 2

l6

��
+O

= �e2f 1
4
s4w2h D�D� +O(12.4)

This is of the order of our constant coe¢ cient

curvnew (�;W ) = e2fs4w2h (D� )
2

�
1 +

 2

�2

�
+ e2f �:

So we will have to be careful here.
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Notice that the minimum occurs when

�� = O
�
s2wh 

�
;

and we have not used the two positive quadratic terms

�2curv
�
�2;0u;W ;W

�
+ �2curv

�
y2;0; �

�
:

It will be su¢ cient to show that near the minimum this sum is much larger than
O
�
s4w2h�

�
:We will actually show that this holds except for t 2

�
0; s2wh�

�
:We will

then argue that with a very minor adjustment in �; we can easily dominate the
negative term 12.4 on the exceptional region.
Thus we have positive curvature except possibly if

�2curv
�
�2;0u;W ;W

�
� O

�
s4w2h�

�
or

�2
�
1 +

 2

l6

�
� O

�
s4w2h�

�
or

�2 �
O
�
s4w2h�

��
1 +  2

l6

� or

1

�
�

q
1 +  2

l6

O
�
s2wh�1=2

�
Since we also have

�� = O
�
s2wh 

�
;

we get

� �
O
�
s2wh 

�
�

� O
�
s2wh 

� q
1 +  2

l6

O
�
s2wh�1=2

�
� O

�
 

�1=2

�s
1 +

 2

l6

Thus our quadratic term

�2curv
�
y2;0; �

�
� O

�
 2

�

��
1 +

 2

l6

�
:

This is much larger than O
�
s4w2h�

�
; except if

 2 � O
�
s4w2h�

2
�
; or

 � O
�
s2wh�

�
Since

@

@t
 = O (1) ;

on [0; O (�)] ; the exceptional region is when t 2
�
0; O

�
s2wh�

��
:
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On this region, we see from Proposition 14.2 that

j D�D� j � 7
sin2 2t

�2

�
O
�
s2wh�

�2
�2

= O
�
s4w2h

�
So the absolute value of our minimum in (12.4) is

� O
�
s4w2h

�2
= O

�
s8w4h

�
and the integral of our minimum over this exceptional region is

O
�
s10w5h�

�
:

So with an extremely small adjustment to �; we can dominate the negative term
12.4 even on this exceptional region.

13. Higher order computations

In this section we prove Theorems 12.3 and 12.4, and so (modulo the appendix)
complete the proof that the Gromoll-Meyer sphere admits positive curvature. To
do this we think of the lift of T�7 to TSp (2) as split into

span f�g � span
�
y2;0

	
� span

n
�2;0u;1; �

2;0
u;2

o
� span fWg � span

n
(V1 � V2)?;W

o
:

Since z 2 H2;�1; it can only be in either the second or the third factor, whereas the
perturbation vector V can be in any but the � or W factors.
We divide our computations accordingly. So we have �ve cases to consider

z = y2;0; V 2 (V1 � V2)?;W

z; V 2 span
n
�2;0u;1; �

2;0
u;2

o
z = y2;0; V 2 span

n
�2;01 ; �2;02

o
;

z 2 span
n
�2;01 ; �2;02

o
; V = y2;0

z 2 span
n
�2;01 ; �2;02

o
; V 2 (V1 � V2)?;W :

Some sectional curvature terms occur in more than one of these cases. So to simplify
the accounting we handle the possible sectional curvatures in the �rst subsection.
These are those that occur as quadratic or quartic coe¢ cients of P di�;big (�; �) in
each of these �ve cases.
We also need the ��; ��2; and �2� coe¢ cients of P di�;big (�; �) : These are com-

puted on a case by case basis in the last four subsections. (The third and fourth
case are handled as one in the third subsection.)

13.1. Sectional Curvatures. Letting V be a vector in (V1 � V2)?;W ; the (unnor-
malized) sectional curvatures that we need are

curvdi� (�;V) ; curvdi�
�
�; �2;0u

�
; curvdi�

�
�; y2;0

�
; curvdi�

�
W;�2;0u

�
; curvdi�

�
W; y2;0

�
;

curvdi�
�
�2;0u ;V

�
; curvdi�

�
�2;0u ; y2;0

�
; curvdi�

�
V; y2;0

�
; curvdi�

�
�2;0u;1; �

2;0
u;2

�
:
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The A�tensor term in 1.2 does not appear in the curvatures of two horizontal
vectors, and the s2curvS

4

term and all of the terms of the partial conformal change
are also small on these planes. Thus

Proposition 13.1. The curvatures

curvdi�;big
�
�; y2;0

�
; curvdi�;big

�
�; �2;0u

�
; curvdi�;big

�
�2;0u ; y2;0

�
; curvdi�;big

�
�2;0u;1; �

2;0
u;2

�
are 0:

Proposition 13.2. For V 2 (V1 � V2)?;W

curvdi�;big
�
W; y2;0

�
= s2w2h 

2curvS
4
�
y2;0; �2;0u;W

�
+O;

curvdi�;big
�
V; y2;0

�
= s2v2h 

2curvS
4
�
y2;0; �2;0u;V

�
Proof. The iterated A�tensor term is small because Sy (k
) is small. Similarly, the
partial conformal change is small because the various y�derivatives of  are small.
The S4�term gives the leading contribution so

curvdi�;big
�
W; y2;0

�
= s2w2h 

2curvS
4
�
y2;0; �2;0u;W

�
+O and

curvdi�;big
�
V; y2;0

�
= s2w2h 

2curvS
4
�
y2;0; �2;0u;V

�
+O:

�

Proposition 13.3.
curvdi�;big (�;V) = 0

Proof. This computation looks like the computation of curv(�;W ) : The A�tensor,
S4�curvature, and � jV j2 hessf (�; �) terms can all be large, but to leading order
they cancel each other out. �

Proposition 13.4. For V 2 V1 � V2

Rdi�;big
�
�2;0u ;W;W; �2;0u

�
� e2fw2hs

2 jgrad j2
�
1�

D
�2;0u;W ; �

2;0
u

E2�
Rdi�;big

�
�2;0u ; V; V; �2;0u

�
� e2fw2hs

2 jgrad j2
�
1�

D
�2;0u;V ; �

2;0
u

E2�
Proof. The two inequalities have similar proofs, so we just focus on the �rst.

Rs
�
�2;0u ;W;W; �2;0u

�
= R�;re;l

�
�2;0u ;W;W; �2;0u

�
+s2RS

4 �
�2;0u ;H;H; �2;0u

�
�s2

�
1� s2

� ���A�2;0u
W v
���2

We have

A�2;0u
W v =

1

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
� II

�
�2;0u ;WH�+ 4 2

�3
jW�j

�
�2;0u

�?
=

O
�
1 + t

l2 +
t2

l6

�
jcos 2t�2;0j + whgrad 

D
�2;0u;W ; �

2;0
u

E
+ 4

 2

�3
jW�jh2

�
�2;0u

�?
So

s2
���A�2;0u

W v
���2 = s2O

�
 4

�6
jW�j2h2

�
+ s2w2h jgrad j

2
D
�2;0u;W ; �

2;0
u

E2
+O
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Since

curv
�
�2;0u ;W

�
�  2

�4
jW�j2h2 ;

we can bound the �rst term of the A�tensor by

s2
 2

�2
curv

�
�2;0u ;W

�
� s2O

�
 4

�6
jW�j2h2

�
:

The second term in our expression for s2
���A�2;0u

W v
���2 compares well with the

� jW j2Hessf
�
�2;0u ; �2;0u

�
term from the partial conformal change indeed

� jW j2Hessf
�
�2;0u ; �2;0u

�
= � jW j2

D
r�2;0u

gradf; �2;0u

E
= jW j2 s

2

�2

D
r�2;0u

( grad ) ; �2;0u

E
+O

= � jW j2 s
2

�2

D
( grad ) ;r�2;0u

�2;0u

E
+O

= jW j2 s
2

�2
jgrad j2 +O

= w2hs
2 jgrad j2 +O;

So combining displays we have

Rnew
�
�2;0u ;W;W; �2;0u

�
� R�;re;l

�
�2;0u ;W;W; �2;0u

�
+ s2RS

4 �
�2;0u ;H;H; �2;0u

�
� s2curv

�
�2;0u ;W

�
+w2hs

2 jgrad j2
�
1�

D
�2;0u;W ; �

2;0
u

E2�
+O

so

Rdi�;big
�
�2;0u ;W;W; �2;0u

�
� w2hs

2 jgrad j2
�
1�

D
�2;0u;W ; �

2;0
u

E2�
as claimed. �

13.2. z = y2;0; V 2 V1 � V2.

Proposition 13.5. If V is in (V1 � V2) and the h2�part of V is perpendicular to
W
 ; then��
Rdi� (W; �) y2;0; V ��� � Dy2;0 ( )O

�
s2wh

�
+D� ( )O

�
s2vh

�
+O

�
s2

l3

�
� { (s)��
Rdi� �W; y2;0� �; V ��� � D� ( )O

�
s2wh

�
� { (s)

and ��
Rdi� �W; y2;0� y2;0; V ��� � Dy2;0 ( )O
�
s2 (wh + vh)

�
+O

�
s2

l3

�
= { (s)��
Rdi� �V; y2;0� �; V ��� � { (s)

In particular, for all four curvatures Rdi�;big = 0:
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Proof. To �nd the e¤ect of shrinking the �bers we use equations 1.2 and get

Rs (W; �) y2;0 = Rs
�
WV ; �

�
y2;0 +Rs

�
WH; �

�
y2;0

=
�
1� s2

�
R�;re;l(WV ; �)y2;0 + s2

�
R�;re;l(WV ; �)y2;0

�V
+ s2A�Ay2;0W

V

+
�
1� s2

�
R�;re;l(WH; �)y2;0 + s2

�
R�;re;l(WH; �)y2;0

�V
+ s2RS

4

(WH; �)y2;0

=
�
1� s2

� �
R�;re;l (W; �) y2;0

�H
+
�
R�;re;l (W; �) y2;0

�V
+s2A�Ay2;0W

V + s2RS
4

(WH; �)y2;0

Similarly

Rs
�
W; y2;0

�
� =

�
1� s2

� �
R�;re;l

�
W; y2;0

�
�
�H
+
�
R�;re;l

�
W; y2;0

�
�
�V

+s2Ay2;0A�W
V + s2RS

4

(WH; y2;0)�; and

Rs
�
W; y2;0

�
y2;0 =

�
1� s2

� �
R�;re;l

�
W; y2;0

�
y2;0

�H
+
�
R�;re;l

�
W; y2;0

�
y2;0

�V
+s2Ay2;0Ay2;0W

V + s2RS
4 �
WH; y2;0

�
y2;0:

Since Ah2�induces an SO (3)�action on S4 that is standard on the S2Ims and leaves
� and y2;0 invariant, the restriction to TS2Im of the compositions of orthogonal
projection to TS2Im with any of RS

4 ��; y2;0� y2;0; RS4(�; �)y2;0; or RS4(�; y2;0)� are
homotheties. In particular, for V in (V1 � V2) \HGM with the h2�part of V per-
pendicular to W
 ; we haveD

RS
4 �
WH; y2;0

�
y2;0; V H

E
= 0;D

RS
4

(WH; �)y2;0; V H
E

= 0; andD
RS

4

(WH; y2;0)�; V H
E

= 0:

For V in (V1 � V2) we use Lemma 9.2 to see that��s2 
A�Ay2;0WV ; V
��� =

��s2 
Ay2;0WV ; A�V
���

=

����s2��r�;re;ly2;0 W
�H

� Sy2;0
�
WH� ;�r�;re;l� V

�H
� S�

�
V H
������

=

����s2��r�;re;ly2;0 W
�H

� whDy2;0 ( )
k
;W
 

;
�
r�;re;l� V

�H
� vhD� ( )

k
;V
 

�����
Since the 
�part of V is perpendicular to the 
�part of W;��s2 
A�Ay2;0WV ; V

��� � s2
�������r�;re;ly2;0 W

�H
; vhD� ( )

k
;V
 

�����+ �����whDy2;0 ( )
k
;W
 

;
�
r�;re;l� V

�H������
+s2

������r�;re;ly2;0 W
�H

;
�
r�;re;l� V

�H�����
� Dy2;0 ( )O

�
s2wh

�
+D� ( )O

�
s2vh

�
+O

�
s2

l4

�
� { (s)
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Similarly, ��s2 
Ay2;0A�WV ; V
��� � D� ( )O

�
s2wh

�
+O

� { (s) ; and��s2 
Ay2;0Ay2;0WV ; V
��� � Dy2;0 ( )O

�
s2wh

�
+Dy2;0 ( )O

�
s2vh

�
+O

� { (s) :

(There are fewer terms in the estimate for
��s2 
Ay2;0A�WV ; V

��� since r�;re;l� W =

0:)
These three A�tensor inequalities give the �rst three inequalities after the �bers

have been shrunken.
Combining this with our partial conformal change and Hessian formulas yields

the �rst three results.
The �nal curvature is also small, but this fact is much subtler.
The A�tensor part give us

s2


Ay2;0A�V

V ; V
�
= �s2



A�V

V ; Ay2;0V
V�

= �s2
��
r�;re;l� V

�H
� S�

�
V H
�
;
�
r�;re;ly2;0 V

�H
� Sy2;0

�
V H
��

= �s2
��
r�;re;l� V

�H
� vhD� ( )

k
;V
 

;
�
r�;re;ly V

�H
� vhDy2;0 ( )

k
;V
 

�
= �s2v2hD� ( )Dy2;0 ( )� s2vh

�
D� ( ) +Dy2;0 ( )

�
+O

= �s2v2hD� ( )Dy2;0 ( ) +O

The S4�curvature gives us

s2RS
4 �
�; V horiz; V horiz; y2;0

�
= �s2

��V horiz�� 
r�grad ��V horiz�� ; y2;0�
= �s2v2h 



r�grad ; y2;0

�
Adding we get

Rdi�;s
�
�; V horiz; V horiz; y2;0

�
= �s2v2h



r� grad ; y2;0

�
= jV 
 j2 hess

�
�; y2;0

�
+O

So this cancels with a hessian term from the partial conformal change. The other
terms of the partial conformal change are small, so the result follows. �

13.3. z; V 2 span
n
�2;0u;1; �

2;0
u;2

o
.

Proposition 13.6. If z; V 2 span
n
�2;0u;1; �

2;0
u;2

o
and jzj = jV j = 1, then

Rdi� (�;W; V; z) , Rdi� (�; V;W; z) ; and Rdi� (�; V; V; z)

are all 0:

Rdi� (z; V;W; z) = hV;W i
D
z; �2;0

u;W?

E�
s2curvS

4
�
�2;0
W? ; �

2;0
W

�
� s2

�2
jgrad j2

�
+O

Remark 13.7. For generic t; curv�;re;l
�
�; �2;0u

�
= O

�
�2
�
; so it is important to

have pretty tight estimates Rdi� (�;W; V; z), Rdi� (�; V;W; z) ; and Rdi� (�; V; V; z) :
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Proof. In all four cases the A�tensor term is 0 because at least three of the vectors
are horizontal.
In the �rst three cases all other terms of Rdi� are also 0:
The S4�curvature term is 0 because of the fact that three of the vectors are in

span
n
�2;0u;1; �

2;0
u;2

o
and one of the vectors is �: Hessian terms are all 0 because the

hessian of � with each of the other three vectors is 0 and � is perpendicular to each
of the other three vectors. The derivative terms of the partial conformal change are
all 0 because the directional derivative of f in each of the directions W;V; and z is
0 and because � is perpendicular to each of the other three vectors.
The error component

+O
�
e2f � 1; jgradf j

�
max

�
Rold (X;Y; Z; U) ; jXj jY j jZj jU j

	
of Proposition 10.9 is also 0:
This is because

the Lie brackets of all of z; V; and W with � have no �(�)� component,
the Lie brackets of (N�p;N�) with each of z; V; and W have no ��component, and

the Lie bracket of � and (N�p;N�) is 0:

For the last curvature, we note that only the components of z that are perpen-
dicular to V and W can make a contribution.
The �rst term comes from the S4�curvature via the s�perturbation and the

second term comes from

�hV;W ihess (z; z) = �hV;W ihess
�
�2;0
u;W? ; �

2;0
u;W?

�
= �hV;W i s

2

�2
jgrad j jgrad j

 
+O

= �hV;W i s
2

�2
jgrad j2 +O

There are other nonzero terms that come from the partial conformal change, but
they are much smaller. �

Since

curv
�
�2;0
W? ;W

�
=

1

jcos 2t�2;0j2
+
 2

�6

curv
�
�2;0
W? ; �

2;0
W

�
=

1

jcos 2t�2;0j4
+
 4

�6

we have in any case that

Proposition 13.8. If z; V 2 span
n
�2;0u;1; �

2;0
u;2

o
, then

Rdi�;big (�;W; V; z) = Rdi�;big (�; V;W; z) = Rdi�;big (�; V; V; z) = Rdi�;big (z; V;W; z) = 0

13.4. z = y2;0; V 2 span
n
�2;01 ; �2;02

o
or z 2 span

n
�2;01 ; �2;02

o
; V = y2;0.
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Proposition 13.9.

Rdi�;big
�
�; �2;0u ;W; y2;0

�
= Rdi�;big

�
�;W; �2;0u ; y2;0

�
= s2wh curv

S4
�
y2;0; �2;0u

� 

y2;0; �

� D
�2;0u;W ; �

2;0
u

E
+O

Rdi�;big
�
�; y2;0;W; �2;0u

�
= 0


Rdi�;big
�
W; y2;0

�
y2;0; �2;0u

�
= s2wh curv

S4
�
y2;0; �2;0u;W

�D
�2;0u;W ; �

2;0
u

E


Rdi�

�
�2;0u ; �

�
y2;0; �2;0u

�
=



Rdi�

�
W;�2;0u ; �2;0u

�
; y2;0

�
=


Rdi�

�
y2;0; �; �2;0u

�
; y2;0

�
= 0

Proof. Each of the curvatures involves at most one vector that is not horizontal, so
the A�tensor contribution from the s�perturbation is 0: For the �rst two curvatures,
the S4 term gives us


Rs (W; �) y2;0; �2;0u
�
=



Rs
�
W; y2;0

�
�; �2;0u

�
= s2



W;�2;0u

�
curvS

4 �
y2;0; �2;0u

� 

y2;0; �

�
= s2wh curv

S4
�
y2;0; �2;0u

� 

y2;0; �

� D
�2;0u;W ; �

2;0
u

E
:

For the third curvature RS
4 �
�; y2;0;W; �2;0u

�
= 0: So Rs

�
�; y2;0;W; �2;0u

�
= 0: Simi-

larly

Rs
�
W; y2;0

�
y2;0; �2;0u

�
=



R�;re;l

�
W; y2;0

�
y2;0; �2;0u

�
+ s2wh curv

S4
�
y2;0; �2;0u

� D
�2;0u;W ; �

2;0
u

E
; and


Rs
�
�2;0u ; �

�
y2;0; �2;0u

�
= s2curvS

4 �
y2;0; �2;0u

� 

y2;0; �

�
= O; and


Rs
�
W;�2;0u ; �2;0u

�
; y2;0

�
=



Rs
�
y2;0; �; �2;0u

�
; y2;0

�
= 0

Combining these computations with our partial conformal change and Hessian for-
mulas yields the result. �

13.5. z 2 span
n
�2;01 ; �2;02

o
; V 2 V1 � V2.

Proposition 13.10. For V 2 V1 � V2 with V2�component perpendicular to the

�part of W and normalized so that jV jh2 = O

�
1
�

�
��
Rs (W; �) �2;0u ; V

��� � s2vh jgrad j
 

�

r
curv�;l

�
�2;0u ;W�

�
+O

��
Rs �W;�2;0u � �; V ��� � s2whD� [ ]O

 
 

�

r
curv�;l

�
�2;0u ;W

�!
+O

Proof.

Rs (W; �) �2;0u = Rs
�
WV ; �

�
�2;0u +Rs

�
WH; �

�
�2;0u

=
�
1� s2

�
R�;re;l(WV ; �)�2;0u + s2

�
R�;re;l(WV ; �)�2;0u

�V
+ s2A�A�2;0u

WV

+
�
1� s2

�
R�;re;l(WH; �)�2;0u + s2

�
R�;re;l(WH; �)�2;0u

�V
+ s2RS

4

(WH; �)�2;0u

=
�
1� s2

� �
R�;re;l (W; �) �2;0u

�H
+
�
R�;re;l (W; �) �2;0u

�V
+s2A�A�2;0u

WV + s2RS
4

(WH; �)�2;0u

As before we have D
RS

4

(WH; �)�2;0u ; V
E
= 0:
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A�2;0u
WV = �II

�
�2;0u ;WH�+ 1

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
+ 4

 2

�3
jW�jh2

�
�2;0u

�?
= whgrad 

�
�2;0u ;

WH

jWHj

�
+

1

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
+ 4

 2

�3
jW�jh2

�
�2;0u

�?
where

�
�2;0u

�?
is the spherical combination of span

n
�2;0u;1; �

2;0
u;2

o
that�s perpendicular

to �2;0u :
To estimate the last term note

curv�;re;l
�
W;�2;0u

�
� 4

 2

�4
jW�j2h2 ;

2
 

�

r
curv�;re;l

�
W;�2;0u

�
�  

�
4
 

�2
jW�jh2

= 4
 2

�3
jW�jh2 :

We estimate the middle term as
1

jcos 2t�2;0j

�����r�;re;l(�;�)W
�H���� = 1

jcos 2t�2;0jO
�
1 +

t

l2
+
t2

l4

�
:

The t
l2 and

t2

l4 terms come from di¤erentiating the S
3�factor of Ŵ in

�
S3
�2�Sp (2) :

The t
l2 comes from the derivative in the Sp (2) direction. The factor of t; is present

because we are taking the horizontal part of the answer, and the entire horizontal
space is perpendicular to the orbits of the (U;D)�action when (sin 2t; sin 2�) =
(0; 0) : The t2

l4�factor comes from taking the derivative in the S3�direction. The
extra factor of t comes the fact that (�; �) is perpendicular to the orbits of the
(U;D)�action when (sin 2t; sin 2�) = (0; 0) :
On the other hand,

A�V
V = �vh

D� [ ]

 
kV +

�
r�;re;l� V

�H
:

and if V has the usual normalization, then�����r�;re;l� V
�H���� = O

�
1 +

t

l2

�
:

So ���s2 DA�A�2;0u
WV ; V V

E���
� 2s2vh jgrad j

 

�

r
curv�;re;l

�
W;�2;0u

�
+s2vh

D� [ ]

jcos 2t�2;0j2
O

�
1 +

t

l2
+
t2

l4

�
+s2whgrad O

�
1 +

t

l2

�
+

s2

jcos 2t�2;0jO
�
1 +

t

l2

�
O

�
1 +

t

l2
+
t2

l4

�
+2

s2

jcos 2t�2;0jO
�
1 +

t

l2

�
 

�

r
curv�;re;l

�
W;�2;0u

�
� s2vh jgrad j

 

�

r
curv�;re;l

�
W;�2;0u

�
+ { (s) +O
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It follows that��
Rs (W; �) �2;0u ; V
��� � s2vh jgrad j

 

�

r
curv�;re;l

�
�2;0u ;W�

�
+O

Similarly, since

A�W
V = �wh

D� [ ]

 
k


and

A�2;0u
V V =

1

jcos 2t�2;0j

�
r�;re;l(�;�) V

�H
� II

�
�2;0u ; V H

�
+ 4

 2

�3
jV�jh2

�
�2;0u

�?
=

1

jcos 2t�2;0jO
�
1 +

t

l2
+
t2

l4

�
+ vhgrad 

�
�2;0u ;

V H

jV Hj

�
+ 4

 2

�3
jV�jh2

�
�2;0u

�?
where

�
�2;0u

�?
is the spherical combination of span

n
�2;0u;1; �

2;0
u;2

o
that�s perpendicular

to �2;0u :
It follows that���s2 DA�2;0u

A�W
V ; V

E���
=

������s2whD� [ ]

0@O
�
1 + t

l2 +
t2

l4

�
jcos 2t�2;0j + 4

 2

�3
jV�jh2

D
�2;0u;W ;

�
�2;0u

�?E1A������
The �rst term is too small to matter. It is natural to control the second term in

terms of curv�;re;l
�
V h2;�; �2;0u

�
; however, since this a mixed quadratic term, it is

much nicer subsequently if we can control it in terms of curv�;re;l
�
W;�2;0u

�
: To do

this we need to use our normalization jV jh2 = O
�
1
�

�
:

Since

curv�;re;l
�
W;�2;0u

�
� 4 

2

�6

D
�2;0u;W ;

�
�2;0u

�?E
;

we have

 

�

r
curv�;re;l

�
W;�2;0u

�
�  

�
2

�
 

�3

D
�2;0u;W ;

�
�2;0u

�?E1=2�
= O

�
 2

�3
jV�jh2

�D
�2;0u;W ;

�
�2;0u

�?E1=2
It follows that��
Rs �W;�2;0u � �; V ��� � s2whD� [ ]O

 
 

�

r
curv�;re;l

�
W;�2;0u

�!
+O

�

Corollary 13.11. ��
Rdi�;big (W; �) �2;0u ; V
��� = 0��
Rdi�;big �W;�2;0u � �; V ��� = 0:

Proposition 13.12. For V 2 V1 � V2 with the V2 part of V perpendicular to the

�part of W ��Rdi�;big ��; V; V; �2;0u ��� = 0
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��Rdi�;big ��2;0u ;W; V; �2;0u
��� �rcurvdi�;big ��2;0u ; V

�r
curvdi�;big

�
�2;0u ;W

�
Proof. We will use

A�V = �vh
D� ( )

 
k
;V +

�
r�;re;l� V

�H
and

A�2;0u
V =

1

jcos 2t�2;0j

�
r�;re;l(�;�) V

�H
� II

�
�2;0u ; V H

�
+O

�
 2

�3
jV�j

��
�2;0u

�?
:

If V has the usual normalization, and we estimate as in the previous proof we get�
r�;re;l� V

�H
= O

�
1 +

t

l2

�
and

1

jcos 2t�2;0j

�����r�;re;l(�;�) V
�H���� = 1

jcos 2t�2;0jO
�
1 +

t

l2
+
t2

l4

�
:

So ���s2 DA�V
 ; A�2;0u
V


E���
� s2vhD� ( )

O
�
1 + t

l2 +
t2

l4

�
jcos 2t�2;0j + s2vhD� ( )O

�
 2

�3
jV�j

�D
�2;0u;V ;

�
�2;0u

�?E
+s2vh jgrad jO

�
1 +

t

l2

�
+ s2O

�
 2

�3
jV�j

�
O

�
1 +

t

l2 jcos 2t�2;0j

�
+

s2

jcos 2t�2;0jO
�
1 +

t

l2
+
t2

l4

�
O

�
1 +

t

l2

�
where the extra factor of 1

jcos 2t�2;0j in the
t

l2jcos 2t�2;0j part of the fourth term comes

from the fact that we would be taking the component ofr�;re;l� V in span
n
�2;01;u; �

2;0
2;u

o
:

It follows that���s2 DA�V
 ; A�2;0u
V


E��� � s2vhD� ( )O

�
 2

�3
jV�j

�D
�2;0u;V ;

�
�2;0u

�?E
+O:

Since V has the usual normalization,

curv�;re;l
�
�2;0u ; V

�
�  2

�4
jV�j2h2

So

s2vh
 

�

r
curv�;re;l

�
�2;0u ; V

�
�

�
s2vh

 

�

�
 

�2
jV�jh2

= s2vh
 2

�3
jV�j

�
���s2 DA�V
 ; A�2;0u

V


E���
So ��Rdi�;s ��; V; V; �2;0u ��� � � (s)

r
curv�;re;l

�
�2;0u ; V

�
+O

where
Rdi�;s = Rs �R�;re;l:
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The partial conformal change does not add anything nearly this large so we have
proven the �rst statement.
To �nd Rdi�;s

�
�2;0u ;W; V; �2;0u

�
we use

A�2;0u
W =

1

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
� II

�
�2;0u ;WH�+O� 2

�3
jW�jh2

��
�2;0u

�?
=

1

jcos 2t�2;0j

�
r�;re;l(�;�)W

�H
+
grad 

 



W;�2;0u

�
+O

�
 2

�3
jW�jh2

��
�2;0u

�?
and

A�2;0u
V =

1

jcos 2t�2;0j

�
r�;re;l(�;�) V

�H
� II

�
�2;0u ; V H

�
+O

�
 2

�3
jV�jh2

��
�2;0u

�?
=

1

jcos 2t�2;0j

�
r�;re;l(�;�) V

�H
+
grad 

 



V; �2;0u

�
+O

�
 2

�3
jV�jh2

��
�2;0u

�?
:

Letting 
1; 
2, and 
3 be the unit 
�quaternions corresponding toW; V; and �
2;0
u ;we

have���s2 DA�2;0u
W;A�2;0u

V
E��� = s2 (whvh) jgrad j2 h
1; 
3i h
2; 
3i

+s2 (wh + vh) grad 
O
�
1 + t

l2 +
t2

l4

�
jcos 2t�2;0j

+s2O

�
 2

�3
�
jW�jh2 + jV�jh2

�� O
�
1 +  

l2 +
 2

l4

�
jcos 2t�2;0j

+s2O

�
 2

�3
jW�j

 2

�3
jV�j

�
We again give V the usual normalization. So

curv�;re;l
�
�2;0u ; V

�
�  2

�4
jV�j2

 

�

r
curv�;re;l

�
�2;0u ; V

�
�  

�

�
 

�2
jV�j

�
=

 2

�3
jV�j

So the third term is bounded by

s2O

�
 2

�3
(jW�j+ jV�j)

� O
�
1 +  

l2 +
 2

l4

�
jcos 2t�2;0j � O

�
s2
 

�

� r
curv�;re;l

�
�2;0u ; V

�
+

r
curv�;re;l

�
�2;0u ;W

�!

and the last term is bounded by

s2O

�
 2

�3
jW�j

 2

�3
jV�j

�
� s2

r
curv�;re;l

�
�2;0u ; V

�r
curv�;re;l

�
�2;0u ;W

�
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Combining inequalities we have���s2 DA�2;0u
W;A�2;0u

V
E��� � s2 (whvh) jgrad j2 h
1; 
3i h
2; 
3i

+O
�
s2
� r

curv�;re;l
�
�2;0u ; V

�
+

r
curv�;re;l

�
�2;0u ;W

�!

+s2
r
curv�;re;l

�
�2;0u ; V

�r
curv�;re;l

�
�2;0u ;W

�
+O(13.13)

To dominate the �rst term, s2 (whvh) jgrad j2 h
1; 
3i h
2; 
3i ; we use the Propo-
sition 13.4 to get

Rdi�;big
�
�2;0u ;W;W; �2;0u

�
� e2fw2hs

2 jgrad j2
�
1� h
1; 
3i

2
�

= e2fw2hs
2 jgrad j2

�
h
2; 
3i

2
�

and

Rdi�;big
�
�2;0u ; V; V; �2;0u

�
� e2fv2hs

2 jgrad j2
�
h
1; 
3i

2
�

Combining the previous two displays gives us

e2fs2 (whvh) jgrad j2 h
1; 
3i h
2; 
3i �
r
curvdi�;big

�
�2;0u;3; V

�r
curvdi�;big

�
�2;0u;3;W

�
Plugging this into 13.13 gives us

e2f
���s2 DA�2;0u

W;A�2;0u;3
V
E���

�
r
curvdi�;big

�
�2;0u;3; V

�r
curvdi�;big

�
�2;0u;3;W

�
+

+O
�
s2
� r

curv
�
�2;0u ; V

�
+

r
curv

�
�2;0u ; w

�!

+s2
r
curv

�
�2;0u ; V

�r
curv

�
�2;0u ;W

�
+O

Arguing as before this gives us

��Rdi�;big ��2;0u ;W; V; �2;0u
��� �rcurvdi�;big ��2;0u;3; V �rcurvdi�;big ��2;0u;3;W�

�

14. Appendix

This appendix contains the calculations we omitted in section 7.
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��(cos 2t) �2;0��2
�;l

= cos2 2t+
sin2 2t

�2
+ 2l�2

�
�1
2
sin 2t cos 2t+ sin 2t

�
� cos2 � sin2 t+ sin2 � cos2 t

��2
+
2

l2
sin2 2�

4

�
cos2 2t+ sin2 2t

�2
= cos2 2t+

sin2 2t

�2
+ 2l�2

�
�1
2
sin 2t cos 2t+ sin 2t

�
sin2 � � sin2 t

��2
+
sin2 2�

2l2

= cos2 2t+
sin2 2t

�2
+ 2l�2 sin2 2t

�
�1
2
cos 2t+

�
sin2 � � sin2 t

��2
+
1

l2
sin2 2�

2

= cos2 2t+
sin2 2t

�2
+ 2l�2 sin2 2t

�
�1
2
+ sin2 �

�2
+
1

l2
sin2 2�

2

= cos2 2t+
sin2 2t

�2
+ 2l�2 sin2 2t

�
�1
2
cos 2�

�2
+
1

l2
sin2 2�

2

= cos2 2t+
sin2 2t

�2
+

1

2l2
�
sin2 2t

�
cos2 2�

�
+ sin2 2�

�
= cos2 2t+

sin2 2t

�2
+

1

2l2
�
1� cos2 2t cos2 2�

�
So we can now prove

Proposition 14.1.

@

@t
 �;l =

�
1 + 1

2l2 sin
2 2�

�
cos 2t

j(cos 2t) �2;0j3�;l

=

��x2;0��2
�;l
cos 2t

j(cos 2t) �2;0j3�;l
@

@�
 �;l = � 1

4l2
sin 2t cos2 2t sin 4�

j(cos 2t) �2;0j3�;l

Proof. We �rst rearrange the terms in
��(cos 2t) �2;0��

�;l
as follows

��(cos 2t) �2;0��2
�;l

= cos2 2t+
sin2 2t

�2
+

1

2l2
�
1� cos2 2t cos2 2�

�
= 1� sin2 2t+ sin

2 2t

�2
+

1

2l2
� 1

2l2
cos2 2� +

1

2l2
sin2 2t cos2 2�

= 1 +
1

2l2
sin2 2� +

sin2 2t

�2
� sin2 2t+ 1

2l2
sin2 2t cos2 2�

= 1 +
1

2l2
sin2 2� +

sin2 2t

�2
� sin2 2t+ 1

2l2
sin2 2t� 1

2l2
sin2 2t sin2 2�

= 1 +
sin2 2�

2l2
+

�
1

�2
+

1

2l2
�
�
1 +

sin2 2�

2l2

��
sin2 2t
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Setting
1

�2l
=
1

�2
+

1

2l2
;

and using the fact that ��x2;0��2
�;l
= 1 +

sin2 2�

2l2

we get ��(cos 2t) �2;0��2
�;l

=
��x2;0��2

�;l
+

�
1

�2l
�
��x2;0��2

�;l

�
sin2 2t

=
��x2;0��2

�;l
cos2 2t+

1

�2l
sin2 2t

This gives us

@

@t

��(cos 2t) �2;0��2
�;l
=

�
1

�2l
�
��x2;0��2

�;l

�
4 sin 2t cos 2t

and using

@

@�

��x2;0��2
�;l

=
@

@�

�
1 +

sin2 2�

2l2

�
=

2 sin 2� cos 2�

l2

=
sin 4�

l2

we get

@

@�

��(cos 2t) �2;0��2
�;l

=
@

@�

���x2;0��2
�;l
+

�
1

�2l
�
��x2;0��2

�;l

�
sin2 2t

�
=

sin 4�

l2
� sin 4�

l2
sin2 2t

=
sin 4� cos2 2t

l2
:

Thus
@

@t
 �;l =

@

@t

1

2

sin 2t

j(cos 2t) �2;0j�;l

=
1

2

2 cos 2t
���(cos 2t) �2;0��2

�;l

�
� 1

2 sin 2t
�
@
@t

��(cos 2t) �2;0��2
�;l

�
j(cos 2t) �2;0j3�;l

=
1

2

2 cos 2t
���x2;0��2

�;l
+
�
1
�2l
�
��x2;0��2

�;l

�
sin2 2t

�
j(cos 2t) �2;0j3�;l

�1
2

1
2 sin 2t

��
1
�2l
�
��x2;0��2

�;l

�
4 sin 2t cos 2t

�
j(cos 2t) �2;0j3�;l

=

��x2;0��2
�;l
cos 2t

j(cos 2t) �2;0j3�;l
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Similarly

@

@�
 �;l =

@

@�

1

2

sin 2t

j(cos 2t) �2;0j�;l

= �1
2

sin 2t

�
@
@�

h��(cos 2t) �2;0��2
�;l

i1=2�
j(cos 2t) �2;0j2�;l

= �1
4

sin 2t
h��(cos 2t) �2;0��2

�;l

i� 1
2
�
@
@�

h��(cos 2t) �2;0��2
�;l

i�
j(cos 2t) �2;0j2�;l

= �1
4

sin 2t
�
@
@�

��(cos 2t) �2;0��2
�;l

�
j(cos 2t) �2;0j3�;l

= �1
4

sin 2t
�
sin 4� cos2 2t

l2

�
j(cos 2t) �2;0j3�;l

= � 1

4l2
sin 2t cos2 2t sin 4�

j(cos 2t) �2;0j3�;l
:

�

Proposition 14.2.

@2

@t2
 �;l = �

��x2;0��2
�;l

sin 2t

j(cos 2t) �2;0j5�;l

�
�4
��x2;0��2

�;l
cos2 2t+

2

�2l
+ 4

�
1

�2l

�
cos2 2t

�
@

@�

@

@t
 �;l =

cos 2t sin 4�

l2 j(cos 2t) �2;0j5�;l

�
�1
2

��x2;0��2
�;l
cos2 2t+

1

�2l
sin2 2t

�

@2

@�2
 �;l = �

sin 2t cos2 2t

l2

cos 4�
���x2;0��2

�;l
cos2 2t+ 1

�2l
sin2 2t

�
j(cos 2t) �2;0j5�;l

+
3

2

sin 2t cos4 2t

4l4
sin2 4�

j(cos 2t) �2;0j5�;l

Proof.

@2

@t2
 �;l =

��x2;0��2
�;l

@

@t

cos 2t

j(cos 2t) �2;0j3�;l

=
��x2;0��2

�;l

�2 sin 2t
���(cos 2t) �2;0��3

�;l

�
� cos 2t

�
@
@t

���(cos 2t) �2;0��2
�;l

�3=2�
j(cos 2t) �2;0j6�;l

=
��x2;0��2

�;l

�2 sin 2t
���(cos 2t) �2;0��3

�;l
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