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Abstract. We present an upper boundO(n2) for the mixing time of a simple random walk
on upper triangular matrices. We show that this bound is sharp up to a constant, and find
tight bounds on the eigenvalue gap. We conclude by applying our results to indicate that the
asymmetric exclusion process on a circle indeed mixes more rapidly than the corresponding
symmetric process.

Introduction

Consider the following discrete time random process. LetG = U(n, Fq) be a group
of upper triangular(n× n)-matrices over the finite field withq elements with ones
on diagonal. At each step we choose a uniform rowi ∈ {2, . . . , n}, multiply by a
uniform elementa ∈ Fq and add to the previous row. The question isafter how
many steps do we get (nearly)-uniform elements inG? In other words, we would
like to bound the mixing timemix of the process (see definitions below).

Variations and advanced generalizations of the random walk defined above have
been studied in a number of papers (see [DSC2, P1, P2, S1, S2]). R. Stong showed
in [S1] that the second eigenvalueλ2 satisfies 1−c1/n < λ2 < 1−c2/nasn → ∞
wherec1(q), c2(q) are constants depending only onq. This gives an upper bound
mix = O(n3) for the mixing time. Note that the lower bound on the eigenvalue
follows easily since our generators change an element in the upper right corner with
probability at most 1/(n − 1). Now letq � n2 in a precise sense we will specify
below. Until now the best known upper bound was the recent boundmix = O(n2.5)

due to the second author. We will refine the arguments in [P2] to show that

mix = O(n2)
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As a byproduct from the proof we obtain the tight bound on the eigenvalue

λ2 = 1 − 1 + o(1)

n

The result is remarkable for several reasons. First, it was expected that the
walk is slower than a similar random walk where random pairs(i, j) are chosen,
1 ≤ i < j ≤ n, and we add to rowi a rowj times uniforma ∈ Fq . For this random
walk a sharp boundmix = O(n2 logn) is known (see [AP, P1, P2]).

Second, it is easy to see that the obvious lower bound onmix is the diameter
1 = (

n
2

)
. Thus our walk is a rare example of the walk which mixes inO(1), but

does not have constant eigenvalues gap, in contrast with expanders.
Our results are too weak to establish or reject the existence of the cutoff, also

known as threshold (see [D1, D2]). It was long believed that whenn grows there
always exists a cutoff (see [D2, S1, P2]). Our results, however, seem to weaken this
belief.

The idea of the proof is based on an explicit construction of the stopping rule
with a uniform stationary distribution. The distribution of the stopping time of such
a rule gives rise to a bound on the rate of convergence for the random walk. Then
we employ a probabilistic argument to estimate the mean stopping time. Finally,
we combine our results with known bounds on mixing time to prove the claim.

We finish by observing a remarkable similarity between our random walk and
a one dimensional asymmetric exclusion process. Considern particles on a cir-
cle with 2n states arranged clockwise. At each time randomly choose a statei ∈
{1,2, . . . ,2n}. If statei is occupied and statei + 1 is empty, move the particle
from statei to statei + 1. It is not hard to see that this defines a discrete Markov
chain with uniform stationary distribution. Thus at infinity the probability to move
the particle is about 1/4. We show that already afterO(n2) steps this probability
becomes bounded away from 0.

1. Definitions and main results

Let k be any (finite or infinite) compact commutative ring, and letη be an invariant
measure onk. For example,k can be the ring ofp-adic integersZp, or a finite field
Fq . Denote byβ = β(k) the measure of the noninvertible elements

β(k) = η({a ∈ k | 6 ∃ b, a b = 1})
For example,β(Fq) = 1/q, andβ(Zp) = 1/p.

LetG = U(n, k) be the group of upper triangular(n× n)-matrices overk with
ones on diagonal. Denote byµ the invariant measure onG, also known as Haar
measure. It is known thatµ is given as a product measure

µ = η × η × · · · × η

where the product is taken over all
(
n
2

)
entries above diagonal (see e.g. [H]).

Let S ⊂ G be a set of matrices with ones on diagonal and zeroes elsewhere but
some element right above diagonal. Clearly,S is a generating set ofG. Now letQk
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be a probability distribution of the productM1 · . . . ·Mk whereMi are independent
and uniform inS. We think ofQk as a probability distribution of thek-th step of a
random walkW = W(G, S) onG generated byS. By ergodicity,Qk(X) → µ(X)

ask → ∞ for all X ⊂ G.
Define theseparation distancefor a random walkW

s(k) = sup
A⊂G,µ(A)>0

(
1 − Qk(A)

µ(A)

)

One can think ofs(k) as of a one-sidedl∞ distance (see [AD]). It is easy to see
that 1 ≥ s(k) ≥ 0 for all k > 0. It is known also that the separation distance is
nonincreasing:s(k+ 1) ≤ s(k), and submultiplicative:s(k+m) ≤ s(k) · s(m) (see
e.g. [AD, AF, D1]).

It often convenient to consider the following definition ofmixing time:

mix = min
k

{
s(k) <

1

2

}

By definition, afterk = mix number of steps we haveQk(A) > µ(A)/2 for any
A ∈ G. For other similar definitions of mixing times see [AF, LW].

The main result of the paper is the following theorem.

Theorem 1.1. LetG = U(n, k), such thatβ(k) = 0. Then for anyc > 0 and
integern ≥ 2 the separation distances(m) for a random walkW(G, S) satisfies

s(m) < e−c/2,

wherem > 4(2 ln 2+1) n2+c n. Moreover, the result holds whenβ(k) < C/m2+ε
for anyε > 0 and some universal constantC = C(ε).

The theorem implies that for largen the mixing time is of the order at most
4(2 ln 2+ 1) n2 +O(n). In particular, whenm = 10n2, n ≥ 4, we haveQm(A) ≥
1
2µ(A) for all A ⊂ G.

Also, Theorem 1.1 shows that the second largest eigenvalueλ2 <

1 − 1/2n + O(1/n2). Indeed, fixn and letc → ∞. We haves(m) < e−c/2 =
e−(m−4(2 ln 2+1) n2)/2n. Since s(m) ∼ Const · λm2 we obtainλ ≤ e−1/2n <

1 − 1/2n+ 1/8n2.
Analogously, from the proof it follows thatλ < 1 − 1−ε

n
+ O(1/n2) for all

ε > 0. Together with an easy lower boundλ2 > 1 − 1/n+O(1/n2) this gives us
λ2 = 1 − 1/n + o(1/n). This result is much sharper than what can be extracted
from [S2] for the present walk.

The proof of Theorem 1.1 is based on the following key lemma. Consider the
following backgammon game(for just one player). Define aboardto be an interval
[1, n]. Placen pieces on the first space. At each step pick a uniform integeri from
[1, n− 1]. If the spacei is occupiedand spacei+ 1 is unoccupied, move the piece
from i to i + 1. If i = 1 we can move either of the pieces gathered on space 1. The
game is over when all spaces are occupied, i.e. no moves are allowed. Denote byτ

the stopping time of the game. Think ofτ as of a random variable.
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Lemma 1.2. In conditions of Theorem1, the separation distances(m) satisfies

s(m) ≤ Pr(τ > m), f or all m > 0

Suppose now thatβ(k) > 0. For example, letk = Fq be a finite field withq
elements. While Theorem 1.1 is not applicable in this case, the analog of the result
holds forq large enough.

Theorem 1.3. LetG = U(n, Fq), such thatn ≥ 4, q > 2n2. Then the separation
distances(m) for a random walkW(G, S) satisfies:

s(m) ≤
(

3

4

)c
wherem > c · 20n2, c > 1.

Note here thatβ(Fq) = 1/q > 0, which violates the conditionβ(k) = 0 in Theo-
rem 1.1. This seemingly small change becomes critical in the proof of the theorem.
It is also the main reason why the bound in Theorem 1.1 is lower than that in
Theorem 1.3.

2. Strong uniform times

LetG be a finite or compact group, and letµ be an invariant measure. LetW be
a random walk onG with uniform stationary distribution. Arandomized stopping
rule is an algorithm which observes the walk and stops it depending on the state
passed and, perhaps, additional randomness. Denote by% andτ thestopping state
andstopping timeof the randomized stopping rule.

A a stopping timeτ is calledstrong uniformif for all A ⊂ G andk > 0 we
have

Pr(% ∈ A |τ = k) = µ(A)

In other words, we need% to be uniform inG and independent ofτ . We will need
the following classical result of Aldous and Diaconis (see [AD, D1]).

Theorem 2.1. Let τ be a strong uniform time for a random walkW. Then

s(k) ≤ Pr(τ > k), k > 0

Now letG = U(n, k) and letW be a random walk defined above. We will
present an explicit construction of a stopping rule which defines a strong uniform
time τ .

For convenience, number rows of the upper triangular matrices upside-down.
Namely, let the bottom row be 1, the next row be 2,. . . , the top row ben. We can
define the random walkW2 as follows: Choose a random integeri between 1 and
n − 1, and add to the (i + 1)-th row thei-th row multiplied by a uniform number
a ∈ k. Recall the backgammon game on a board [1, n] defined in section 1. Let
us play, i.e. move pieces on the board, according to the same choices of integeri.
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Note that while playing, we disregard the numbera we used above. Now, define a
stopping rule to stop the walk whenever the backgammon game is over. As before,
let τ be the stopping time.

Lemma 2.2. Letβ(k) = 0. Then stopping timeτ defined above is strong uniform.

Observe that Lemma 2.2 together with Theorem 2.1 implies Lemma 1.2. The
proof of lemma is done by an elaborate induction.

Proof of Lemma 2.2.We claim that at any timet , given pieces are positioned in
spaces 1< i1 < i2 < · · ·, then the corresponding rowsi1, i2, . . . of the obtained
upper triangular matrix are uniform and independent. Call rowsi1, i2, . . ., marked
rows. Use induction. The claim is trivial whent = 0. Suppose true whent = m.
Say at the next step we choosei. We can either move a game piece or not. If not,
and we do not add anything to any of the marked rows (i + 1 6= il for any l),
there is nothing to check. Suppose we add a rowi to a marked rowi + 1. The row
i + 1 will remain uniform. Also, if both rows are marked, which means uniform
and independent, then afterwards they are still uniform and independent. Indeed,
call these rowsX1, X2 and think of them asn-vectors overk. Clearly, “(X1, X2)

are uniform and independent” isequivalentto “(X1, X2 + a X1) are uniform and
independent” forany a ∈ k.

Now, suppose we add marked rowi to an unmarked rowi + 1. Row i was
(0, . . . ,0,0,1, xn−i+2, . . . , xn), with thexj uniform and independt of other marked
rows. Rowi+1 was(0, . . . ,0,1, yn−i+1, yni+2, . . . , yn), with theyj arbitrary. Af-
ter the addition, rowi+1 is now(0, . . . ,0,1, yn−i+1+a, yni+2+axn−i+2, . . . , yn+
axn). Regardless of the initialyj of row i+1, the fact thata andxj are uniform and
independent of the other marked rows, implies that the new rowi+1 is uniform and
independent of the other marked rows. Indeed, this is clear for any invertiblea ∈ k,
and the result follows fromβ(k) = 0. Now note that rowi is not independent on
row i + 1. Therefore by removing rowi from consideration, we confirm the step
of induction and prove the claim.

Now consider what happens when the game is over. By definition, this is the
stopping timeτ , or, equivalently, the first time when all rows are marked. By
the claim above, when the game is over we get all the rows uniform and inde-
pendent on each other. Recall that the measure onU(n, k) is a product measure.
We havePr

(
% = (X1, . . . , Xn−1) ∈ (A1, . . . , An) | τ = k

) = µ1(A1) × · · · ×
µn−1(An−1) = µ(A) whereXi , i = 1, . . . , n− 1, are rows of the resulting matrix
% ∈ G andµi are the corresponding measures. This finishes the proof. ut

3. Proof of Theorem 1.1

The proof is based on Lemma 1.2 and the analysis of the backgammon game de-
scribed in section 1. We shall modify it first, solve it in this case, and then come
back to the original problem.

Consider the following random process. Placek pieces on an integer line, in
positions 1,2, . . . , k. By (1) denote the rightmost piece, by(2) denote the next one,
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and so on. At each step, choose a random piece and move it to the right, if the next
place is not occupied. The question is how far will(k) move aftert steps?

Lemma 3.1. Letc > 0. Then aftert steps the piece(k) will move at leastt/(2ck)
steps with probability

> 1 − e(−1/4+(1/2+ln 2)/c)t/k

Let us start with some easy special cases. Whenk = 1 we have only one piece
which moves freely to the right. Whenk = 2, the piece(1) clearly moves freely
when chosen, while piece(2) is lagging behind. Since the distance between(1) and
(2) behaves like a reflecting random walk on a line (see e.g. [F]), aftert steps the
piece(2) is at expectedt/2 − O(

√
t) distance from 0. Of course, the complexity

of the problem grows withk.

Proof of Lemma 3.1.Consider what happens aftert = 2c k2 steps. Divide timet
into 2k intervals, each of lengthc k. Work backwards in time. Lettk−1 be the last
time (k) is right behind(k − 1). Analogously, lettk−2 be the last time beforetk−1
that (k − 1) is right behind(k − 2). In general, letti be the last time beforeti+1
that(i + 1) is right behind(i), 1 ≤ i ≤ k − 2. Call theseti breaking points.

For every intervalIj , 0 ≤ j ≤ 2k, defineψ(j) to bej − max{i | ti < ckj}. In
other words,ψ(i) is equal toj minus the number of breaking points that occur before
the end of intervalIj . Clearly,ψ(0) = 0,ψ(2k) = k+1 andψ(j+1) ≤ ψ(j)+1.
Also, if ψ(j+1) = ψ(j)+1 then no breaking points occurred duringIj . Call such
intervalsempty. The are at leastk + 1 empty intervals. Now consider a sequence
j1, j2, . . . , jk+1, such thatψ(jm) = m > ψ(j ′) for all m = 1, . . . , k + 1 and
j ′ < jm. Observe that intervalsIj1, Ij2, . . . , Ijk+1 are all different and empty. For
a moment, fix these intervals.

Now, while running the random process follow(1) until timet1, then follow(2)
until t2, . . . , andfinally follow (k) until t . Notice that in the intervalIjm we follow
piece(jm −m+ 1) becausetjm−m must occur before the end ofIjm , while tjm−m
must not. Observe that in thek + 1 intervals we fixed, the piece we follow moves
freely, i.e. always moves to the right when chosen.

Denote byr the position of(k) aftert steps. Bylm denote the displacement of
the piece we follow during the intervalIjm , 1 ≤ m ≤ k+1. Letl = l1 +· · ·+ lk+1.
Clearly,r ≥ l andE(l) = ∑

m E(lm) = (k + 1)(c k)/k > c k. Sincel is the sum
of (k + 1)(c k) independent Bernoulli trials, each with probability of success 1/k,
the Chernoff bound gives us:

Pr
(
l < (1 − δ)E(l)

)
< e−δ

2c k/2

for anyδ > 0. And therefore for any fixed intervalsi1, . . . , ik+1 we obtain

Pr
(
r > c (1 − δ)k | i1, . . . , ik+1

) ≥ Pr(l > (1 − δ)E(l)) > 1 − e−δ
2c k/2

On the other hand, the total number of ways to choosek + 1 intervals out of 2k is

given by

(
2k
k + 1

)
< 22k. Summing over all the possibilities of choosing intervals,

we have
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Pr(r > c (1 − δ)k) > 1 − 22ke−δ
2c k/2

Now let 1− δ = 1/c. We obtain

Pr(r > k) > 1 − e2k ln 2−(1−1/c)2c k/2 > 1 − e(2 ln 2+1−c/2) k

Recall now thatt = 2c k2. We have

Pr(r > t/2c k) > 1 − ef (c) t/k,

wheref (c) = (2 ln 2+1− c/2)/2c = −1/4+ (1/2+ ln 2)/c = −1/4+O(1/c).
This finishes the proof. ut
Proof of Theorem 1.1.In the original backgammon game we have onlyn pieces
which are placed on the board one by one. Suppose instead they are all positioned
to the left of 1. Also, instead of choosing a uniform spacei, let us choose a uniform
piece, and move it to the right if possible. This can only slow the game. Indeed, the
piece that are still to the left of 1 correspond to the empty spaces in [1, . . . , n] and
thus the pieces in this interval move with right probabilities. On the other hand, now
it is not true that whenever space 1 is chosen, and 2 is unoccupied the piece always
moves there. The reason is that the pieces to the left of 1 may lag in getting there.

Now, in the original backgammon game whenever piece(i) gets to the space
n− i + 1, it stays there. In this new version we can as well forget about them and
disregard their movements to the right ofn − i + 1. All we need is to have piece
(n) move to space 1, which in the notations above is equivalent to havingr > n.
Then we are done. By Lemma 2.1, if k = n andt = 2c n2, we obtain

Pr(τ > t) ≤ 1 − Pr(r > n) < e(2 ln 2+1−c/2) n

By Lemma 1.2 we concludes(t) ≤ Pr(τ > t) < e(2 ln 2+1−c/2) n. Take c =
4 ln 2+ 2 + c′/n. Thent = 2c n2 = (8 ln 2+ 4)n2 + c′n, ands(t) < e−c′/2. This
finishes the proof of the first part of the theorem. We give the proof of the second
part in the next section. ut

4. Proof of Theorem 1.3

We shall deduce Theorem 1.3 from the same stopping timeτ defined in section 2.
Observe thatτ can no longer be shown to be strong uniform. The proof breaks when
we move a piece and claim that ifi-th row is uniform, then the next row is uniform.
This is no longer true since if we multiply by 0, thenwe are not adding while claim
that we obtain uniformity. Of course, this event has probabilityβ(Fq) = 1/q > 0.

Still, consider the distribution of the stopping state% we obtain. Since at
each addition as above we can “mess up” at most(1/q) portion of the row, af-
ter

(
n
2

)
< n2/2 additions we obtain a distributionQτ which will be equal to 1/|G|

on at leastf = (1 − 1/q)(
n
2) fraction of elements. Now, ifq > 2n2, we have

f > (1 − 1/2n2)n
2/2 > 3/4 for all n ≥ 2. In other words, we just showed that

there exist a subsetA ⊂ G such that|A| > 3
4|G| andQτ(a) = 1/|G| for all a ∈ A.
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Consider a distributionQ2τ . Since every element can be decomposed as a product
of two elements inA by at least|G|/2 ways, we have

Q2τ (g) ≥ 1

2|G|
for all g ∈ G. We claim thats(20n2) ≤ 3

4. Indeed, recall that forn ≥ 4 we have
Pr(τ < 10n2) > 1/2. This follows from the remark after Theorem 1.1 and proof
in section 4.

Therefore aftert = 20n2 the probability to get each element

Qt(g) ≥
t/2∑
k=1

Pr(τ = k)
1

2|G| = Pr(τ < t/2)

2|G| ≥ 1

4|G|

This proves the claim. Now by submultiplicativity we get the result. ut
Similar computations give a proof of the second part of Theorem 1.1. Nonin-

vertible elements ink will play a role the zero element inFq . We omit the obvious
details. ut

5. Applications: Asymmetric exclusion process on a circle

The asymmetric exclusion process on a circle is defined as follows. For everyn, k,
1 ≤ k < n define discrete Markov chainM = M(n, k) as follows. Let the state
space be a set of configurations ofk particles on a circle withn spaces. Let the step
of a chain to consist of choosing a uniform particle and moving it to the right (clock-
wise) if the next space is empty. This is a discrete time version of the more general
continuous time exclusion process introduced by Spitzer in [Sp] (see also [Li]).

We claim thatM(n, k) is an ergodic Markov chain. Indeed, observe that the
number of ways to get into any configuration of particles is equal to the number of
consecutive intervals of particles, and therefore is equal to the number of way to
leave the configuration. Since the set of configurations is strongly connected under
the moves, and each of the moves has probability 1/k, this immediately implies
ergodicity.

While from a different prospective, the processM is well studied in statistical
physics literature (see [De] for the references). It has long been known that in the
steady statethe velocity of each particle becomes

v = lim
t→∞

E(Yt )

t
= (n− k)

k(n− 1)

whereYt is the number of moves of a fixed particle aftert steps. Analogously, for
thediffusion ∆ it was recently obtained:

∆ = lim
t→∞

E(Y 2
t )− (E(Yt ))

2

t
= 1

2k2(n− 1)

(
2(n− 1)
2k − 1

)
(
n− 1
k

)
(see [De, DEHP]).
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The main problem is to find a mixing time ofM(n, k). The most interesting
case is when the ratio of particles is constant:k/n → ρ, 0 < ρ ≤ 1/2. We will
concentrate on that case.

We propose the following conjecture.

Conjecture 5.1. There exist a universal constantC such that for allρ > 0 we
have

mix < C n2

wheremix is the mixing time of the Markov chainM(n, bρnc).
While we are unable to prove this conjecture let us give partial results in its

support. First, one can consider “reversibilization” ofM. This is often done by
considering a Markov chain with transition matrix1

2(P +PT )whereP is the orig-
inal transition matrix. In the case ofM this leads to the well understood exclusion
process on a circlẽM(n, k), which is defined as follows. Let the state space be as
before, but now we move either to right or to the left with equal probability. It is
known then (see [DSC1, DSC3]) that this random walk mixes afterO(n3 logn)
steps (cf. [LeY, LuY]). Without going into technical details, let us note that one
can obtain this bound in the asymmetric case as well:

Proposition 5.2. (see [DSC3, p. 739]). There exist a universal constantC such
that for all ρ > 0 we have

mix < C n3 logn

wheremix is the mixing time of the Markov chainM(n, bρnc).
Second, one can introduce a partial measure of how well the particles are mixed.

Call asuccessan event of actually moving a particle when it is chosen. At a steady
state, the probability of success is aboutρ. A variation of the argument given in the
proof of Lemma 3.1 gives the probability of successρ(1 − ε) after 5n2 + O(n)

steps. It is easy to see that result is sharp up to a constant. Indeed, if we start with
configuration when all particles are in one cluster, it would takeC · n2 time just to
move either of the lastk/2 particles. Formally, we obtain the following result.

Proposition 5.3. Letp(t) be the probability of success at timet . Then there exist
is a universal constantC1 > 0 such that for anyn and any starting configuration

p(t) > ρ(1 − ε)

wheret > 10ρ n2 +C1n log(1/ε). In the other direction, for anyn, λ > 0 we have

p(t) <
C2

λ2
,

whereC2 is a universal constant, andt < 1/2ρn2 − λn3/2.
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Note that Conjecture 5.1 implies Proposition 5.3. Let us also remark that it
takes aboutO(n3) steps for a symmetric exclusion process on a circle to have a
constant probability of success.

Finally, there is additional evidence in favor of the conjecture in the statistical
physics literature. In [GS] authors use Bethe ansatz to study eigenvalues of the
transition matrix of the process. They observe thatRe(λ2) < 1−C n−3/2 for some
universal constantC > 0. While the proof is not rigorous from the mathematical
point of view, the results in the field are usually correct. Formally, the authors com-
pute a number of eigenvalues, largest of which is as above, without proving the
completeness, which is that these are all the eigenvalues ([Spo]). If completeness is
assumed, one can make an argument that there exists a universal constantC such
that for allρ > 0 we have

mix < C n2.5,

wheremix is the mixing time of the Markov chainM(n, bρnc).
One should note that authors in [GS] claim that the third largest eigenvalue

satisfiesRe(λ3) = 1 − C′/n. It is not hard to see that if this claim is true, and
assuming the multiplicity of theλ2 is 2O(

√
n), this would prove the conjecture. We

hope to return to this problem in the future.
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