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Abstract. We present an upper bourt(n?) for the mixing time of a simple random walk

on upper triangular matrices. We show that this bound is sharp up to a constant, and find
tight bounds on the eigenvalue gap. We conclude by applying our results to indicate that the
asymmetric exclusion process on a circle indeed mixes more rapidly than the corresponding
symmetric process.

Introduction

Consider the following discrete time random process( et U (n, ) be a group
of upper triangulatn x n)-matrices over the finite field witlh elements with ones
on diagonal. At each step we choose a uniform row{2, ..., n}, multiply by a
uniform elementz € F, and add to the previous row. The questiomfter how
many steps do we get (nearly)-uniform elements ihIn other words, we would
like to bound the mixing timenix of the process (see definitions below).

Variations and advanced generalizations of the random walk defined above have
been studied in a number of papers (see [DSC2, P1, P2, S1, S2]). R. Stong showed
in [S1] that the second eigenvalugsatisfies - c1/n < A2 < 1—cp/nasn — oo
whereci1(q), c2(g) are constants depending only @nThis gives an upper bound
mix = O (n®) for the mixing time. Note that the lower bound on the eigenvalue
follows easily since our generators change an element in the upper right corner with
probability at most 1(n — 1). Now letg > n? in a precise sense we will specify
below. Until now the best known upper bound was the recent bmixd= O (n%®)
due to the second author. We will refine the arguments in [P2] to show that

mix = 0 (n?)
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As a byproduct from the proof we obtain the tight bound on the eigenvalue

_1+0)
n

=1

The result is remarkable for several reasons. First, it was expected that the
walk is slower than a similar random walk where random péirg) are chosen,
1<i < j <n,andwe add to rowa rowj times uniformu € [F,. For this random
walk a sharp boundhix = 0 (n?logn) is known (see [AP, P1, P2]).

Second, it is easy to see that the obvious lower bounchienis the diameter
A = (%). Thus our walk is a rare example of the walk which mixe®im), but
does not have constant eigenvalues gap, in contrast with expanders.

Our results are too weak to establish or reject the existence of the cutoff, also
known as threshold (see [D1, D2]). It was long believed that whgrows there
always exists a cutoff (see [D2, S1, P2]). Our results, however, seem to weaken this
belief.

The idea of the proof is based on an explicit construction of the stopping rule
with a uniform stationary distribution. The distribution of the stopping time of such
a rule gives rise to a bound on the rate of convergence for the random walk. Then
we employ a probabilistic argument to estimate the mean stopping time. Finally,
we combine our results with known bounds on mixing time to prove the claim.

We finish by observing a remarkable similarity between our random walk and
a one dimensional asymmetric exclusion process. Consigerticles on a cir-
cle with 2n states arranged clockwise. At each time randomly choose aistate
{1,2,...,2n}. If statei is occupied and state+ 1 is empty, move the particle
from statei to statei 4 1. It is not hard to see that this defines a discrete Markov
chain with uniform stationary distribution. Thus at infinity the probability to move
the particle is about /&. We show that already aft& (n2) steps this probability
becomes bounded away from O.

1. Definitions and main results

Letk be any (finite or infinite) compact commutative ring, andjlee an invariant
measure ofx. For examplels can be the ring op-adic integers ,, or afinite field
F,. Denote bys = B(ls) the measure of the noninvertible elements

Bl =n(faelk| Ab,ab=1}

For exampleg(F,) = 1/q, andB(Z,) = 1/p.

LetG = U (n, k) be the group of upper triangularx n)-matrices ovek with
ones on diagonal. Denote hythe invariant measure o, also known as Haar
measure. It is known that is given as a product measure

K=1 X0 XX

where the product is taken over ég) entries above diagonal (see e.qg. [H]).
LetS c G be a set of matrices with ones on diagonal and zeroes elsewhere but
some element right above diagonal. Clea$lis a generating set @. Now let 0¥
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be a probability distribution of the produgt; - . .. - M; whereM; are independent
and uniform inS. We think of ¥ as a probability distribution of thieth step of a
randomwalk#” = % (G, S) onG generated by. By ergodicity,0* (X) — u(X)
ask — oo forall X C G.

Define theseparation distancéor a random walk#”

_ Q"(A)>
(A

One can think ok(k) as of a one-sidedl,, distance (see [AD]). It is easy to see
that 1> s(k) > O for all X > 0. It is known also that the separation distance is
nonincreasings(k + 1) < s(k), and submultiplicatives(k +m) < s(k) - s(m) (see
e.g. [AD, AF, D1)).

It often convenient to consider the following definitionmixing time

stk) = sup (1

ACG,uu(A)>0

. . 1
mix = rr}cln {s(k) < 5}

By definition, afterk = mix number of steps we hawg@*(4) > u(A)/2 for any
A € G. For other similar definitions of mixing times see [AF, LW].
The main result of the paper is the following theorem.

Theorem 1.1. Let G = U(n, k), such thatg(k) = 0. Then for anyc > 0 and
integern > 2 the separation distancg&m) for a random walk# (G, §) satisfies
s(m) < e~/?,
wherem > 4(2In 2+ 1) n2+c n. Moreover, the result holds wheilk) < C/m?t€

for anye > 0 and some universal constafit= C (¢).

The theorem implies that for largethe mixing time is of the order at most
4(2In 2+ 1) n? + O(n). In particular, whem: = 1012, n > 4, we haveQ” (A) >
su(A)forall A C G.

Also, Theorem 11 shows that the second largest eigenvalue <
1—1/2n + 0(1/n?). Indeed, fixn and letc — oo. We haves(m) < e /2 =
e~ (m=42N2+tHn*)/2n  Sinces(m) ~ Const - A2 we obtaina < e Y2 <
1—1/2n+1/8n°.

Analogously, from the proof it follows that < 1 — % + 0(1/n?) for all
e > 0. Together with an easy lower bouhgl > 1 — 1/n 4+ O(1/r?) this gives us
A2 = 1—1/n+ o(1/n). This result is much sharper than what can be extracted
from [S2] for the present walk.

The proof of Theorem .1 is based on the following key lemma. Consider the
following backgammon gam(or just one player). Definelaoardto be an interval
[1, n]. Placen pieces on the first space. At each step pick a uniform intefyem
[1, n — 1]. If the space is occupiethnd space + 1 is unoccupied, move the piece
fromitoi + 1. If i = 1 we can move either of the pieces gathered on space 1. The
game is over when all spaces are occupied, i.e. no moves are allowed. Denote by
the stopping time of the game. Think ofas of a random variable.
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Lemma 1.2. In conditions of Theorerh, the separation distanc&m) satisfies
s(m) < Pr(t >m), forallm >0

Suppose now that(k) > 0. For example, lek = [F, be a finite field withg
elements. While Theorem1Lis not applicable in this case, the analog of the result
holds forq large enough.

Theorem 1.3. LetG = U(n, F,), such that: > 4, g > 2n2. Then the separation
distances(m) for a random walk#" (G, S) satisfies:

= (2)
4

Note here thag(F,) = 1/¢ > 0, which violates the conditiofi(k) = 0 in Theo-

rem 1.1. This seemingly small change becomes critical in the proof of the theorem.
It is also the main reason why the bound in Theorem 1.1 is lower than that in
Theorem 1.3.

wherem > ¢ - 20n?, ¢ > 1.

2. Strong uniform times

Let G be a finite or compact group, and jetbe an invariant measure. L#t" be
a random walk orG with uniform stationary distribution. Aandomized stopping
rule is an algorithm which observes the walk and stops it depending on the state
passed and, perhaps, additional randomness. Dengiabgt the stopping state
andstopping timeof the randomized stopping rule.

A a stopping timer is calledstrong uniformif for all A ¢ G andk > 0 we
have

Pric € Alt = k) = n(A)

In other words, we neegl to be uniform inG and independent af. We will need
the following classical result of Aldous and Diaconis (see [AD, D1)).

Theorem 2.1. Lett be a strong uniform time for a random walk’. Then
stkky <Pr(t >k), k>0

Now letG = U(n, k) and let”” be a random walk defined above. We will
present an explicit construction of a stopping rule which defines a strong uniform
timer.

For convenience, number rows of the upper triangular matrices upside-down.
Namely, let the bottom row be 1, the next row be 2,, the top row be:. We can
define the random wall¢"; as follows: Choose a random integdsetween 1 and
n — 1, and add to thel (+ 1)-th row thei-th row multiplied by a uniform number
a € k. Recall the backgammon game on a board:[ldefined in section 1. Let
us play, i.e. move pieces on the board, according to the same choices of integer
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Note that while playing, we disregard the numbexe used above. Now, define a
stopping rule to stop the walk whenever the backgammon game is over. As before,
let T be the stopping time.

Lemma 2.2. Let8(k) = 0. Then stopping time defined above is strong uniform.

Observe that Lemma.2 together with Theorem.2 implies Lemma 2. The
proof of lemma is done by an elaborate induction.

Proof of Lemma 2.2We claim that at any time, given pieces are positioned in
spaces k i1 < iz < ---, then the corresponding rows i, ... of the obtained
upper triangular matrix are uniform and independent. Call raws, . . ., marked
rows Use induction. The claim is trivial when= 0. Suppose true when= m.
Say at the next step we choaséaVe can either move a game piece or not. If not,
and we do not add anything to any of the marked roivs (L # i; for any),
there is nothing to check. Suppose we add airéwa marked row + 1. The row
i + 1 will remain uniform. Also, if both rows are marked, which means uniform
and independent, then afterwards they are still uniform and independent. Indeed,
call these rowsX1, X2 and think of them as-vectors ovefk. Clearly, “(X1, X»2)
are uniform and independent” équivalento “(X1, X2 + a X3) are uniform and
independent” founy a € k.

Now, suppose we add marked revto an unmarked row + 1. Rowi was

©,...,0,0,1, x,_i42, ..., xy), withthex; uniform and independt of other marked
rows. Rowi +1was(0, ..., 0,1, yp—it1, yn;+2, - . -, yn), With they; arbitrary. Af-
terthe addition, rowi+1isnow(0, ..., 0, 1, y,—it1+4a, Yn,42+axn—it2, . .., Yn+

ax,). Regardless of the initial; of rowi + 1, the fact that andx; are uniform and
independent of the other marked rows, implies that the new setvis uniform and
independent of the other marked rows. Indeed, this is clear for any invertible,
and the result follows frong (k) = 0. Now note that row is notindependent on
row i + 1. Therefore by removing rowfrom consideration, we confirm the step
of induction and prove the claim.

Now consider what happens when the game is over. By definition, this is the
stopping timer, or, equivalently, the first time when all rows are marked. By
the claim above, when the game is over we get all the rows uniform and inde-
pendent on each other. Recall that the measur& @n k) is a product measure.
We havePr(o = (X1,..., Xp—1) € (A1,..., Ay |t = k) = p1(Ay) x -+ x
n—1(Ay—1) = u(A) whereX;,i =1,...,n — 1, are rows of the resulting matrix
o € G andy; are the corresponding measures. This finishes the proof. O

3. Proof of Theorem 1.1

The proof is based on Lemma2land the analysis of the backgammon game de-
scribed in section 1. We shall modify it first, solve it in this case, and then come
back to the original problem.

Consider the following random process. Placgieces on an integer line, in
positions 12, ..., k. By (1) denote the rightmost piece, k%) denote the next one,
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and so on. At each step, choose a random piece and move it to the right, if the next
place is not occupied. The question is how far Wl move afterr steps?

Lemma 3.1. Letc > 0. Then after steps the piecék) will move at least /(2ck)

steps with probability
o 1 p(CY/A+/24IN2) )t /k

Let us start with some easy special cases. Whenl we have only one piece
which moves freely to the right. When= 2, the piecgl) clearly moves freely
when chosen, while pied@) is lagging behind. Since the distance betwebrand
(2) behaves like a reflecting random walk on a line (see e.qg. [F]), afps the
piece(2) is at expected/2 — O (/1) distance from 0. Of course, the complexity
of the problem grows witl.

Proof of Lemma 3.1Consider what happens aftee= 2 ¢ k? steps. Divide time
into 2k intervals, each of lengthk. Work backwards in time. Lej,_1 be the last
time (k) is right behind(k — 1). Analogously, let;_» be the last time beforg_1
that (k — 1) is right behind(k — 2). In general, let; be the last time beforg, 1
that(i 4+ 1) is right behind(i), 1 <i < k — 2. Call thesg; breaking points

For every interval;, 0 < j < 2k, definey (j) to bej — maxi |#; < ckj}. In
otherwordsy/ (i) is equal toj minus the number of breaking points that occur before
the end of interval ;. Clearly,y(0) = 0,¥ (2k) = k+1andy (j+1) < ¥(j)+1.
Also, if ¥ (j +1) = ¥ (j) + 1 then no breaking points occurred durihjgCall such
intervalsempty The are at least + 1 empty intervals. Now consider a sequence
J1, j25 - +» Jk+1, Such thaty (j,,) = m > y(j) forallm = 1,...,k + 1 and
Jj' < jm. Observe that interval; , /;,, ..., I;_, are all different and empty. For
a moment, fix these intervals.

Now, while running the random process foll@ty until timer, then follow(2)
until z5, ..., andfinally follow (k) until z. Notice that in the interval;, we follow
piece(j, —m + 1) because;, _,, must occur before the end &f,, while ¢;,,_,
must not. Observe that in the+ 1 intervals we fixed, the piece we follow moves
freely, i.e. always moves to the right when chosen.

Denote byr the position of(k) aftert steps. By, denote the displacement of
the piece we follow during the interva),, 1 <m < k+1.Letl =11+ -+ 11
Clearly,r > landE(l) =), E(ly) = (k + D)(ck)/k > ck. Sincel is the sum
of (k + 1)(c k) independent Bernoulli trials, each with probability of success 1
the Chernoff bound gives us:

Pr(l < (1-8EWD) < o—8%ck/2
for anys > 0. And therefore for any fixed intervads, . . . , ix+1 we obtain
Pr(r > c(L—8)k|i1, ... ix41) = Prd > (L= EWD) > 1— e k2

On the other hand, the total number of ways to chdosel intervals out of % is

given by( k%f 1) < 2% _Summing over all the possibilities of choosing intervals,

we have
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Pr(r > ¢ (1—8)k) > 1 — 2% °ck/2
Now let 1— 6 = 1/c. We obtain
Prir > k) > 1— 62k|n2—(1—1/c)2ck/2 > 1 _ o@IN2+1-c/2)k
Recall now that = 2 ¢ k2. We have
Pr(r >1/2ck) > 1— e/ @1k,

wheref(c) = 2In2+1—c¢/2)/2c = —-1/4+(1/2+In2)/c = —1/4+ O(1/¢).
This finishes the proof. O

Proof of Theorem 1.1In the original backgammon game we have onlgieces

which are placed on the board one by one. Suppose instead they are all positioned

to the left of 1. Also, instead of choosing a uniform spadet us choose a uniform

piece, and move it to the right if possible. This can only slow the game. Indeed, the

piece that are still to the left of 1 correspond to the empty spaces in.[1n] and

thus the pieces in this interval move with right probabilities. On the other hand, now

itis not true that whenever space 1 is chosen, and 2 is unoccupied the piece always

moves there. The reason is that the pieces to the left of 1 may lag in getting there.
Now, in the original backgammon game whenever pigggets to the space

n —i + 1, it stays there. In this new version we can as well forget about them and

disregard their movements to the rightzof- i + 1. All we need is to have piece

(n) move to space 1, which in the notations above is equivalent to having:.

Then we are done. By Lemmal2if k = n andr = 2¢ n?, we obtain

Pr(t >t) <1—Pr(r >n) < e2IN2+1—c/2)n

By Lemma 12 we concludes(r) < Pr(r > 1) < e@N2t1-c/2n Takec =
4IN24+24¢'/n. Thent = 2¢n? = (8In2+ 4n? + ¢'n, ands(t) < e<'/2. This
finishes the proof of the first part of the theorem. We give the proof of the second
part in the next section. O

4. Proof of Theorem 1.3

We shall deduce Theorem3lfrom the same stopping timedefined in section 2.
Observe that can no longer be shown to be strong uniform. The proof breaks when
we move a piece and claim that ith row is uniform, then the next row is uniform.
This is no longer true since if we multiply by 0, them are not adding while claim
that we obtain uniformity. Of course, this event has probabflity,) = 1/¢ > 0.

Still, consider the distribution of the stopping statewe obtain. Since at
each addition as above we can “mess up” at nidgy) portion of the row, af-
ter (%) < n?/2 additions we obtain a distributia@™ which will be equal to |G|

on at leastf = (1 — 1/¢)(2) fraction of elements. Now, i§ > 2n2, we have

f > (1—1/2n2)"*/2 > 3/4for alln > 2. In other words, we just showed that
there exist a subset ¢ G such thatA| > %|G| andQ®(a) = 1/|G|foralla € A.
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Consider a distributio?*. Since every element can be decomposed as a product
of two elements iA by at leas{G|/2 ways, we have

1
2t >
07 (g) = 2G|
for all g € G. We claim thats(2012) < %. Indeed, recall that fat > 4 we have
Pr(r < 10n2) > 1/2. This follows from the remark after Theoreniland proof
in section 4.
Therefore after = 20x2 the probability to get each element

t/2
1 Pr(t <t/2) 1
4 > Pr =k = >
¢ (g)—; =926~ 261 " 4G
This proves the claim. Now by submultiplicativity we get the result. O

Similar computations give a proof of the second part of TheoreémNonin-
vertible elements if will play a role the zero element i, . We omit the obvious
details. ]

5. Applications: Asymmetric exclusion process on a circle

The asymmetric exclusion process on a circle is defined as follows. ForeMery
1 < k < n define discrete Markov chaiw/ = .# (n, k) as follows. Let the state
space be a set of configurationskgfarticles on a circle with spaces. Let the step
of a chain to consist of choosing a uniform particle and moving it to the right (clock-
wise) if the next space is empty. This is a discrete time version of the more general
continuous time exclusion process introduced by Spitzer in [Sp] (see also [Li]).
We claim that# (n, k) is an ergodic Markov chain. Indeed, observe that the
number of ways to get into any configuration of particles is equal to the number of
consecutive intervals of particles, and therefore is equal to the number of way to
leave the configuration. Since the set of configurations is strongly connected under
the moves, and each of the moves has probability, this immediately implies
ergodicity.
While from a different prospective, the procegsis well studied in statistical
physics literature (see [De] for the references). It has long been known that in the
steady stat¢he velocity of each particle becomes

v — lim EY) _ (n—K
t—>oo t k(in—1)
whereY; is the number of moves of a fixed particle aftesteps. Analogously, for
thediffusion A it was recently obtained:

(Z(n — 1))
2 2 _
A iim E(Y?) — (EX))? _ 1 2k —1
=00 t 2k2n -1 (n-1
(")
(see [De, DEHP]).
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The main problem is to find a mixing time o# (n, k). The most interesting
case is when the ratio of particles is constanitt — p, 0 < p < 1/2. We will
concentrate on that case.

We propose the following conjecture.

Conjecture 5.1. There exist a universal consta@t such that for allo > 0 we
have

mix < C n?

wheremix is the mixing time of the Markov chaiw (n, | pn]).

While we are unable to prove this conjecture let us give partial results in its
support. First, one can consider “reversibilization”.a@f. This is often done by
considering a Markov chain with transition mat%KP + PT) whereP is the orig-
inal transition matrix. In the case o# this leads to the well understood exclusion
process on a circleZZ (n, k), which is defined as follows. Let the state space be as
before, but now we move either to right or to the left with equal probability. It is
known then (see [DSC1, DSC3]) that this random walk mixes aiéer3 logn)
steps (cf. [LeY, LuY]). Without going into technical details, let us note that one
can obtain this bound in the asymmetric case as well:

Proposition 5.2. (see [DSC3, p. 739])There exist a universal consta6t such
that for all p > O we have

mix < C n°logn
wheremix is the mixing time of the Markov chaiw (n, | pn]).

Second, one can introduce a partial measure of how well the particles are mixed.
Call asuccessn event of actually moving a particle when it is chosen. At a steady
state, the probability of success is abpuf variation of the argument given in the
proof of Lemma 31 gives the probability of succeggl — ¢) after 5n? + O (n)
steps. It is easy to see that result is sharp up to a constant. Indeed, if we start with
configuration when all particles are in one cluster, it would t@ke:? time just to
move either of the lask /2 particles. Formally, we obtain the following result.

Proposition 5.3. Let p(r) be the probability of success at timeThen there exist
is a universal constar@1 > 0 such that for any: and any starting configuration

p(®) > p(l—e)

wherer > 10p n? + C1nlog(1/€). In the other direction, for any, A > 0we have
C2
p() < 52

whereCs is a universal constant, and< 1/2pn2 — an®/2.
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Note that Conjecture.h implies Proposition 3. Let us also remark that it
takes abouD (n3) steps for a symmetric exclusion process on a circle to have a
constant probability of success.

Finally, there is additional evidence in favor of the conjecture in the statistical
physics literature. In [GS] authors use Bethe ansatz to study eigenvalues of the
transition matrix of the process. They observe tat\») < 1— C n—3/2 for some
universal constant > 0. While the proof is not rigorous from the mathematical
point of view, the results in the field are usually correct. Formally, the authors com-
pute a number of eigenvalues, largest of which is as above, without proving the
completenessvhich is that these are all the eigenvalues ([Spo]). If completeness is
assumed, one can make an argument that there exists a universal cOnstiaht
that for allp > 0 we have

mix < C n?3,

wheremix is the mixing time of the Markov chai# (n, | pn]).

One should note that authors in [GS] claim that the third largest eigenvalue
satisfiesRe(13) = 1 — C’/n. It is not hard to see that if this claim is true, and
assuming the multiplicity of the, is 20 (v this would prove the conjecture. We
hope to return to this problem in the future.
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