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RIBBON TILE INVARIANTS

IGOR PAK

Abstract. Let T be a finite set of tiles, and B a set of regions Γ tileable by T.
We introduce a tile counting group G(T,B) as a group of all linear relations
for the number of times each tile τ ∈ T can occur in a tiling of a region Γ ∈ B.
We compute the tile counting group for a large set of ribbon tiles, also known
as rim hooks, in a context of representation theory of the symmetric group.

The tile counting group is presented by its set of generators, which consists
of certain new tile invariants. In a special case these invariants generalize the
Conway-Lagarias invariant for tromino tilings and a height invariant which is
related to computation of characters of the symmetric group.

The heart of the proof is the known bijection between rim hook tableaux
and certain standard skew Young tableaux. We also discuss signed tilings by
the ribbon tiles and apply our results to the tileability problem.

0. Trivia

Suppose we are given a set of the tiles on a plane. We are allowed to use
translations of the tiles to arrange them in a geometric shape (each tile may occur
several times). This arrangement is called tiling of that shape. One can ask whether
a given region can be tiled by a given set of tiles, and if it can, how many different
tilings there are.

For example, with a set of tiles shown in Figure 0.1 one can make four different
tilings of the 4-by-6 rectangle. Two of them are shown in Figure 0.2. Now one can
try to find a criterion for when you can tile a rectangle. Observe that each of these
tiles alone can tile the whole plane.

Figure 0.1. Figure 0.2.

Our personal favorite example is given by the set of tiles shown in Figure 0.3.
One can show that there exists only one tiling of the fourth quadrant (see Fig. 0.4).
The proof is left to the reader.

It turns out that there are certain nice sets of tiles for which it is not clear
whether a given region can be tiled. Here is an example. Consider the 8 tiles shown
in Figure 0.5. One can show that the 25-by-25 square cannot be tiled by these tiles.
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Figure 0.3.

Figure 0.4.

Figure 0.5.

Of course, this could be proved by an exhaustive search. In general, the following
result holds.

Theorem 0.1. If an a-by-b rectangle can be tiled by the tiles shown in Figure 0.5,
then 10 | a · b.

Another example. Consider 6 tiles shown in Figure 0.6. We again have

Theorem 0.2. If an a-by-b rectangle can be tiled by the tiles shown in Figure 0.6,
then 10 | a · b.

Figure 0.6.

Of course, an area argument shows that 5 | a · b.
Consider now a different region. Let ∆N be a triangular shape as in Figure 0.7.

One can check that ∆24 can be tiled by the tiles shown in Figure 0.6 while ∆25

cannot. Generally,
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Figure 0.7.

Theorem 0.3. If ∆N can be tiled by the tiles shown in Figure 0.6, then N ≡
0, 4, 15, 19 (mod 20).

It turns out that all three theorems can be proved by use of the same kind
of argument. Heuristically, the reason for untileability arises from the following
question, completely different in nature:
• Given a set of tiles and a tileable region, are there any linear relations for the

number of times each tile occurs in a tiling?
The rest of the paper explains the relevance of this question. All three theorems

are proved in section 7.

1. Introduction

Let Z2 be a square lattice, andR the set of all compact simply connected regions
in Z2. We think of these regions as disjoint unions of 1 × 1 squares. Sometimes
they are called polyominoes. Fix a finite set of tiles T = {τ1, . . . , τN}, τi ∈ R,
i = 1, . . . , N . Let tiles be invariant under translations. We say that a region Γ ∈ R
is tileable by T if it can be presented as a disjoint union of the regions

Γ =
∐

1≤j≤l
τ ′j ,

where each region τ ′j , 1 ≤ j ≤ l is a translation of some τij . Such a disjoint union
is called a tiling s of Γ. Denote S = S(Γ,T) a set of all tilings of Γ by the set of
tiles T.

Fix a set of tiles T and a region Γ ∈ R. There are two basic questions one can
ask:
• Is Γ tileable by T?
• If Γ is tileable by T, what do the tilings look like?

The first question is very classical and well understood (see e.g. [G]). It is usually
not hard to find a tiling if Γ is tileable by T, while proving the opposite can be
extremely difficult. Except for ad hoc examples, there are basically two techniques
for proving that a region cannot be tiled: coloring arguments and Conway group
analysis (see [CL], [T]). Note also that the case when T contains a 1-by-1 square
is trivial: every region is tileable.

While the first questions admits only a “yes” or “no” answer, the second question
could be posed in many ways, each of them giving us some information about the



4 IGOR PAK

Figure 1.1.

Figure 1.2. Figure 1.3.

structure of the tiling set S(Γ,T). One can find the following two questions in the
literature (see e.g. [G], [CEP]):
• How many tilings of Γ are there?
• What do random tilings s ∈ S(Γ,T) look like?

It turns out that the answers to these questions depend heavily on the geometry
of Γ, and can be very complicated even in very simple cases. In particular, finding
the number of tilings |S(Γ,T)| is a more general problem than just finding whether a
certain region has a tiling. In some cases this problem is known to be NP-complete,
and probably cannot be solved by means other than exhaustive enumeration (see
[GJ, p. 257]).

To avoid these difficulties we propose another approach to the problem. We fix
only T and ask about properties of tilings of all regions at once. We would like to
ask the following two questions:
• Are there any relations for the number of times each tile occurs in a tiling of

a given region?
• Is there a finite set of local replacement rules (we also call them local moves

or just moves) such that for every region Γ ∈ R, any tiling of Γ can be changed
into any other tiling by a sequence of moves?

Before we give formal definitions, let us illustrate what happens in the case of
dominoes. Although small, this example will illustrate the variety of approaches as
well as the complexity of a problem.

Let T2 be a set of two tiles: horizontal domino τ1 and vertical domino τ2 (see
Fig. 1.1). It is easy to come up with a necessary condition for tileability (see e.g.
[G]). Color the region in a checkerboard fashion. Since each domino must contain
one black and one white square, the total number of black squares must be equal
to the total number of white squares. For example, the region shown in Figure 1.2
cannot be tiled by dominoes since it has 8 black squares and only 6 white squares.
Unfortunately, there exist untileable regions with an equal number of black and
white squares (see e.g. Fig. 1.3). This means that we need a stronger condition for
tileability.

Now suppose we have a region Γ that is known to be tileable. We want to
compute the number of tilings Γ has. This turns out to be an interesting and
nontrivial question. In the case of a 2-by-m rectangle the number of tilings is a
Fibonacci number F (m) = F (m − 1) + F (m − 2) (see Fig. 1.4). In the case of a
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Figure 1.4.
Figure 1.5. Aztec
diamond A7

Figure 1.6. Figure 1.7.

general rectangle the problem was solved by Kastelyn and Temperley & Fisher (see
[Ka], [TF]). In the case of an Aztec diamond (see Fig. 1.5) the domino tilings were
enumerated by Elkies, Kuperberg, Larsen and Propp (see [EKLP]). Both results
gave rise to many other questions about domino tiling (see e.g. [CEP]). In this
work we do not further consider any numerical results of this type.

Let Γ be a region tileable by dominoes τ1, τ2. Consider s ∈ S(Γ,T2), a domino
tiling of Γ. Suppose s consists of a1 = a1(s) copies of the horizontal domino τ1,
and of a2 = a2(s) copies of the vertical domino τ2. Of course, 2 (a1 + a2) is equal
to the area |Γ| of the region (see Fig. 1.6). This gives us the first relation. There
is one more relation which is less obvious: a2 = Const (mod 2). To see this, let
us color black every other column of the region Γ (see Fig. 1.7). Denote by c1,
c2 the number of black and white regions respectively, and put d = c1 − c2. Since
horizontal dominoes contain exactly one black and one white square, and vertical
dominoes contain two squares of the same color, we immediately get a2 = d/2
(mod 2) (see Fig. 1.7).

Figure 1.8. Figure 1.9.

Here is another way to look at the set of tilings S(Γ,T2). Let us allow the
following local replacement rules (or simply moves): take two adjacent horizontal
or vertical dominoes and flip them (see Fig 1.8). Of course, this move gives us a
new tiling of Γ (see Fig 1.9). It is known that by a sequence of such moves we
can get from any tiling s ∈ S(Γ,T2) of a simply connected region Γ to any other
tiling s′ ∈ S(Γ,T2) (see e.g. [T]). From this we immediately get a1(s) + a2(s) =
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a1(s′) + a2(s′) and a2(s) = a2(s′) (mod 2), since these identities are trivial for any
single move. This also implies that for a general region there is no other relation
for the numbers a1, a2 that does not follow from these two. We will use similar
logic when proving our main results.

Now we are ready to introduce the tile counting group and tile invariants. Let
T = {τ1, . . . , τN} be a set of tiles. Denote by RT ⊂ R set of regions tileable by T.
Let B ⊂ RT be a fixed subset of tileable regions. Consider a tileable region Γ ∈ B.
We identify each tiling s ∈ S(Γ,T) with its multiset of tiles, s ' {τi1 , . . . , τil}. Of
course, by doing so we lose some information about the geometric structure of the
tilings, since there could be many tilings of Γ with the same multiset of tiles (see
e.g. Fig. 1.4). As before, by |Γ| we denote the area of Γ.

Let Z〈T〉 be a group of formal integer linear combinations of T. With each pair
of tilings s1, s2 ∈ S(T,Γ) of a region Γ ∈ B we associate a relation:

(τi1 + · · ·+ τil = τj1 + · · ·+ τjr ) .

Let I be the linear span of such relations for all regions Γ ∈ B and for all pairs of
tilings s1, s2 ∈ S(T,Γ). Define the tile counting group to be the quotient group

G(T;B) = Z〈T〉/I.
This will be the main object of our study. Since both groups in the quotient are
abelian, one can think of a tile counting group G(T;B) as a subgroup of Z〈T〉.
Thus it is reasonable to describe G(T;B) by its set of independent generators (or
the basis) given in Z〈T〉.

For example, let T2 be a set of dominoes (see Fig. 1.1), and B a set of simply
connected regions. The two tilings in Figure 1.8 correspond to the relation 2 · τ1 =
2 · τ2. Since every domino tiling of a simply connected region can be obtained
from every other domino tiling, I in this case is generated by the above relation.
Therefore

G(T2;B) = Z2/I ' Z× Z2.

The basis can be given as τ1 + τ2, τ1− τ2 ∈ Z〈T2〉. Note that the second generator
has order 2 as an element in G(T2;B), while it has infinite order as an element of
Z〈T2〉.

Here is another way to describe the tile counting group. Let G be an abelian
group, not necessarily finite. A map f : B → G is called a tile invariant (or just
an invariant) if for any tileable region Γ ∈ B and for any tiling s ∈ S(Γ,T) of it,
s ' {τ ′i1 , . . . , τ

′
il
}, where τ ′j is a translation of a tile τj , we have

f(Γ) = f(τi1) + · · ·+ f(τil).

The problem is to find all the tile invariants for a fixed set of tiles T. Clearly a tile
invariant is determined by its values on T, so the problem of finding an invariant
is equivalent to finding maps f : T → G which can be extended to the set of all
regions B.

Let
∑
τ∈T a(τ) ∈ Z〈T〉 be an element of a tile counting group G = G(T;B).

Suppose m is its order in G (m could be infinity). Then a map f : T → Zm,
m < ∞, or f : T → Z, m = ∞, defined by f(τ) = a(τ) (mod m) or f(τ) = a(τ),
is a tile invariant, where by Zm we mean the additive group of integers modulo
m. Conversely, every tile invariant can be lifted to an element of the tile counting
group. Thus the problem of computing the tile counting groupG(T) is equivalent to
describing all invariants. We say that tile invariants f1, f2, . . . form an independent
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Figure 1.10. Figure 1.11.

basis of invariants if they correspond to an independent generating set in a tile
counting group. An invariant f : T → G is called trivial if f(τ) = 0 for all τ ∈ T,
where 0 ∈ G is the identity element. Otherwise the invariant is called nontrivial.
An invariant f : T → G is called primitive if G ' Z or Zm for some m. For the
rest of the paper we will be considering only primitive invariants.

Note that when B = T every map f : B → G is a tile invariant, i.e G(T,T) '
Z|T|. Generally, the bigger that our set of regions B, the more equations we have
on f , and the fewer tile invariants we get.

The obvious example of a nontrivial tile invariant is given by the area of tiles:

f0 : T→ Z , f0(τi) = |τi|

which can be extended to all tileable regions: f0(Γ) = |Γ|. This implies that the
tile counting group has Z as a subgroup. In the case of domino tiles T2 we also get
another invariant (see above):

f∗ : T2 → Z2 , f∗(τ1) = 0, f∗(τ2) = 1 mod 2.

The main result of this paper is a description of a tile counting group for the
following set of tiles.

Let the axes on a plane be as shown in Figure 1.10. We say that squares (i, j)
and (i′, j′) lie on the same diagonal if i− j = i′ − j′. For example, the two squares
(2, 4) and (5, 7) lie on the same diagonal (see Fig. 1.10). A ribbon tile is a simply
connected region with no two squares lying on the same diagonal. An example of a
ribbon tile is shown in Figure 1.11. Denote by Tn the set of all ribbon tiles τ with
n squares: |τ | = n. Obviously, T2 is the set of dominos (see Fig 1.1). The sets T3,
T4 and T5 are shown in Figures 1.12 – 1.14.

Note that |Tn| = 2n−1. Indeed, we can encode each ribbon tile by a sequence
(ε1, . . . , εn−1) of n − 1 zeroes and ones as follows. Call the lower left square the
starting square. Begin with the starting square and move along the tile. Write 0
when going right, and write 1 when going up. See Figures 1.12 – 1.14 for these
coding sequences for all tiles in T3, T4 and T5.
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Figure 1.12.

Figure 1.13.

Figure 1.14.

Definition 1.1. Consider the sequence of maps f1, . . . , fm : Tn → Z, m =
⌊
n−1

2

⌋
,

defined as follows:

fi(ε1, . . . , εn−1) = εi − εn−i.
We call the map fi the i-convexity invariant.

Definition 1.2. The constant map f0 : Tn → Z defined as

f0(ε1, . . . , εn−1) = 1

is called the area invariant.

Note that the area invariant is designed to be 1 on a tile τ ∈ Tn rather than n.
This is designed to simplify the statement of the main result (see below.)
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Figure 1.15.

Definition 1.3. If n is even, the map f∗ : Tn → Z2 defined as

f∗(ε1, . . . , εn−1) = εn/2 (mod 2)

is called the parity invariant.

Before we state our main results, we need to specify the set of regions B ∈ RTn .
A region Γ ∈ R is called row-convex (column-convex) if every horizontal (vertical)
line either intersects Γ in an interval or does not intersect it at all (see Fig. 1.15).
Let Brc be a set of tileable row-convex simply connected regions. The main result
of this paper is the following theorem.

Theorem 1.4. Let B = Brc be as above. Then:
1) When n = 2m+ 1, G(Tn,B) ' Zm+1 and the maps f0, f1, . . . , fm form an

independent basis of invariants.
2) When n = 2m, G(Tn,B) ' Zm × Z2 and the maps f0, f1, . . . , fm−1, f∗

form an independent basis of invariants.

When n = 2 Theorem 1.4 says that the area and parity invariants form an
independent basis. Analogously, when n = 3 Theorem 1.4 says that, aside from the
area invariant f0, there exists one other nontrivial tile invariant f1 : T→ Z, where

f1(10) = 1 , f1(01) = −1 , f1(00) = f1(11) = 0

(see Fig. 1.12). In a different form this invariant was discovered by Conway and
Lagarias in [CL] (see also [T]). To say that f1 is an invariant is equivalent to saying
that:

#10−# 01 = Const.

This means that the number of times the 10 tromino occurs in a tiling minus the
number of times the 01 tromino occurs in the same tiling of a region Γ depends
only on the region Γ, and not on the tiling.

Here is another nontrivial invariant that exists for all n > 1.

Definition 1.5. Consider the map f• : Tn → Z2 defined as follows:

f•(ε1, . . . , εn−1) = ε1 + ε2 + · · ·+ εn−1 (mod 2).

We call f• the height invariant.

The reason why f• is called the height invariant can easily be seen from the
picture. Consider the smallest rectangular box the ribbon tile τ can fit in (see
Fig 1.16). Then f•(τ) = a − 1 (mod 2), where a is the height of the rectangle.
This invariant was considered earlier in connection with certain characters of the
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Figure 1.16.

Figure 1.17.

symmetric group SN (see [R], [JK], [S]). Namely, it corresponds to signs in the
Murnaghan–Nakayama summation formula for computing the character values on
the conjugacy classes (na), where N = a ·n (see [JK], [M] for details). Observe that

f• =
{
f1 + · · ·+ fm−1 + fm mod 2, n = 2m+ 1,
f1 + · · ·+ fm−1 + f∗ mod 2, n = 2m.

This proves that f• is indeed an invariant provided Theorem 1.4 holds.
Now let us say a few words about how Theorem 1.4 is proved. We shall present a

finite set of moves which preserve the invariants but enable us to get from any tiling
to any other. Formally, let By be the set of row- and column-convex regions such
that when fit into the smallest possible box they contain the upper right, upper left
and the lower left corner of the box (see Fig. 1.17).

Theorem 1.6. Let B = By be as above. For every n > 1 there is a finite set of
at most n 4n moves such that any tiling of Γ ∈ B by Tn can be transformed by a
sequence of moves to any other such a tiling.∗

When n = 2 we need only one move (see Fig 1.8). When n = 3 we already need
6 moves (see Fig 1.18). Together with Theorem 1.6, we prove this in section 3.

To finish the introduction, let us compare the definition of tile invariants with
the generalized coloring arguments introduced by Conway and Lagarias (see [CL]).

Let G be an abelian group, not necessarily finite, and e its identity element. A
map f : R→ G is called a coloring map if for every region Γ ∈ R we have

f(Γ) = f(x1) + · · ·+ f(x|Γ|),

where x1, . . . , x|Γ| are the squares in Γ. Of course, f is defined by its values on all
1× 1 squares.

∗Ron Adin points out that the minimum number of local moves is exactly
(|Tn|

2

)
. The cal-

culation uses our analysis in section 3. This gives ( 4
2 ) = 6 moves for n = 3, and ( 8

2 ) = 28 for

n = 4.
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Figure 1.18.

A coloring map f : R → G is called T-coloring if f(Γ) = e for all Γ ∈ RT. In a
sense the T-coloring maps are complementary to tile invariants, which are defined
only on tileable regions.

It is clear that to show that f is a T-coloring map, all we need is to check that
f(τ ′) = e for all translations τ ′ of a tile τ ∈ T. If this is the case, we say that f
gives a coloring argument for a set of tiles T. The idea is that we show that now
f(Γ) = e becomes a necessary condition for T-tileability, which is usually easy to
check. Various arguments can be found in [G].

To give an example, recall the argument we used to prove untileability by domi-
noes (see Fig. 1.2). It was, basically, a map f : R→ Z, defined by

f(i, j) =
{1 , if i+ j = 1 mod 2,

0 , if i+ j = 0 mod 2.

The map f is an example of a T-coloring map. Indeed, observe that, by definition,
for both vertical and horizontal dominoes τ1, τ2 (see Fig. 1.1) we have f(τ1) =
f(τ2) = 0.

It turns out that coloring arguments cannot be used to prove Theorems 0.1−0.3.
In particular, we have the following result.

Theorem 1.7. Let T be the set of tiles shown in Figure 0.5. Consider a rectangle
Γ = [5 · a× 5 · b], where a and b are odd. Then for any T-coloring map f : R→ G
we have f(Γ) = e.

Recall that by Theorem 0.1 the region Γ in Theorem 1.7 is not T-tileable. Thus
Theorem 0.1 cannot be proved by the use of coloring arguments only. Theorem 1.7
and its analogs for other sets of tiles will be proved in section 8.

Let us note that coloring maps can be used not only to prove untileability but
also to find some tile invariants. Here is how this can be done.

Let T be a set of tiles, and G an abelian group. Consider a map g : T → G.
Suppose f : R→ G is a coloring map such that f(τ ′) = g(τ) for all translations τ ′

of a tile τ ∈ T. Then there exists a tile invariant ĝ : RT → G such that ĝ(τ) = g(τ)
for all τ ∈ T. We call this an extended coloring argument corresponding to the map
f .

For example, let T = T2 be the set of dominoes. Consider the coloring map
f : R → Z2 defined by f(i, j) = j mod 2. In a different form the map f was
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considered earlier (see Figure 1.7). We have g(τ1) = 1 and g(τ2) = 0 (see Figure
1.1), which proves that the map f• (see Definition 1.5) is indeed an invariant if
n = 2.

One can try to use the extended coloring argument to get all the tile invariants
for a given set of tiles T and a set of regions B ⊂ RT. It is easy to see that this
is impossible if the tile counting group G(Tn,B) ) G(Tn,RT), i.e. if there exists
a tile invariant for the set of regions B that is not an invariant for the set of all
T-tileable regions RT. It turns out that in the case of the ribbon tiles Tn, n > 2,
neither convexity nor parity invariants follow from extended coloring arguments.
Analogously, for the height invariant we have the following result.

Theorem 1.8. Let Tn, n > 1, be a set of ribbon tiles. Then the height invariant
f• follows from the extended coloring argument if and only if n = 2.

The proof of Theorem 1.8 is given in section 9. Of course, the “if” part is already
proven. Incidentally, proving this theorem was the original goal of this work.

The rest of the paper is constructed as follows. In section 2 we define a rim hook
correspondence, which is used in section 3 to prove Theorem 1.6. In section 4 we
check that the coloring maps defined in Definitions 1.1−1.3 are invariant under the
local moves defined in Theorem 1.5. In section 5 we present a technique for working
with tile invariants which enables us to extend the set of regions. In section 6 we
show that there are no ribbon tile invariants other than those given in Theorem
1.4. Then we prove the main theorem itself.

The second part of the paper contains several applications of the main result.
In section 7 we use ribbon tile invariants to find necessary conditions for tileability.
We prove Theorems 0.1−0.3 and a few other similar results. In section 8 we define
and analyze signed tilings and prove Theorem 1.7 along with other related results.
This section is motivated by the work [CL] of Conway and Lagarias, although we
were able to avoid the use of combinatorial group theory. In section 9 we prove
Theorem 1.8 and explore the connection between extended tile arguments and tile
invariants. Finally, in section 10 we present several conjectures and open problems.

This work was done while the author was a postdoctoral fellow at MIT. The
research was supported by a National Science Foundation Postdoctoral Research
Fellowship.

2. The rim hook bijection

Let us recall some standard notation in combinatorics related to the representa-
tion theory of the symmetric group (see e.g. [JK], [M]).

A partition is a nonincreasing integer sequence λ = (λ1, λ2, . . . , λl), λ1 ≥ λ2 ≥
· · · ≥ λl > 0. With each partition λ we associate a region Γλ, called a Young
diagram or a Ferrers shape, defined as follows:

Γλ = {(i, j) ∈ Z2 | 1 ≤ i ≤ l, 1 ≤ j ≤ λi}.
See Figure 2.1 for the Young diagram associated with the partition (5, 5, 4, 3, 1).
Denote |λ| = λ1 + · · ·+ λl = |Γλ|.

A skew Young diagram Γλ\µ is the set theoretic difference of the Young diagrams
associated with the partitions λ and µ:

Γλ\µ = Γλ \ Γµ.

For example, the skew Young diagram Γ(5,5,4,3,1)\(3,2) is shown in Figure 2.2.
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Figure 2.1. Figure 2.2.

Figure 2.3. Figure 2.4.

To simplify the notation we will use λ to denote both the partition and the
corresponding region Γλ, which we also call the Young diagram of shape λ. By Ry
and Rsy we denote the set of all Young diagrams and the set of all skew Young
diagrams, respectively.

By λ◦µ we denote the skew Young diagram obtained as the disjoint union of the
Young diagrams λ and µ where µ is located to the right and above λ. The example
of (3, 3, 1) ◦ (2, 1) = (5, 4, 3, 3, 1) \ (3, 3) is shown in Figure 2.2.

A Young tableau is a Young diagram λ filled with integer numbers which increase
in rows and columns (see Fig. 2.3). A Young tableaux is called standard if these
numbers are 1, . . . , |λ|. We can think of a Young tableau as a flag of Young diagrams
∅ = λ1 ⊂ λ2 ⊂ . . . ⊂ λn = λ. A skew Young tableau is defined analogously.

Recall that by Tn we denote a set of ribbon tiles with n squares (see Figs. 1.12-
1.14). A rim hook tableau is a tiling of a Young diagram Γλ by ribbon tiles τ ∈ Tn

filled with numbers 1, 2, . . . , |λ|/n (squares in the same tile are filled with the same
number), and such that squares of tiles with greater numbers are located either to
the right or below squares of tiles with smaller numbers (see Fig. 2.4). Again we
can think of a rim hook tableau as a flag of Young diagrams.

The rim hook bijection ϕ maps Young diagrams λ, |λ| = m · n, tileable by Tn

into n-tuples of Young diagrams (ν1, . . . , νn), |ν1|+ · · ·+ |νn| = m. The bijection
ϕ is designed in such a way that whenever we add a ribbon tile to the diagram
λ on the outside, there exist i, 1 ≤ i ≤ n, such that νi gets a square on the
outside (see Fig. 2.5). If we think of rim hook tableaux as flag sequences of tileable
Young diagrams, the rim hook bijection maps these flag sequences into the n-tuples
of Young tableaux filled with numbers 1, . . . ,m which are increasing in rows and
columns in each tableau. It is known that this establishes a bijection between the
rim hook tableau of a fixed tileable Young diagram λ and the n-tuples of Young
tableaux with shapes ϕ(λ) = (ν1, . . . , νn) which are filled with numbers 1, . . . ,m,
where |λ| = m · n (see e.g. [JK], [SW]).

The easiest way to understand the rim hook bijection is to look at Figure 2.6.
Take a rim hook tableau tiled with 14 tiles τi ∈ T3 and rotate it counterclockwise
135◦ degrees. Then project all hooks on the horizontal axis, preserving their labels
and relative order. Split the “shadows” into three (n in the general case) separate
sets of “shadows” depending on their horizontal coordinate mod 3. Then simply
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Figure 2.5.

Figure 2.6.

shorten the shadows and reverse the procedure. At the end we get three Young
tableaux filled with the numbers 1, . . . , 14 (see Figure 2.6).

Theorem 2.1. The map ϕ defined above is a one-to-one correspondence.

The theorem goes back to Nakayama and Robinson (see [R], [JK]). In modern
times it was rediscovered by Stanton and White (see [SW], [FS]) and is sometimes
attributed to them.

Another way to think of the rim hook bijection is to say that it establishes a
bijection between rim hook tableaux of shape λ and standard Young tableaux of
the skew shape ν1 ◦ · · · ◦ νn. We shall use this interpretation in the next section.
Various proofs and applications of the theorem can be found in [JK], [FS], [S].
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3. Local moves

Let λ \ µ be a skew Young diagram. We define local moves on a set of standard
Young tableaux of shape λ \ µ as follows. Take a pair of numbers i and i + 1,
1 ≤ i < |λ|, and exchange them if they lie in different rows and columns. We claim
that, using these moves, one can start with any standard Young tableau of shape
λ \ µ and get any other such tableau.

Formally, let Ω(λ \ µ) be a graph with vertices all standard Young tableaux of
shape λ\µ and edges obtained by applying local moves. An example with λ = (3, 2)
and µ = ∅ is shown in Figure 3.1.

Theorem 3.1. Let λ \ µ is a skew Young diagram. Then its graph Ω(λ \ µ) is
connected.

This result is known and not hard to prove. Some generalizations and applica-
tions can be found in [BW], [BK].

Sketch of Proof. Introduce an orientation of edges of the graph Ω(λ \ µ) by distin-
guishing situations when a local move exchanges i and i+ 1 with i+ 1 lying to the
right and above i from those where i + 1 lies to the left and below i (see Figure
3.1). Observe that the orientation is acyclic and has exactly one sink. This proves
the result.

Consider what happens if we apply the bijection ϕ to the vertices of a graph
Ω(λ \ µ) in Theorem 3.1. Fix a skew Young diagram ν = ν1 ◦ · · · ◦ νn. Define local
moves on a set of rim hook tableaux of shape λ = ϕ−1(ν1, . . . , νn) by the image
of the corresponding local moves on a standard skew Young tableaux. Observe
that squares in a Young tableau of shape ν correspond to rim hooks in a rim hook
tableau of shape λ. Thus the corresponding local moves on a set of rim hook
tableaux will preserve all the rim hooks except two. Since these rim hooks have
consequent labels, together they form a skew shape which has exactly two rim hook
tableaux (see Figure 3.2). Note that the two rim hooks may lie far from each other,
in which case the local move is just relabeling of their numbers. When n = 1 this
is the only case that occurs.

Now we are ready to state an analog of Theorem 3.1. Denote by Ωn(λ \ µ)
a graph with rim hook tableaux as vertices and edges connecting those pairs of
tableaux which have the same set of all but two rim hooks.

Theorem 3.2. Let λ be a Young diagram tileable by Tn. Then its graph Ωn(λ) is
connected.

Figure 3.1.
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Figure 3.2.

Figure 3.3.

Figure 3.4.

Note that here we do not claim that Ωn(λ \µ) is connected for any tileable skew
Young diagram λ \ µ. It is true and can be proved by the straightforward general-
ization of the rim hook bijection. We avoid the use of this natural generalization
for the purpose of studying ribbon tile invariants.

Proof. Define (ν1, . . . , νn) = ϕ(λ) to be the image of λ under the rim hook corre-
spondence. Consider G = Ω(ν1 ◦ · · · ◦ νn). The correspondence ϕ−1 maps vertices
of G onto Ωn(λ) and edges onto edges. In other words, ϕ−1(G) is a subgraph of
Ωn(λ). By Theorem 3.1 the graph G is connected. Therefore the graph Ωn(λ) is
also connected.

Now let us make a graph on the ribbon tilings of λ. The idea is to erase the
labels in the rim hook tableaux and connect those that were connected before.

Formally, consider a graph Θn(λ) with vertices being all ribbon tilings s ∈
S(Γλ,T) of a fixed shape λ. Define the edges to be the pairs of tilings that differ
by exactly two tiles. Two examples of such graphs Θ2(3, 3, 2) and Θ3(3, 3, 3, 3) are
shown in Figure 3.3 and Figure 3.4 respectively.

Theorem 3.3. Let λ be a Young diagram tileable by Tn. Then the graph Θn(λ) is
connected.
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Figure 3.5. Figure 3.6.

Proof. Consider a map ι : Ωn(λ)→ Θn(λ) which maps rim hook tableaux to ribbon
tilings by erasing labels of tiles. By definition ι maps edges of Ωn(λ) into edges of
Θn(λ). Therefore, in order to prove that Θn(λ) is connected, all we need to show
is that each vertex has a preimage. Indeed, if this is true, in order to find a path
between two vertices in Θn(λ) we simply take their preimages, find a path between
them in Ωn(λ), and then map it back to Θn(λ).

In other words, the theorem in now reduced to the following lemma.

Lemma 3.4. Every ribbon tiling of a Young diagram λ admits a labeling which
makes it a rim hook tableau of shape λ.

Proof. We prove the lemma by induction on the number of squares |λ|. The base
case is trivial. Fix a Young diagram λ. By the border strip of λ we mean the set
of squares (i, j) ∈ λ such that (i + 1, j + 1) /∈ λ. A tile τ is called a border tile
if it lies in the border strip (see Figure 3.5). We claim that every ribbon tiling of
λ must contain at least one border tile. If we find such a tile τ , label it with the
largest number. Then there are no tiles that lie to the right of or below τ , and we
can proceed by induction with λ \ τ .

In order to find a border ribbon, start with the lower left corner. It must belong
to some tile. This tile has this square as its starting square. If it is not a border
tile, find the first border square that is not in that tile. It must belong to some
other tile. This tile also has this square as its starting square. Keep on doing so
until we find the border tile. It must always exist, since the top right corner must
also belong to some tile, and this square cannot be a starting square of any tile
unless n = 1, in which case it is a border tile by definition (see Figure 3.6).

This proves the induction step together with the lemma. The lemma in turn
implies Theorem 3.3.

Proof of Theorem 1.6. Observe that the set or regions B = By is exactly the set of
all Young diagram shapes. Take the moves to be as described above. The number
of different moves is bounded by the the number of pairs of ribbon tiles aligned
to each other. The latter number is easily bounded by n · 4n, which proves the
theorem.

Finally, we would like to note that in the proof of Lemma 3.4 rim hooks need
not be of the same length.
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4. Tile invariants

Let B = By be a set of tileable Young diagram shapes. In the previous section
we showed that all the tilings of λ ∈ By can be obtained from each other by a finite
set of moves. Here we show that the maps fi, 0 ≤ i < n/2, are constant along these
moves. In other words, we shall prove Theorem 1.4 for the set of regions By.

Let us look at the structure of the moves we introduced in section 3. Consider a
large enough example, shown in Figure 3.2. Recall that each ribbon tile is encoded
by a sequence (ε1, . . . , εn−1) of n− 1 zeroes and ones. In this notation our pair of
tiles is mapped into a similar pair:

00110101,01011110→ 00100101,01010110.

Subtracting the sequences as vectors, we get the vectors (0, 0, 0,−1, 0, 0, 0, 0)
and (0, 0, 0, 0,−1, 0, 0, 0). In other words, the first tiles in a pair differ at the fourth
place, where 1 becomes 0. Respectively, the second tiles in a pair differ at the fifth
place, where 1 again becomes 0. Note that all tiles contain n = 9 squares, and
5 + 4 = 9. We claim that this is a general observation.

Lemma 4.1. In every move defined above one tile sequence changes from 1 to 0
(or from 0 to 1) at some place i while another has exactly the same change at place
n− i.

Proof. The proof is done by the following observation. Note that each skew Young
diagram shape which corresponds to a move can be broken into three parts by
the number of squares in a diagonal parallel to the line y = −x (see Figure 4.1).
After the move, the southwest and northeast part remain the same, while the
middle part remain divided into two identical small ribbon tiles which get switched
now. Therefore, the differences in tile sequences occur only in places where the
southwest and northeast parts touch the middle part. If the southwest part was
touching the upper of two small ribbon tiles, it now touches the lower one. This
means that at place i the number in a sequence changed from 1 to 0 (see Figure
4.1). Respectively, the northeast part was touching the lower of two small ribbon
tiles and now is touching the upper one. This means that at place n− i the number
in a sequence changed from 1 to 0.

The second case, when the southwest part was touching the upper of two small
ribbon tiles before the move, and the lower tile after the move, is analogous. This
proves the lemma.

Now recall the definitions of the convexity invariants:

fi(ε1, . . . , εn−1) = εi − εn−i,

Figure 4.1.
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where 1 ≤ i ≤
⌊
n−1

2

⌋
. Analogously, the parity invariants are defined by

f∗(ε1, . . . , εn−1) = εm mod 2,

where n is even and m = n/2.

Lemma 4.2. The maps fi and f∗ are invariant under the local moves.

Proof. The lemma follows easily from Lemma 4.1. Indeed, as we showed above, if
a move changes tiles τ1, τ2 into tiles τ ′1, τ ′2, then

fi(τ ′1) = fi(τ1)± 1, fi(τ ′2) = fi(τ2)∓ 1,

where the different sign in the second equation comes from the minus sign in fi =
εi − εn−i.

Therefore

fi(τ ′1) + fi(τ ′2) = fi(τ1) + fi(τ2),

which proves that the maps fi are invariant under the local moves.
The case of a parity invariant is slightly different, since here we do not have

opposite signs. Instead we have

f∗(τ ′1) = f∗(τ1)± 1, f∗(τ ′2) = f∗(τ2)± 1.

Therefore

fi(τ ′1) + fi(τ ′2) = fi(τ1) + fi(τ2)± 2 = fi(τ1) + fi(τ2) (mod 2),

which proves that the map f∗ is invariant under the local moves. This finishes the
proof of the lemma.

Recall that by f0 we denote the area invariant.

Corollary 4.3. Let B = By be a set of tileable Young diagram shapes. Then, when
n = 2m+ 1, the maps f0, f1, . . . , fm are the ribbon tile invariants. Analogously,
when n = 2m, the maps f0, f1, . . . , fm−1, f∗ are the ribbon tile invariants.

Proof. By Lemma 4.2 the maps fi and f∗ are invariant under the local moves. By
Theorem 3.3 we can get any ribbon tiling of a Young diagram from any other.
Therefore these maps are indeed invariants on a set of tileable Young diagram
shapes. This proves the corollary.

Note that Corollary 4.3 proves only one part of Theorem 1.4 for the set of regions
B = By. The second part, which states that these invariants form a basis, will be
proven in section 6.

5. Increasing the set of regions

In this section we will generalize Corollary 4.3 from the set of Young diagram
shapes to the set Brc of all row-convex regions. As an intermediate step we use a
set of all skew Young diagram shapes.

Our approach is based on the following general observation.

Lemma 5.1. Let T be a set of tiles, and let B1 ⊂ B2 be two sets of T-tileable
regions. Suppose for each region Γ2 ∈ B2 there is a region Γ1 ∈ B1 such that
Γ1 ⊃ Γ2 and Γ1 \ Γ2 is T-tileable. Then, if f : B2 → G is an invariant on B1, it is
also an invariant on B2.
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Figure 5.1.

Proof. We need to show that for any Γ2 ∈ B2 all tilings s ∈ S(Γ2,T) have the
same G-value of f . We know that for any Γ2 ∈ B2 there is a region Γ1 ∈ B1,
Γ1 ⊃ Γ2, such that Γ1 \ Γ2 is T-tileable. Therefore the set of tilings S(Γ2,T) is
in a correspondence with a subset S′ ⊂ S(Γ1,T) such that all the tilings s ∈ S′
have the same fixed tiling of Γ1 \Γ2. By definition the value of f is the same on all
tilings of S(Γ1,T). Since it is fixed on Γ1 \ Γ2, it must be the same on S(Γ2,T).
This finishes the proof.

We call the set B2 of T-tileable regions reducible to B1, if B1 ⊂ B2 and they
satisfy the conditions of Lemma 5.1. Of course, if B3 is reducible to B2 and B2 is
reducible to B1, then B3 is reducible to B1.

Lemma 5.2. Let Bsy be the set of Tn-tileable skew Young diagram shapes, and
By the set of Tn-tileable ordinary Young diagram shapes. Then Bsy is reducible to
By ⊂ Bsy.

Proof. Indeed, all we need to prove is that every skew Young diagram can be
imbedded in an ordinary Young diagram so that their difference is tileable by the
ribbon tiles. There is an easy way to do that just by using the horizontal and the
vertical tiles.

The idea is shown in Figure 5.1. We start with the rightmost column of a skew
Young diagram shape and move to the left. Whenever we move left, add on top a
column of vertical tiles until they equal or exceed the column on the right. If they
do exceed the column on the right, for each exceeding square add to the right a
row of horizontal tiles until they equal or exceed the row below. In example shown
in Figure 5.1 we do nothing for the first two columns. For the third column from
the right we add one vertical tile and two horizontal. We add just one vertical tile
for each of the next two columns. For the sixth column we are forced to add three
vertical and two horizontal tiles, etc.

We stop when we are finished with the last column (the ninth in case of Figure
5.1). By construction we always have a Young diagram shape to the right of the
building column. Therefore the resulting shape is also a Young diagram shape.
This proves the lemma.

Remark 5.3. In [Pa] we use this construction to define a generalization of the rim
hook bijection for skew shapes. Note also that Lemma 5.2 can be generalized for
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Figure 5.2.

any set of tiles T which contains a horizontal and a vertical tile, not necessarily of
the same length.

Lemma 5.4. Let Bsy be the set of Tn-tileable skew Young diagram shapes, and
Brc the set of Tn-tileable row-convex regions. Then Brc is reducible to Bsy ⊂ Brc.

Proof. Indeed, all we need to prove is that every row-convex region can be imbedded
in a skew Young diagram so that their difference is tileable by ribbon tiles. There
is an easy way to do that just by using just horizontal tiles.

The idea is shown in Figure 5.2, and is similar to the idea used in Lemma 5.2.
We start with the top row of our row-convex region and move to the bottom row.
Each time we move down we add a row of horizontal tiles to the left so that they
equal or exceed the row above. When get to the bottom we start adding rows of
horizontal tiles to the right of the region in such a way that each row equals or
exceeds the row below (see Figure 5.2). At the end we get a skew Young diagram
shape, which proves the lemma.

Corollary 5.5. The statement of Corollary 4.3 holds for the set Brc of row-convex
Tn-tileable regions.

Proof. By Lemmas 5.2 and 5.4, Brc is reducible to By. By Lemma 5.1 this implies
that every ribbon tile invariant for the set of regions By is also an invariant for the
set of regions Brc. Together with Corollary 4.3, this proves the result.

6. The tile counting group

Here we will prove that there are no invariants other than those which follow
from convexity, parity and area invariants. Together with Corollary 5.5 this implies
the main result of the paper, Theorem 1.4.

The idea is to show that every invariant is completely defined by its values on
the horizontal and two-row ribbon tiles.

Denote τ0 = 0000 . . . 0, τi = 0 . . . 010 . . . 0 (1 is in the i-th place),
1 ≤ i ≤ n− 1. Let Bn ⊂ Tn be the set of tiles τi, where 0 ≤ i ≤ m =

⌊
n
2

⌋
.

Lemma 6.1. Let f1, f2 : Brc → G be two ribbon tile invariants. We claim that if
for every τ ∈ Bn we have f1(τ) = f2(τ), then f1 ≡ f2.

Proof. We need to show that for every ribbon tile τ ∈ Tn we have f1(τ) = f2(τ).
This would immediately imply that f1 ≡ f2. We prove it by induction on the height
ht of a ribbon tile (see the Introduction):

ht(τ) = 1 + ε1 + ε2 + · · ·+ εn−1.

First we prove the base of the induction. If ht(τ) = 1, then τ is a horizontal tile
τ0 ∈ Bn. If ht(τ) = 2, then τ ∈ Bn or τ = τi, m < i ≤ n− 1. Observe that τi and



22 IGOR PAK

Figure 6.1. Figure 6.2.

τn−i form a two-row skew Young diagram shape which can also be divided into two
horizontal tiles (see Figure 6.1). Therefore if invariants f1, f2 agree on Bn they
must also agree on all the two-row ribbon tiles.

Now suppose the claim holds for all tiles τ ∈ Tn with ht(τ) < k. Let τ ∈ Tn be
a ribbon tile and ht(τ) = k. The sequence corresponding to τ can be presented in
the form (ε1, . . . , εi, 1, 0, 0, . . . , 0). The two-row ribbon tile τn−i−1 can be aligned
with the top two rows of τ to form a skew Young diagram shape (see Figure 6.2).
This region can also be divided into a horizontal tile and a tile τ ′ with a sequence
(ε1, . . . , εi, 0, 0, 0, . . . , 0) (see Figure 6.2). Note that ht(τ ′) = ht(τ) − 1 = k − 1.
Therefore if invariants f1, f2 agree on all tiles τ ∈ Tn, ht(τ) < k, they must also
agree on all tiles τ ∈ Tn, ht(τ) = k. This proves the induction step and finishes
the proof of the lemma.

Proof of Theorem 1.4. Corollary 5.5 implies that our maps are indeed invariants.
All we need to prove now is that they are independent and generate the whole tile
counting group.

To show independence, consider values our invariants take on Bn ⊂ Tn. The
area invariant f0 is a constant on all Bn, including τ0. The convexity invariant fi
is nonzero only on the tile τi. Analogously, the parity invariant is nonzero only on
the tile τm, n = 2m. This immediately implies independence.

Now, Lemma 6.1 proves that a tile invariant is completely determined by its
values on Bn. This implies that when n = 2m+ 1 there can be no invariants that
are not generated by f0, f1, . . . , fm. Therefore G(T;B) ' Zm+1.

We still have a little room left when n = 2m, since the parity invariant takes
values in Z2 rather than in Z. Recall that in the proof of Lemma 6.1 we showed
that if f is an invariant, then

f(τi) + f(τn−i) = 2 f(τ0)

(see Figure 6.1). When i = m this gives 2 · f(τm) = 2 · f(τ0), which implies that
there can be no invariants that are not generated by f0, f1, . . . , fm−1 and f∗.
Therefore G(T;B) ' Zm × Z2. This finishes the proof of Theorem 1.4

7. Applications to tileability

In this section we use ribbon tile invariants to give new tileability criteria for
certain sets of tiles. Among the results we prove Theorems 0.1− 0.3.
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We use the following logic. Let T ⊂ Tn be a subset of ribbon tiles. Suppose Γ is
a region which is tileable by Tn. Then we can use tile invariants to find diophantine
equations for the number of times each tile τ ∈ Tn occurs in the tilings. When
restricted to a smaller set of tiles T, sometimes these equations do not have an
integer solution. This would imply that Γ is untileable by T. Generally, having a
solution for these equations becomes a tileability test which is easy to use in practice.

Here are a few examples when we apply the above logic successfully.
1. Let T ⊂ T4 be the set of four tiles shown in Figure 7.1. We ask for which

values (a, b) the rectangle [a×b] can be tiled by T. Note that since T is asymmetric,
we need to use the following notation: a is a height and b is a width of a rectangle.

Theorem 7.1. Let T be the set of tiles in Figure 7.1. Then the rectangle [a × b]
can be tiled by T if and only if (a, b) satisfies one of the following:

1) 4|a,
2) 8|b, a ≥ 3,
3) 2|a, 4|b.

Proof. The tileability in cases 1) − 3) follows from the existence of tilings of the
rectangles [4× 1], [2× 4] and [3× 8] (see Figure 7.2).

To prove untileability in all the other cases we need several observations. First,
it is obvious that no rectangle [1× b] can be tiled.

Suppose now a is odd, a ≥ 3. Then 4|b and the rectangle [a × b] can be tiled
by a horizontal tile [1 × 4] ∈ T4. Thus the height invariant (see Definition 1.5)
f• = f1 + f2 (mod 2), f• : B → Z2, has the value

f•([a× b]) = 0.

However, f•(τ) = 1 for all τ ∈ T. Therefore in order to be tileable, the rectangle
[a× b] must contain an even number of tiles, i.e. 8|b and we are in case 2).

Now we need to show that no rectangle [a× b] with a, b = 2 mod 4 can be tiled
by T. This can be done by coloring arguments (see the Introduction). We will do
it in the next section (see Corollary 8.5).

2. Let T ⊂ T5 be the set of eight tiles shown in Figure 0.5. Note that in this
case T is symmetric under the transposition. Theorem 0.1 claims that a rectangle
[a× b] can be tiled by T only if 10|a · b. We claim that an even stronger statement
is true.

Figure 7.1.

Figure 7.2.



24 IGOR PAK

Figure 7.3.

Figure 7.4.

Theorem 7.2. Let T be the set of tiles in Figure 0.5. Then the rectangle [a × b]
can be tiled by T if and only if 10|a · b and a, b > 1.

Proof. The tileability follows immediately from the existence of tilings of the rect-
angles [2× 5], [3× 10] and of the rectangles [5× 2], [10× 3] transpose to them (see
Figure 7.3).

The other direction is similar to the proof of Theorem 7.1. Observe that if a
rectangle [a × b] can be tiled by T, then either a or b can be divided by 5. But
then [a× b] is tileable by either a horizontal tile τ0 or a vertical tile τ ′0, τ0, τ

′
0 ∈ T5.

Observe that

f•(τ0) = f•(τ ′0) = 0 mod 2,

where f• : B → Z2 is a height invariant. Therefore f•([a × b]) = 0 for any tileable
rectangle [a × b]. On the other hand, for any tile τ ∈ T we have f•(τ) = 1.
Therefore there must be an even number of tiles in [a× b], i.e. 10|a · b. This proves
the theorem.

3. Let T ⊂ T5 be the set of six tiles shown in Figure 0.6. Note that in this case
T is also symmetric under the transposition.

Theorem 7.3. Let T be the set of tiles in Figure 0.5. Then the rectangle [a × b]
can be tiled by T if and only if 10|a · b and a, b 6= 1, 3.

Proof. The tileability follows immediately from the existence of tilings of the rect-
angles [2× 5], [7× 10] and of the rectangles [5× 2], [10× 7] that are transposed to
them (see Figure 7.4).

To show the other direction, use the same reasoning as in the proof of Theorem
7.2. If a rectangle [a × b] can be tiled by T, then its area must be divisible by 5
and therefore it is tileable by either a horizontal or a vertical tile in T5. Thus the
1-convexity invariant f1 is 0 on any tileable [a× b]. On the other hand, f1(τ) = ±1
for each τ ∈ T. Therefore [a × b] has to be tiled by an even number of tiles, and
10|a · b. This finishes the proof of the theorem.

Theorem 7.4. The triangular shape ∆N can be tiled by tiles shown in Figure 0.6
if and only if N ≡ 0, 4, 15, 19 (mod 20).

Proof. First we prove the tileability part. Observe that ∆4 and ∆15 are both tileable
(see Figure 7.5). Now, if we have tilings of the regions ∆M , ∆N we can construct a
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Figure 7.5.

Figure 7.6. Figure 7.7.

Figure 7.8.

tiling of the region ∆M+N+1 assuming the rectangle [(M + 1)× (N + 1)] is tileable.
(see Figure 7.6). Analogously, if we have tilings of the regions ∆M , ∆N we can
construct a tiling of the region ∆M+N assuming the rectangle [M ×N ] is tileable
(see Figure 7.7). Since both [5 × 16] and [4 × 15] are tileable (see Theorem 7.3),
this gives us tilings of ∆20 = ∆15+5+1 and ∆19 = ∆15+5. Going further, if ∆M is
tileable, then ∆20+M is also tileable. This covers all the values N ≡ 0, 4, 15, 19
(mod 20).

To prove the “only if” part, start by computing the area. We have

f0(∆N ) =
N (N + 1)

2
.

Since the area must be divisible by 5, this gives us 5|N (N + 1) and N ≡ 0, 4
(mod 5). Now, in each of these cases it is easy to see that ∆N can be tiled by T5.
Indeed, both ∆4 and ∆5 can be tiled by T5 (see Figure 7.8). Since any rectangle
[a × b] is tileable by either a horizontal or a vertical tile in T5, we can use the
construction in Figure 7.7 repeatedly and tile ∆N for all N ≡ 0, 4 (mod 5).
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Figure 7.9.

Figure 7.10.

Now we can compute the value of the 1-convexity invariant f1 on ∆N , N ≡ 0, 4
(mod 5). We have

f1(∆4) = f1(∆5) = 0 , f1(∆N+5) = f1(∆N ),

which gives us

f1(∆5m+4) = f1(∆5m+5) = 0.

Since f1 takes only the values ±1 on T, this implies that in order to be tileable ∆N

must have an even number of tiles. Thus 2|f0 = N (N+1)
10 , and 20|N (N + 1). This

immediately implies N ≡ 0, 4, 15, 19 (mod 20).

4. Let T ⊂ T5 be the set of eight tiles shown in Figure 7.9. As before, we solve
the tileability problem for rectangular and triangular shapes.

Theorem 7.5. Let T be the set of tiles in Figure 7.9. Then a rectangle [a× b] can
be tiled by T if and only if (a, b), a ≤ b, satisfies one of the following:

1) 10|a · b, a ≥ 8,
2) a = 4, 6, 5|b,
3) a = 5, 2|b.

Proof. The tileability follows from the existence of tilings of the rectangles [4× 5],
[5× 6] and of the rectangles [5× 4], [6× 5] that are transposed to them (see Figure
7.10). Indeed, then we can construct rectangles [4× 5m], [6× 5m], [5× 2 r], r ≥ 3,
which cover cases 2) and 3). An easy check shows that this also implies tileability
in case 1).

Now let us prove the “only if” direction. First, we show that 10 must divide
a b in order for [a × b] to be tileable by T ⊂ T5. Indeed, the area f0 = a · b must
be divisible by 5, which implies that [a × b] is tileable by either a horizontal or a
vertical tile in T5. Now this implies that the 2-convexity invariant takes the value
zero on a rectangle, while its value is ±1 on each of the eight tiles in T. Therefore
[a × b] must contain an even number of tiles in order to be tileable by T, which
proves the claim.

Observe that since 10|a · b, a, b > 7, covers by case 1) we are left with the cases
when a or b is at most 7. It is easy to see that there are no tileable rectangle with
a = 2, 3. An elaborate search of about a dozen beginnings shows that there are no
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Figure 7.11.

tileable rectangle with a = 7. These cover all the untileable cases, and finishes the
proof of the theorem.

Theorem 7.6. The triangular shape ∆N can be tiled by tiles shown in Figure 7.9
if and only if N ≡ 0, 5, 14, 19 (mod 20).

Proof. First we prove the tileability part. Observe that ∆5 and ∆14 are both tileable
(see Figure 7.11). Recall that by Theorem 7.5 the rectangles [14× 5], [15× 6] and
[20×N ], N ≥ 5, are all tileable by T. Using the same construction as in the proof
of Theorem 7.4 (see Figures 7.6 and 7.7), we get tilings on ∆19, ∆20. We also get
a tiling of ∆20+N from a tiling of ∆N . This covers all the values N ≡ 0, 5, 14, 19
(mod 20) and proves the “if” part.

To prove the “only if” part, first recall that the area is divisible by 5 if and only
if N ≡ 0, 4 (mod 5), and in all these cases ∆N is tileable by T5 (see the proof of
Theorem 7.4). Compute the 2-convexity invariant f2(∆N ). We have (see Figures
7.7 and 7.8)

f2(∆4) = f2(∆5) = −1, f2(∆N+5) = f2(∆N )− 1,

which gives us

f2(∆5m+4) = f2(∆5m+5) = −m.
Since f2 takes only the values ±1 on T, this implies that in order to be tileable
the number of tiles in ∆5m+4,5 must have the same parity as m. This immediately
implies N ≡ 0, 4, 15, 19 (mod 20), and finishes the proof.

8. Signed tilings and coloring arguments

Instead of ordinary tilings one can try using signed tilings (see [CL]), which are
basically placements of tiles on a plane with weights +1 or −1 assigned to each of
them. We say that they tile a region if the sum of the weights of the tiles is 1 for
every square inside a region and 0 elsewhere.

Even with small sets of tiles it often happens that there are untileable regions
which have signed tilings. For example, the region in Figure 1.3 has no ordinary
domino tiling but has a signed domino tiling. Indeed, simply tile the rectangle
[3×4] by dominoes and add two horizontal dominoes on the top and on the bottom
with negative signs.
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It turns out that signed tilings are easier to study because of their connection
with coloring arguments. By analogy with tile invariants, a coloring map f : R→ G
is trivial if f(Γ) = 0, for every γ ∈ R, where 0 is an identity element in an abelian
group G. Otherwise f is called nontrivial.

Theorem 8.1. A region Γ has a signed tiling if and only if there is no abelian
group G that has a nontrivial T-coloring map f : R → G.

Proof. Indeed, consider a group G obtained as a free abelian group generated by
elements xi,j that correspond to squares of a square grid. Let I ⊂ G be a subgroup
generated by sums xi1,j1 + xi2,j2 + . . . that correspond to translations of tiles.

Observe that the T-coloring maps correspond to the elements of the quotient
group G/I. Therefore for every region Γ there exists a T-coloring map f : R → G
such that f(Γ) 6= 0 unless the sum of squares of Γ lies in I. On the other hand,
a region Γ has a signed tiling if and only if the sum of its squares lies in I. This
proves the result.

By analogy with the tile counting group we define a coloring group O(T) = G/I.
It follows from the proof of the theorem that signed tilings and T-coloring maps
are basically dual to each other. However, it is convenient to separate them, since
they give a different view of the subject.

It is important to note that whenever we have a T-coloring map which proves
that a certain region Γ is untileable, this also implies that Γ has no signed tiling.
Therefore in the event when Γ is untileable but has a signed tiling (like the region
in Figure 1.3 mentioned above), it also means that this fact cannot be proved by
use of T-coloring maps. Traditionally the coloring maps were a major instrument
in proving untileability results (see [G]), so it is often desirable to check whether
they can be used to prove any of our negative results. Below we will show that
the results we obtained in the previous section in fact cannot be proved by use of
coloring arguments.

Finally, let us point out where the difference between signed and ordinary tilings
comes from. Instead of an abelian group G one can take a monoid M (commutative
semigroup with an identity element). One can also define a semigroup morphism
from all regions to M which is the identity on all tiles. It is not hard to prove a
theorem similar to Theorem 8.1 which says that a region Γ has a tiling if and only
if there exists no morphism which is not the identity on Γ (cf. [CL]). We skip the
details.

Theorem 8.2. Let Tn be a set of ribbon tiles, and let O(Tn) be its coloring group.
Then

O(Tn) ' Zn−1.

Proof. Let Z be an abelian group generated by elements z0, z1, . . . , zn−1. Define a
coloring map

ζ : R → Z/(z0 + · · ·+ zn−1),

which acts on generators as follows:

ζ(xi,j) = z(j−imodn).

To prove that ζ is indeed a Tn-coloring map, note that by definition ribbon tiles
in Tn contain no two squares lying on the same diagonal. Therefore they must
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contain squares lying in n subsequent diagonals: i, i+1, . . . , i+n−1, where i ∈ Z.
Thus for all τ ∈ Tn

ζ(τ) = zi + · · ·+ zn + z1 + · · ·+ zi−1 = 0

and ζ is indeed a Tn-coloring map.
We can now prove that the coloring group for the set of ribbon tiles Tn is Zn−1.

Let us prove that for any region Γ, ζ(Γ) = 0, there exist a signed tiling of Γ.
Then, by Theorem 8.1, this will imply that the coloring group is isomorphic to
Z/(z0 + · · ·+ zn−1) ' Zn−1, which proves the result.

Let d1 be the difference of ribbon tiles 00 . . . 01 and 00 . . . 00 which have the
same starting square. Observe that adding d1 to a region adds a square xi,j and
subtracts a square xi+1,j+1 lying on the same diagonal. Let d2 be the difference of
two horizontal tiles 00 . . . 0, one of them having the starting square xi,j and the
other in xi,j+1. By analogy with d1, d2 adds a square xi,j and subtracts a square
xi,j+n lying on the same diagonal modulo n. Note that all the differences d1 and
d2 are equivalent up to translation.

Now, let Γ be a region such that ζ(Γ) = 0. We show that by adding enough
differences d1 and d2 we can get an empty region. Indeed, by using d2’s we can
move all the squares of Γ into the first n diagonals. Furthermore, by using d2’s
we can move all the squares of Γ into the squares x0,0, x0,1, . . . , , x0,n−1. Since
ζ(Γ) = 0, this means that we get the same weight m at each of these squares. Now
subtract m copies of the horizontal tile. We get an empty region, which is exactly
what we needed. This finishes the proof of the theorem.

Note that if we use only d1 without d2 we get a sequence of numbers . . . ,m−1,
m0, m1, m2, . . . , which are numbers of squares in diagonals. This sequence gives
rise to a coloring argument for the ordinary tilings that is more general than the T2-
coloring map ζ. For example, it proves that the region in Figure 1.3 is untileable
by dominoes. Indeed, the sequence is 1, 1, 2, 2, 2, 1, 1. The first two ones imply
that there is a domino lying in the first two diagonals. Now, the two in the third
place implies that there must be two dominoes that lie in the the third and fourth
diagonal. Consequently, there must be two dominoes that lie in the the fifth and
sixth diagonal. But this is impossible since the sixth number in the sequence is one.
Therefore the region in Figure 1.3 is indeed untileable by dominoes.

When we restrict our set of tiles to a subset, all the coloring maps remain.
However, a priori other coloring maps may appear. We show that in the cases
considered in the previous section this does not happen.

Theorem 8.3. For the set of tiles shown in Figure 7.1 the coloring group is Z3.
For the sets of tiles shown in Figures 0.5, 0.6 and 7.9 the coloring group is Z4.

Proof. All we need to show is that our sets of tiles generate differences d1 and d2.
This would imply that their coloring group is the same as that of the ribbon tiles.

1) For the set of tiles in Figure 7.1, d1 comes from subtracting 010 and 001 with
the same starting square. The difference d2 comes from subtracting 100 and 001
with starting squares xi,j and xi−1,j respectively.

2) For the set of tiles in Figure 0.5, d1 comes from subtracting 0010 and 0001
with the same starting square. The difference d2 comes from subtracting 0111 and
1110 with starting squares xi,j and xi,j+1 respectively.

3) For the set of tiles in Figure 0.6, denote d2 the difference between 0111 and
1110 with starting squares xi,j and xi,j+1 respectively. It adds xi,j and subtracts
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xi−3,j+2. Analogously define a difference d′2 between 0001 and 1000 with starting
squares xi−1,j and xi,j respectively. It subtracts xi,j and adds xi−2,j+3. Now the
difference d1 comes from adding d2 and d′2.

4) For the set of tiles in Figure 7.9, d1 comes from subtracting 0010 and 0011
with the same starting square. The difference d2 comes from subtracting 0010 and
0100 with starting squares xi,j and xi,j+1 respectively.

Theorem 8.3 basically tells us that ζ(Γ) = 0 is a criterion for a region Γ to have
a signed tiling in each of those cases. Before we can conclude, we need the following
technical result.

Lemma 8.4. 1) Let n = 5, Γ = ∆N . Then ζ(Γ) = e if and only if N ≡ 0, 4
(mod 5).

2) Let n = 5, Γ = [a× b]. Then ζ(Γ) = e if and only if 5|a · b.
3) Let n = 4, Γ = [a× b]. Then ζ(Γ) = e if and only if 4|a or 4|b.

Proof. Parts 1) and 2) follow immediately from the area being divisible by 5 and
existence of tilings by T5 in all these cases (see the proof of Theorem 7.4).

Part 3) is analogous except for the case when a, b ≡ 2 (mod 4). In this case a
simple direct computation of zeta shows that ζ 6= e.

Corollary 8.5. 1) Let n = 5, and let T be any of the sets of tiles shown in Figures
0.5, 0.6 and 7.9. Then ∆N has a signed tiling by T if and only if N ≡ 0, 4 (mod 5).

2) Let n = 5, and let T be any of the sets of tiles shown in Figures 0.5, 0.6 and
7.9. Then [a× b] has a signed tiling by T if and only if 5|a · b.

3) Let n = 4, and let T be the set of tiles shown in Figure 7.1. Then [a× b] has
a signed tiling by T if and only if 4|a or 4|b.
Proof. This follows immediately from Lemma 8.4 and Theorems 8.3 and 8.1.

Corollary 8.6. None of Theorems 0.1 − 0.3 can be proved by the coloring argu-
ments.

9. Extended coloring arguments and tile invariants

Recall the definition of a coloring group:

O(T) = G/I,

where G is a free abelian group generated by elements xi,j that correspond to
squares of a square grid, and let I ⊂ G be a subgroup generated by sums xi1,j1 +
xi2,j2 + . . . that correspond to translations of tiles.

By analogy, define an extended coloring group as follows:

O(T) = G/I′,

where I′ ⊂ G is a subgroup generated by relations

xi1,j1 + xi2,j2 + · · · = xp1,q1 + xp2,q2 + . . . ,

where the tiles τ1 =
∐
k(ik, jk), τ2 =

∐
k(pk, qk) are translations of the same tile

τ ∈ T. Of course, O(T) ⊂ O(T).
By definition, every extended coloring argument for a set of tiles T corresponds

to an element of the extended coloring group O(T). In other words, there is a
map ν : O(T) → G(T). Since ν is homomorphic, the image E(T) = ν(O(T)) is a
subgroup in the tile counting group G(T). Call this image E(T) ⊂ G(T) a torsion
group.
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Figure 9.1.

Theorem 9.1. E(T) ' O(T)/O(T).

Proof. By definition, O(T) is the kernel of ν. This implies the result.

Now we can show that in the case of ribbon tiles most of the invariants cannot be
derived by the extended coloring arguments. We shall give a complete description of
the torsion group E(Tn) and compare it with the previously computed tile counting
group G(Tn) ⊃ E(Tn).

Definition 9.2. Let Tn be a set of ribbon tiles. A map fH : Tn → Zn defined as

fH(ε1, . . . , εn−1) =
n−1∑
i=1

·εi (mod n)

is called the shade invariant.

An easy geometric interpretation of fH is given in Figure 9.1. Imagine there is
a wall behind our ribbon tile τ , and the light is coming from the southeast. Then
fH(τ) is equal to the shaded area modulo n.

First, observe that fH is a tile invariant. Indeed, if n is odd we have

fH = f1 + 2 f2 + · · ·+mfm (mod n),

where fi is the i-convexity invariant and n = 2m+ 1. Analogously, if n is even we
have

fH = f1 + 2 f2 + · · ·+ (m− 1) fm−1 + f∗|Zn (mod n),

where n = 2m and g = f∗|Zn mod n is a parity invariant lifted to Z2m:

g(ε1, . . . , εn−1) = mεm (mod 2m).

This gives fH ∈ G(T). Let us show that fH ∈ E(T), i.e. that the shade invariant
can be obtained by the extended coloring argument. Indeed, consider a coloring
map f : R→ Z, defined by f(i, j) = i mod n. It is easy to see that ν(f) = fH and
therefore fH ∈ E(Tn). Analogously, the area invariant f0 = ν(g) ∈ E(Tn), where
g : R → Z is a coloring map defined by

f(i, j) =
{1 , i− j = 0 mod n,

0 , i− j 6= 0 mod n.

We claim that except for f0 and fH and their linear combinations, no other non-
trivial invariant can be obtained by the extended coloring argument.
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Theorem 9.3. Let Tn be a set of ribbon tiles, f0 the area invariant and fH the
shade invariant. Then E(Tn) ' Z×Zn, and the maps f0, fH form an independent
basis of invariants.

Proof. We already showed that f0, fH ∈ E(Tn). Since they are independent, to-
gether they generate Z× Zn.

In the other direction, recall the computation of the coloring group O(Tn) '
Zn−1 given in Theorem 8.2. Let us compute O(Tn). By Theorem 9.1 this is all we
need to find E(T).

Denote τ0 = 00 . . . 0, τ1 = 11 . . . 1 and τ2 = 10 . . . 0. Let us find all coloring
maps f : R → G (see the proof of Theorem 8.1), f(i, j) = xi,j such that the sums
of squares in translations of τ0−2 are constant. Note here that a priori ν(f) does
not have to be a tile invariant, since we do not check the relations for other ribbon
tiles.

We claim that f is determined by values x1,1, x1,2, . . . , x1,n and x2,1. Indeed,
translations of τ0 and τ1 give us xi,j = xi±n,j = xi,j±n. Now, given xi,j , . . . xi,j+n−2

and the value f(τ2) = x1,1 + · · ·+ x1,n−1 + x2,1, we get

xi+1,j = f(τ2)− xi,j − · · · − xi,j+n−2.

Therefore, given x1,1, . . . , x1,n and x2,1, we first determine x1,j , for all j ∈ Z, then
x2,j , then x3,j , etc. For the negative rows use xi,j = xi+n,j . This proves the claim.

Now, by taking a quotient O(Tn)/O(Tn) we can make all values x1,1, x1,2,
. . . , x1,n−1 zero (see the proof of Theorem 8.2). Let x1,n = a, x2,1 = a + z. The
computations above give us xi+1,j = a+i z and n z = 0. Therefore f = a ·f0 +z ·fH,
and f0, fH generate the whole torsion group E(Tn).

As a corollary, from Theorem 9.3 we immediately get Theorem 1.8. As we noted
in the introduction, another way to prove Theorem 1.8 would be to find a tileable
region Γ ∈ RTn \ Rrc, n ≥ 3, such that f• is not constant on the set S(Γ,Tn) of
ribbon tilings. When n = 3 one such example is shown in Figure 9.2. The value of
f• is 1 on the first tiling and 0 on the second tiling. Note also that such a region
Γ probably must have at least one hole inside (see Conjecture 10.1 in the next
section).

Figure 9.2.

10. Conclusion

Let us summarize the results in the paper and compare them with open ques-
tions.

The main result of the paper is a description of the tile counting group for a set
of ribbon tiles. Note, however that we only considered row convex or column convex
regions (which probably include all the interesting ones). However, Conway and
Lagarias in [CL] were able to prove that for n = 3 the map f1 is an invariant for all
simply connected regions. Recently Muchnik and the author in [MP] used a similar
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technique to show that for n = 4 the maps f1 and f∗ are invariants for all simply
connected regions. All the available evidence points to the following conjecture.∗

Conjecture 10.1. The i-convexity and parity maps are the group invariants for
all simply connected regions.

The major point of our proof is Theorem 1.6, which claims that there is a finite
set of moves which can change any tiling of a given Young shape region to any
other tiling. This result has been generalized by the author for any skew shape (see
[Pa]). In fact we believe in the following conjecture.

Conjecture 10.2. Let Γ be any simply connected region tileable by Tn. Then the
graph Θn(Γ) is connected.

In other words, we claim that the moves defined in section 3 suffice. Of course,
the results of section 4 imply that Conjecture 10.1 follows from Conjecture 10.2.

Let us move now to other sets of tiles. Unfortunately it is not always true that
there exist a finite number of moves (or local replacement rules as they are also
called). For example, let T ⊃ T3 be the set of all trominoes (see [G] and Figure
10.1). There are infinitely many regions with exactly two tilings that are not local
in any sense (see Figure 10.2). Even though there are no finite number of local
moves, there still can be some invariants other than the area. Here is an example.

Let T be the set of four trominoes τ1, . . . , τ4 in Figure 10.1. Let B = RT be
the set of all T-tileable regions. Define maps f1,2, f2,3 : T→ Z3 as follows:

f1,2(τ1) = f1,2(τ2) = 1, f1,2(τ3) = f1,2(τ4) = 0,

f2,3(τ2) = f2,3(τ3) = 1, f2,3(τ1) = f2,3(τ4) = 0.

Theorem 10.3. Let T and B = RT be as above, and let f0 be an area invariant.
Then tile counting group

G(T,B) ' Z× Z2
3

and the maps f0, f1,2, f2,3 form an independent basis of invariants.

Theorem 10.3 basically claims that there is one nontrivial tile invariant f1,2,
which can be stated as follows:
• For any convex region Γ the number of times modulo 3 the tiles τ1 and τ2

occur in a tiling of Γ depends only on Γ.
Theorem 10.3 also claims that rotations of f1,2 and the area invariant generate

the whole tile invariant group.

Figure 10.1.

∗Conjecture 10.1 was recently established by C. Moore and the author (July 2000).
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Figure 10.2.

Figure 10.3.

Proof of Theorem 10.3. The idea is similar to the one used in section 6. By defini-
tion G(T;B) = ZT/I, where I is the linear span or relations obtained from different
tilings of the same region. Thus having enough relations that generate I ′ ⊂ I will
imply that G(T;B) ⊂ ZT/I ′. In this particular case two types of relations will
suffice.

First, there is a relation obtained from the two tilings of [2×3] (see Figure 10.3):

τ1 + τ3 = τ2 + τ4.

Then there is another relation which comes from the two tilings in Figure 10.4:

4 · τ4 + τ2 = 4 · τ3 + τ1.

In combination with the first relation and rotations, this gives 3 · τ1 = · · · = 3 · τ4.
Simple further computations show that the maps f0, f1,2, f2,3 are independent and
generate the whole tile counting group G(T,RT). Therefore we have G(T,RT) ⊂
Z× Z2

3.
Now it remains to prove that f1,2 is indeed an invariant. This in turn would

imply that f1,2 is an invariant, and prove the theorem. This can be done by the
tile extended coloring argument.

Let g : R → Z3 be a coloring map defined by g(i, j) = j − i (mod 3). Observe
that g ∈ O(T). Compute the corresponding tile invariant f = ν(g) : RT → Z3. We
have

f(τ1) = f(τ3) = 0, f(τ2) = −1, f(τ2) = 1 mod 3.
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Figure 10.4.

Figure 10.5.

By the symmetry, we also have another tile invariant f ′ : RT → Z3, given by

f ′(τ2) = f ′(τ4) = 0, f ′(τ1) = −1, f ′(τ3) = 1 mod 3.

From this we get

f1,2 = f + f ′ − f0 mod 3.

Therefore both f1,2 and f2,3 are T-invariants. This finishes the proof.

Note that in the proof of Theorem 10.3 we used nothing but coloring arguments.
Of course, with a smaller set of tileable regions, when the tile counting group
becomes bigger, this would be impossible. That was the case with ribbon tiles.
Indeed, in section 9 we showed that the height invariant cannot be extended to
the set of all tileable regions, so the tile counting group G(Tn,RTn) ( G(Tn,Brc).
Thus finding the tile counting group is probably hard in general unless all invariants
follow from the extended coloring arguments.

Even in the case of all T-tileable regions it is still possible to have invariants
which do not follow from any extended coloring arguments. Indeed, consider the
set T of two tiles shown in Figure 10.5. It is easy to see that any region either is
untileable or has a unique tiling. On the other hand, extended coloring arguments
can prove only the area invariant. Note that in this case every region has a signed
tiling.

We believe that having E(T) ' G(T,RT), is a rather rare event. However it
might occur for certain nice sets of tiles such as finite sets of rectangles. Without
making a precise conjecture, let us state the following problem.

Problem 10.4. Let T be a finite set of rectangles, and let B be the set of convex
regions tileable by T. Find tile invariant group G(T;B) and the torsion group
E(T).
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For example, let T consist of two rectangles [2× 1] and [1× 3]. It is not hard to
see that G(T;B) ' E(T) ' Z× Z5. There is some recent literature relevant to the
problem (see [Ke] for details).

In this paper we always considered tiles to be identical if they can be obtained
by translation. Following some recent literature (see e.g. [Pr]), one can try to
distinguish between ribbon tiles with different starting points. It seems to us that
at least theoretically the whole analysis of the paper can be generalized for this case,
though some computations may become complicated. We challenge the reader to
find tileability applications of these generalizations.

Our proof of the main theorem was based on an ad hoc method which probably
cannot be generalized in full for other sets of tiles. The heart of the proof is the
rim hook bijection. There are shifted, tree, and skew analogs of this bijection (see
[FS] and [Pa]), but they all can be reduced to the original bijection in one way or
another.

Problem 10.5. Find a three-dimensional analog of the rim hook bijection.

Of course, there are infinitely many open questions and problems, but the reader
is probably too tired already to be bothered by whatever is left.
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