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The well-known Goldbach Conjecture (GC) states that any sufficiently large even num-
ber can be represented as a sum of two odd primes. Although not yet demonstrated, it
has been checked for integers up to 1014. Using two stronger versions of the conjecture, we
offer a simple and fast method for recognition of a gray box group G known to be isomor-

phic to Sn (or An) with known n ≥ 20, i.e. for construction† of an isomorphism from G
to Sn (or An). Correctness and rigorous worst case complexity estimates rely heavily on
the conjectures, and yield times of O([ρ+ν+µ]n log2 n) or O([ρ+ν+µ]n logn/ log logn)
depending on which of the stronger versions of the GC is assumed to hold. Here, ρ is the

complexity of generating a uniform random element of G, ν is the complexity of finding
the order of a group element in G, and µ is the time necessary for group multiplication
in G. Rigorous lower bound and probabilistic approach to the time complexity of the
algorithm are discussed in the Appendix.

c© 2000 Academic Press

1. Introduction

Groups that most often become the object of computer-aided computations, are those
that arise as automorphism groups of combinatorial structures. Permutation groups so
far remain the best understood class of these, with the most efficient algorithms available.
These algorithms were built on the fundamental algorithms of Sims (1971) that made it
possible to determine group membership and group order.

While algorithms available for matrix groups over finite fields are not nearly as efficient,
the present massive efforts in this direction give hope that this class of groups will soon
also be well understood. An important base case for the matrix group recognition project
is recognition of classical simple groups of Lie type presented as subgroups of general
matrix groups (possibly of different dimensions, or finite fields, or both).

The efforts at recognition of finite simple matrix groups have been a major motivation
for the theory of black box recognition of groups (defined below). Neumann and Praeger
(1992) presented the first major result along these lines. The papers by Babai (1997)
and Niemeyer and Praeger (1997) contain excellent surveys of more recent progress. The
paper by Beals and Babai (1993) deals with recognition methods for general finite simple
groups, including An.

The result of this paper adds to these base cases by considering constructive recognition

†Whereas our method can be applied to construct the image of every element of G in Sn, we actually
construct the images of (1, 2) and (1, 2, . . . , n) and show how to construct the images of any other
element.
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of Sn and An, where n ≥ 20. In this case, the natural matrix representation corresponds
to the natural permutation representation, and so the paper will work directly with black
box recognition of the groups as permutation groups. We diverge from pure black box
results by assuming the availability of algorithms for finding random group elements and
for finding the order of a group element. A theoretical algorithm for finding random
group elements in black box groups in polynomial time exists in the work of Babai
(1991). The work of Celler et al. (1995) introduces the so-called product replacement
algorithm that appears to work well in practice. Its theoretical complexity is currently
under investigation (see Babai, 1997, and Diaconis and Saloff-Coste, 1998).

Randomized methods work well for the problems of group recognition, when the object
of computation is a large group of a known type, but presented in a non-standard way.
Such problems arise, for instance, in the classification of certain classes of finite groups.
Randomized methods have been used to answer questions such as whether a group con-
tains a classical subgroup of specific type (see Cameron and Cannon, 1991; Neumann
and Praeger, 1992, and Niemeyer and Praeger, 1998), or to construct a natural linear
representation (or a permutation representation) of a group presented in a non-standard
way (see Cooperman et al., 1997; Celler and Leedham-Green, 1997a, and Kantor and
Seress, 1997).

The concept of a black box group provides a uniform framework for problems involving
randomized algorithms for large groups presented in a non-standard way. Such problems
are often referred to as recognition problems.

By a black box group we mean a group whose elements are represented by binary
strings of uniform length N , and the group operation is performed by an oracle (the black
box). The oracle (black box) can compute the product of elements, find the inverse, and
recognize the identity element† in time polynomial‡ in N . For a more formal treatment
see Cooperman and Finkelstein (1998).

By recognizing a black box group G known to be isomorphic to a classical group we
mean constructing an isomorphism between G and the natural representation of the
classical group. In other words, we can think of a black box group as a group given
only by its multiplication table, which we can view one entry at a time. Therefore, when
working with the black box model, one can rely only on the group structure, not on the
properties of a particular representation of the group in question.

We use the term gray box group, introduced by Celler and Leedham-Green, in a sense
different from the original, to denote a black box group G such that there is an efficient
algorithm (or an oracle) for computing the order r(x) of any element x ∈ G. A number
of efficient ideas for computing the order of an element in a matrix group can be found
in Celler and Leedham-Green (1997b). We also show how to extend our methods to
black box groups (i.e. to the situation when no efficient way of computing the order of
an element is available). Namely, rather than finding the orders of elements explicitly, we
use an algorithmic shortcut to verify the necessary properties of elements by using only
black box multiplication (see Section 6).

In this paper we solve the recognition problem for a gray box group known to be

†A popular variation of Babai’s original definition assumes that elements of the black box group are
encoded by bit strings uniquely, so that the operation of recognizing an element as the identity element
of the group becomes trivial. Computationally, this assumption was motivated by the use of hashing on
bit stings. The present paper makes no such assumption.
‡We use the terms quadratic, linear and polynomial to mean times O(n2), O(n), and O(nc), respectively,

omitting the group-specific factors ρ, µ, ν, where such omissions do not lead to confusion.
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isomorphic to the symmetric group Sn with known n. Given a gray box group G, defined
by a set of generators, we construct an isomorphism φ : G→ Sn.

More precisely, we first find two elements a, b ∈ G such that there exists a unique iso-
morphism φ that maps a into the transposition (1, 2) and b into the long cycle (1, 2, . . . , n).
φ We then provide a simple algorithm that, for an arbitrary element x ∈ G, computes
the permutation φ(x) ∈ Sn to which x is mapped by our isomorphism. In this sense, our
algorithm is constructive.

We make a further assumption concerning the group G. Namely, we assume that there
is an efficient algorithm for producing (nearly) uniformly distributed elements of G ∼= Sn
given the set of generators of G. This assumption is motivated by a provable polynomial-
time algorithm (Babai, 1991) and an efficient heuristic algorithm (Celler et al., 1995).

Let G be a gray box group specified by a generating set G. Further, let G be isomorphic
to Sn for a known n. Let ρ be the time required to compute a (nearly) uniform random
element of G, let ν be the time required to find the order of an arbitrary element of
G, and let µ be the time required to perform a group operation in G. Also, recall the
standard notions of Monte Carlo and Las Vegas algorithms (see e.g. Babai, 1997).

Our results are conditional on the two number theoretic conjectures presented in Sec-
tion 5, which we call the Extended Goldbach Conjecture (EGC) and the Weighted Gold-
bach Conjecture (WGC). Namely, while the algorithm remains the same, its complexity
estimate depends on the particular version of the conjecture (EGC or WGC), which is
reflected by Theorems 1 and 1′.

Theorem 1. Under the definitions of the preceding paragraphs, and provided that n ≥ 20
is known and the EGC† holds, a Las Vegas algorithm exists, which in time O([ρ + ν +
µ]n log2 n) can produce a data structure which can then be used to compute the image
φ(x) in Sn of any x ∈ G under a fixed isomorphism φ : G→ Sn. Each such computation
of φ(x), x ∈ G will take O(µn log n) time.

Theorem 1
′
. Under the definitions of the preceding paragraphs, and provided that n ≥

20 is known and the WGC† holds, the Las Vegas algorithm of Theorem 1 will produce
the required data structures that define φ(x) in time O([ρ+ ν + µ]n log n/ log log n).

Remark 1. Suppose that the group G is only a black box group, i.e. no algorithm for
computing the orders of its elements is available. The information about the elements of G
required for our algorithm can still be extracted, by using just the black box multiplication
in G as described in Section 6. In this case the value of ν in the above theorems becomes
ν = O(µn).

Remark 2. For several values of n less than 20 our algorithm fails. However, in those
cases one can still try using the information on the distribution of orders in Sn and
An to obtain a constructive recognition. These groups are relatively small, so the ad
hoc approach seem satisfactory. It is not considered in this paper. From now on we will
always assume that n ≥ 20.

Remark 3. In the Appendix we present a lower bound for the time complexity of the
algorithm which matches the upper bound in Theorem 1′. The proof is a rigorous exercise

†Actually, we need the conjecture to hold only for n, n− 2 if n is even, or for n− 1, n− 5 if n is odd.
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in analytic number theory. In addition, we present a heuristic probabilistic reasoning in
favor of the WGC.

In Section 5 we present weaker bounds that do not assume the Goldbach Conjecture
(GC). In addition to the main algorithm, we discuss its variations for recognizing An
(see Section 7), and for checking whether G ∼= Sn (see Section 8). Finally, a variation
that recognizes Sn when n is not known is discussed in Section 9. There we prove the
following result.

Theorem 2. Given an upper bound M for n ≥ 20, and provided that the EGC holds,
a Monte Carlo algorithm exists which in time O([ρ + ν + µ]M log2M) can find n, and
which can be made Las Vegas requiring O([ρ + µ + ν]M2) time. Moreover, if the WGC
holds, a variation of the above Monte Carlo algorithm will find n in time O([ρ + ν +
µ]M logM/ log logM).

An upper bound, M , can be derived from the uniform bit string length N of the black
box group by observing that n! ≤ 2N .

The idea of the algorithm is as follows. We pick elements g ∈ G randomly until we find
an element of order r(g) = p1p2, where p1, p2 are primes such that either p1 +p2 = n (for
n even), or p1 + p2 = n− 1 (for n odd). The existence of such elements follows from the
GC. It is clear that such an element consists of exactly two cycles of lengths p1 and p2. We
refer to them as Goldbach elements. It turns out that there are sufficiently many of them.
Next we find one or two (depending on the parity of n) transpositions such that together
with our Goldbach element they generate the entire symmetric group Sn. Finding these
transpositions involves a modification of Goldbach elements and some technical details.
Conjugating the transposition by the Goldbach element, we obtain the desired a, b ∈ G
that define the isomorphism φ. Thus, the complexity estimate of the algorithm depends
on the proportion Pn of Goldbach elements in Sn. The estimates on Pn will be given
in Section 5 and are based on various number theoretical results concerning the GC.
They are also confirmed by experimental evidence obtained on computers. We refer to
the Appendix for a mathematical treatment of Pn.

We state the algorithm first, then prove its correctness assuming the conjectures, and
finally elaborate on possible improvements (including removing the conjectures alto-
gether). We need the following trivial observation: given a transposition τ = (i1, i2) and
a permutation σ, we know that στσ−1 is also a transposition, and

στσ−1 = (σ−1(i1), σ−1(i2)).

Therefore if σ is (nearly) uniform in Sn, then στσ−1 is (nearly) uniform in the set of
transpositions of Sn.

We say that a permutation σ touches a point if it does not fix that point (i.e. the point
belongs to the support of σ). We say that the transposition τ = (i1,i2) touches the cycle
σ = (j1, j2, . . . , jp2) if either i1or i2 or both belong to the support of the cycle σ.

A few words about the practical implementation of the algorithm. The authors have
implemented it in C and GAP and ran the tests for the values of n up to several thou-
sands. We believe that, given enough RAM and processing power, the algorithm remains
practical for the values of n up to 105.
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2. The Algorithm

Our algorithm calls on a procedure for finding the order r(x) of an element x ∈ G, and
a procedure that produces (nearly) randomly distributed elements of G. Both the algorithm
and the latter procedure take as input the set of generators G = {g1, g2, . . . , gm} of G ∼= Sn
as a black box group, and the number n, which is the degree of G ∼= Sn. It outputs two
elements a, b ∈ G such that there exists an isomorphism φ : G→ Sn carrying a to (1, 2)
and b to (1, 2, . . . , n). Its complexity for general n is O([ρ+ µ+ ν]/Pn), where Pn is the
proportion of Goldbach elements in Sn.

Elements a, b produced by the above algorithm are then used by the procedure that
takes an element x ∈ G and outputs the permutation φ(x) into which x is carried by
φ : G → Sn for which φ(a) = (1, 2), φ(b) = (1, . . . , n). This procedure is described in
Section 4.

The algorithms for S2k and S2k+1 differ slightly. Namely, when n is odd, we find two
transpositions, whereas for even n finding one is sufficient.

2.1. the algorithm for S2k

(1) Locate a Goldbach element in G.
Find an element y ∈ G whose order, r(y), satisfies

r(y) = p1p2,

where p1, p2 are distinct primes such that p1 + p2 = n. By the slight extension of
the GC there will be at least one such pair of primes (p1, p2). An element y as
above consists of two cycles of lengths p1 and p2, respectively. Clearly, y1 = yp2 and
y2 = yp1 are cycles of lengths p1 and p2, respectively. Denote

y1 = (i1, i2, . . . , ip1),
y2 = (j1, j2, . . . , jp2).

We can re-number the points so that

{i1, i2, . . . , ip1} = {1, . . . , p1}

and {j1, j2, . . . , jp2} = {p1 + 1, . . . , n}.
(2) Locate a transposition in G.

To this end, search for an element x ∈ G such that

r(x) = 2 q1 q2,

where q1 + q2 = n− 2, q1, q2 are distinct odd primes.
Then x consists of 2 odd prime cycles of lengths q1 and q2 and a transposition.
Hence

a = xq1q2

is a transposition. Once we have found a transposition, we can easily find other
transpositions, sampled independently from a nearly uniformly distribution on Sn,
by conjugating the original transposition by random elements of G. See Beals and
Babai (1993), Cooperman et al. (1997) and Kantor and Seress (1997) for different
versions of a similar approach.

(3) Check if the transposition a touches both y1 and y2. If not, produce and try random
transpositions until we have this property.
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We are looking for a transposition that interchanges a point from the cycle y1 with
a point from the cycle y2 (i.e. touches both cycles). This is the case if and only if
a commutes with neither y1 nor y2. Consequently, we check that

ay1 6= y1a and ay2 6= y2a.

(4) Compute b = y1ay2. This is a long cycle in G.
If a = (l1, l2) commutes with neither cycle, then one of l1 and l2 lies in the support
of y1, and the other in the support of y2. Assume, without loss of generality, that

{l1, l2} = {p1, p1 + 1}.

It is easy to see that

b = y1ay2

is a cycle of length p1 +p2 = n in G, and that there is a homomorphism φ : G→ Sn
that carries b into the long cycle (1, 2, . . . , n) and a into (p1, p1 + 1).

(5) Conjugate a by bp1−1 to obtain a′.
Now

φ(b) = (1, 2, . . . , n), φ(a) = (p1, p1 + 1), φ(a′) = (1, 2),

and a′, b is the standard pair of generators for Sn. As {a, b} generate Sn (any trans-
position together with any cycle of length n do so), we have fixed the isomorphism
φ : G→ Sn, and, in particular, can compute the image of any element z ∈ G under
the desired isomorphism φ explicitly (see Section 4).

2.2. the algorithm for S2k+1

(1) Locate a Goldbach element in G.
Find an element y ∈ G such that

r(y) = p1p2,

where p1 + p2 = n − 1. Then y consists of two cycles of lengths p1 and p2 and a
fixed point m. We obtain two cycles y1 = yp2 and y2 = yp1 of lengths p1 and p2,
respectively. Denote, as above,

y1 = (i1, i2, . . . , ip1),
y2 = (j1, j2, . . . , jp2),

and re-number the points so that {i1, i2, . . . , ip1} = {1, . . . , p1} and {j1, j2, . . . , jp2}
= {p1 + 1, . . . , n− 1}.

(2) Locate a transposition in G.
Look for an element x ∈ G such that

r(x) = 6 q1 q2,

where q1 + q2 +5 = n, and q1, q2 are distinct odd primes > 3. The existence of such
a pair of primes constitutes a slight extension of the GC. The element x will have
the cycle structure of (q1, q2, 3, 2). The element a1 = x3q1q2 is then a transposition.
Any number of (nearly) uniformly distributed random transpositions can now be
obtained by conjugating a1 by random elements of G.
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(3) Check if the transposition a1 touches both cycles y1 and y2. If not, keep producing
and trying random transpositions until successful.
The transposition a1 touches the cycle y1 if and only if they do not commute, and
similarly for cycle y2. So, as above, we only need to check that

a1y1 6= y1a1 and a1y2 6= y2a1.

(4) Locate a transposition that touches both the fixed point m and one of the cycles (y1

or y2). Keep producing and trying random transpositions until this is the case.
Obtain a random transposition a2 (by conjugating a1 with a random element of G).
First check whether a2 commutes with y1 and y2. If a2 commutes with both, or with
neither of them, discard the current a2 and obtain a new one. Suppose a2 commutes
with y2 but does not commute with y1. We need to verify if a2 touches only one
point from the support of y1. To this end, check if a2 commutes with y1a2y

−1
1 and

y2
1a2y

−2
1 . If a2 commutes with at least one of these, then a2 only permutes the

vertices inside the support of y1, and hence it does not touch m (see Lemmas 1
and 2 of Section 3). Special care needs to be taken in the case when r(y1) = 3,
which, fortunately, can be easily detected. If the support of a2 lies entirely inside
that of y1, discard a2 and start over. The case when a2 commutes with y1 but does
not commute with y2 is analogous.

(5) Compute b = y1a1y2a2. This is a long cycle in G.
Indeed, re-numbering the points in a suitable fashion, we can have a1 = (p1, p1 + 1)
and a2 = (n− 1, n). Then

b = y1a1y2a2

is a long cycle, carried to (1, 2, . . . , n) by some isomorphism φ : G→ Sn.
(6) Conjugate a1 by bp1−1to obtain a′.

We now have the transposition a′ and the long cycle b which together generate the
entire G ∼= Sn and

φ(a′) = (1, 2),
φ(b) = (1, 2, . . . , n).

3. Why does this Work?

Let us state the following two extensions of the GC. We will need these conjectures
for estimating the probability Pn of finding a Goldbach element.

Extended Goldbach Conjecture. For every even n ≥ 20, there exist primes p1 >
p2 > 3 such that p1 + p2 = n. Moreover, the number π2(n) of such pairs is

π2(n) >
1
3

n

log2 n
.

We have verified this conjecture for 20 ≤ n ≤ 106. With different constants this
conjecture goes back to Sylvester (1871) and Brun (1915). The exact asymptotic formula
was later found and conjectured by Hardy and Littlewood (1922). In Section 5 we will
explore this connection and elaborate on similar results for triples of primes, etc. In the
Appendix we present a heuristic argument which demonstrates where the factor n/ log2 n
in the Hardy–Littlewood formula comes from.
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Let n be even. Recall that Pn is equal to the proportion of Goldbach elements in Sn.
In the following subsection we will show that Pn can be defined as follows:

Pn =
∑

p>q>2 primes,p+q=n

1
p q
.

Below we will show that the EGC implies 1/Pn = O(n log2 n).

Weighted Goldbach Conjecture. There exists a positive constant c > 0 such that
for all even n ≥ 20 we have

Pn >
1
4

log log n
n log n

.

This conjecture is probably new and unproven. It is supported by both numerical and
theoretical results, which are presented in the Appendix. We have verified this conjecture
for 20 ≤ n ≤ 106. We use the term weighted here since in contrast with the EGC we sum
1/pq rather than 1 for each instance of primes p+ q = n.

3.1. finding a Goldbach element

The first step of the algorithm consists of finding a Goldbach element. The EGC
guarantees that such elements exist for all n. Let us estimate the probability that a
randomly chosen element of G is a Goldbach element. Goldbach elements of order p1 p2

form a conjugacy class corresponding to partitions (p1, p2) (for even n) and (p1, p2, 1)
(for odd n). It is well known that the probability of obtaining an element g ∈ G from the
conjugacy class corresponding to the partition (λ1, λ2, . . .), λ1 > λ2 > · · ·, is equal to

1
λ1 λ2 . . .

.

Hence the probability of finding an element of order p1 p2 in G is
1

p1 p2
≥ 4
n2
.

Using the EGC we find that

Pn =
∑

p>q>2 primes,p+q=n

1
p q

= Ω
(
π2(n)

4
n2

)
= Ω

(
1

n log2 n

)
.

Therefore, assuming the EGC the expected number of tries one needs to make before
obtaining a Goldbach element is O(n log2 n).

Recall that the WGC claims that Pn = Ω(log log n/n log n). Therefore, assuming the
WGC, the expected number of tries one need to make before obtaining a Goldbach
element is O(n log n/ log log n).

3.2. finding an arbitrary transposition

For subsequent steps of the algorithm we need to find random transpositions. Once a
single transposition is found, this can be easily achieved by conjugating it with random
elements of G (we assume availability of an efficient algorithm for producing (nearly)
uniformly distributed random elements of G). The question, then, is how to find the
initial transposition in the gray box setting.
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We start with elements x in the conjugacy classes corresponding to partitions (q1, q2, 2)
(even n) and (q1, q2, 3, 2) (odd n). The latter is the only possible cycle form of an element
x ∈ G of order r(x) = 6q1q2, where q1 + q2 + 5 = n. For fixed q1, q2 the probabilities
of finding them are 1

2 q1 q2
and 1

6 q1 q2
, respectively. Therefore the expected number of

tries before locating such an element x is 2/Pn−2 and 6/Pn−5, respectively. Assuming
the EGC, both quantities are O(n log2 n), while assuming the WGC, both quantities are
O(n log n/ log log n).

3.3. transpositions touching cycles

In both the even and the odd cases we find a transposition that touches each of the
two cycles y1, y2 of prime lengths p1 and p2 (p1 + p2 = n or p1 + p2 = n− 1). In the odd
case we also need a transposition that touches the point m and one of these cycles (i.e.
simply permutes m with a point from the support of the cycle).

Note that, as we have remarked in the Introduction, the permutations resulting from
conjugating the initial permutation with (nearly) uniformly distributed elements of G
are themselves (nearly) uniformly distributed. The probability that a randomly chosen
transposition touches both y1 and y2 is, of course,

p1 · p2(
n
2

) ≥ 1
n
.

Thus it will take no more than n tries to locate the required transposition; much fewer
if p1 and p2 are big enough. For instance, should we decide to consider only Goldbach
elements with cycles of lengths p1 > p2 > n/6, the number of transpositions touching
both cycles will be at least (n− 1)/6 · 5(n− 1)/6. Thus the probability that we find such
a transposition will simply be constant,

n−1
6 ·

5(n−1)
6(

n
2

) ≥ 2
9
.

Analogously, the probability of finding a transposition that touches the fixed point m
and one of the circles is at least 1/n.

Given a transposition a and a cycle y of length greater than 3, we want to be able to
verify that a touches y (i.e. that their supports are not disjoint). We need a few simple
lemmas here.

Lemma 1. A transposition and a cycle of length greater than 2 touch if and only if they
do not commute.

Lemma 2. A transposition a and a cycle y of length greater than 3 touch at only one
point (i.e. their supports have only that one point in common, a permutes a point inside
the support of y with a point outside the latter) if and only if a commutes with neither
y, nor yay−1, nor y2ay−2.

Proof. Suppose the supports of a and y are disjoint. Then ay = ya.
Suppose the support of a lies inside that of y (a permutes two points inside the cycle).

Then both yay−1 and y2ay−2 will permute points inside the cycle, and either yay−1 or
y2ay−2 will be disjoint from a and hence will commute with a. Finally, if a and y have
only one point in common, while the other point from the support of a is outside the
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cycle, then both yay−1 and y2ay−2 permute that other point from a with some point
from y, hence neither of the two commutes with a.2

Lemma 3. If y1, y2 are disjoint cycles of lengths l1, l2, and a is a permutation that touches
both, then z = y1ay2 is a cycle of length l1 + l2. In particular, if y is a cycle of length
n− 1 and a is a transposition that touches y at only one point, then z = ya is a cycle of
length n.

The proof of Lemma 3 is straightforward. These lemmas imply the correctness of our
algorithm.

4. Finding the Image of an Arbitrary Element of G

We now present an algorithm that takes as input an arbitrary element x ∈ G, elements
a, b ∈ G above, as well as the number n and the set of generators of G, and outputs the
permutation ω = φ(x) which is the image of x under the isomorphism φ fixed by the
condition that φ(a) = (1, 2) and φ(b) = (1, . . . , n). The algorithm takes O(µn log n) time
and requires storing 2n elements of G. The latter are pre-computed and afterwards used
by each instance of the procedure.

Recall that we say that two elements of G ∼= Sn touch one another if one of them moves
(does not fix) a point from the support of the other, i.e. the intersection of their supports
is non-empty. In simple cases, such as the case of both elements being transpositions,
checking if the elements commute (or are identically equal) is enough to decide if they
touch. The same is true if one element is a transposition and the other is a (single) cycle,
in which case it is enough to check the commutation of the original transposition and its
conjugates by the cycle and the square of the cycle.

We will write a ∼ (1, 2), b ∼ (1, 2, . . . , n) instead of φ(a) = (1, 2), φ(b) = (1, 2, . . . , n),
and similarly for other elements of G.

As stated above, our algorithm will be nearly linear in n. It is based on two simple
ideas. The first idea is to conjugate a known transposition (pre-computed by multiplying
a, b) with the element x and establish what transposition results from it by checking
how it touches other known ones. In this fashion it is possible to establish the images
of each point under x, i.e. the permutation φ(x) that corresponds to x. Straightforward
application of this idea will yield the “naive” Method A, requiring quadratic time. The
second method is to improve performance by implementing an analog of binary search
on touching permutations.

Let us now outline the “naive” Method A, and its improvement, Method B.

Method A. (quadratic in n) Given a ∼ (1, 2) and b ∼ (1, 2, . . . , n) as above, pre-
compute elements of G corresponding to a2 ∼ (2, 3), . . . , an−1 ∼ (n − 1, n), an ∼ (n, 1),
the transpositions of neighboring points.

Given an x ∈ G. Denote x̄ = φ(x), the permutation to which x ∈ G maps under our
isomorphism. We will subsequently find the images of the points 1, 2, . . . , n−1 under the
permutation x̄.

To find the image of 1 under x̄, compute x−1ax. It is a transposition, and in fact,
φ(x−1ax) = (x̄(1), x̄(2)). By checking which of the n pre-computed transpositions above
touch it (i.e. have supports that intersect with the set {x̄(1), x̄(2)}), we will know the
set {x̄(1), x̄(2)}. Next, compute x−1a2x. We know that φ(x−1a2x) = (x̄(2), x̄(3)). Check



Fast Constructive Recognition of Black Box Sn and An 43

if x−1a2x touches our pre-computed elements ai ∈ G corresponding to transpositions
of neighboring points. Thus we will know both x̄(1) and x̄(2) precisely. Continue for all
other points 3, . . . , n− 1.

This process will furnish the permutation x̄ = (x̄(1), x̄(2), . . . , x̄(n)) in O(n2) multi-
plications and comparisons, O(n) steps being required to find the image of each point
under x̄. Pre-computation of necessary transpositions will take no more than O(µn log n)
time even if done in the most naive way. The storage requirement is that of storing these
permutations.

Method B. (nearly linear in n) Given a ∼ (1, 2) and b ∼ (1, 2, . . . , n) as above, pre-
compute elements of G corresponding to a2 ∼ (2, 3), . . . , an−1 ∼ (n − 1, n), an ∼ (n, 1).
To find the image of a point i under x̄ = φ(x) for some x ∈ G, compute x−1aix,
for which we know that φ(x−1aix) = (x̄(i), x̄(i + 1)). As before, the actual identity of
the transposition φ(x−1aix) is found by checking which points it touches, via checking
commutation relations with pre-computed elements of the group. We now perform a
binary search on the set of all n points on which G acts, as follows.

Divide all points into two sets of lengths k = n/2 if n = 2k, or k and k+1 if n = 2k+1.
Likewise, divide each one of these sets into two halves, and continue recursively until you
have n single point sets. We have now formed the search tree for our search. Order the
points in each set and pre-compute (starting from the elements a and b) the cycles that
correspond to each set.

For n = 2m these are the following permutations (in the cycle notation):(
1, 2, . . . ,

n

2

)
,

(
n

2
+ 1, . . . , n

)
,

(
1, . . . ,

n

4

)
,

(
n

4
+ 1, . . . ,

n

2

)
,

(
n

2
+ 1, . . . ,

3n
4

)
,

(
3n
4

+ 1, . . . , n
)
,

. . .

(1, 2), (3, 4), . . . , (n− 1, n), (n, 1).

Pre-computation of the lowest row will take soft O(n) multiplications, computing the
rest from the lowest row up (each time multiplying elements from the preceding row and
transpositions from the lower row) will again take soft O(n) multiplications. Note that
we do not need these exact cycles, only the cycles with the same supports as those in the
table. We now have a binary tree of permutations.

As before, take the conjugate x−1ax, and, knowing that φ(x−1ax) = (x̄(1), x̄(2)),
proceed with checking if it touches the group elements corresponding to one of the two
cycles in the first row of the above table (the binary tree of cycles). For the cycle(s)
it does touch check their descendants in the next row below. For each row the given
permutation can touch no more than two of its cycles, therefore we will know the set
{x̄(1), x̄(2)} in at most 2 log n checks, i.e. O(log n) multiplications and comparisons.

Repeat this procedure with x−1a2x to find both x̄(1) and x̄(2), and continue for
3, . . . , n − 1. The process of finding the permutation x̄ corresponding to x will take
O(n log n) steps, i.e. O(µn log n) time, with the requirement of simultaneously storing
2n elements of G.
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5. Note on Provable Complexity

First, let us state the reasoning behind the EGC. The first part of the EGC is a
slight extension of the GC as stated by Goldbach in his letter to Euler (June 7, 1742).
Conjectures similar to the second part were made by Sylvester (1871), and subsequently
refined by others, including Hardy and Littlewood (1922), see also Brun (1915) and Wang
Yuan (1984), who conjectured the following asymptotic formula for π2(n):

π2(n) ∼ 2C2
n

log(n)2

∏
p|n

p− 1
p− 2

,

where the product is over the odd prime divisors p of n, and

C2 =
∞∏
p=3

(
1− 1

(p− 1)2

)
≈ 0.6601618158,

where the product is over all odd primes. Thus asymptotically the lower bound in the
EGC should be about 2C2 ≈ 1.320323632 (see Hardy and Littlewood, 1922). Here we
assume that π2(n) does not have large deviations. A similar result has been proved for
decompositions of odd numbers into triples of primes (see below).

It is also known (see Tenenbaum, 1995, p. 78), that

π2(n) ≤ (8 + o(1))C2
n log log n

log2 n
.

We will need this bound in Section 6.
The reasoning behind the WGC is more speculative. It is based on a heuristic for the

distribution of primes. In the Appendix we compute the average behavior of Pn and find
lower bounds on Pn under a certain probabilistic model.

Now we would like to elaborate on the nature of our algorithm’s dependence on the
versions of the GC. The GC has been verified on numerous occasions, most recently on
the Cray series, up to astronomically large† even numbers.

Further, it has been proved for “almost all” even n in the following Further, it has
been proved for “almost all” even n in the following sense: for large N the number of
even integers less than N for which the conjecture does not hold is of the order N1−ε

(Montgomery and Vaughan, 1975). Recently, the admissible value ε = 1/20 was proved
in Chen and Liu (1972). The original Hardy and Littlewood’s argument gives ε = 1/2,
but it relies on the General Riemann Hypothesis (GRH), which remains unproven. For
similar results for the asymptotic behavior of π2(n) and history of the GC see Hardy and
Littlewood (1922), Wang Yuan (1984) and Ribenboim (1995).

Provided that the GC holds, our algorithm will work for all values of n, while its actual
complexity will depend on the number and the distribution of pairs of primes p1, p2 such
that p1 + p2 = n, n− 2 (even n), or p1 + p2 = n− 1, n− 5 (odd n).

Assuming the EGC, the number of such pairs is no less than 1
3n/ log2 n, hence the

complexity of the algorithm will be O([ρ+µ+ν]n log2 n). Moreover, assuming the WGC,
we obtain O([ρ+ ν+µ]n logn/ log log n) time complexity. According to the result in the
Appendix, this is also the lower bound for the average case work of the algorithm.

†Jean-Mark Deshouillers, Yannick Saouter and Herman de Riele have verified this up to 1014 with the
help of a Cray C90 and various workstations. See Ribenboim (1995) and Wang Yuan (1984) for more
information.
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It was proved by Vinogradov that every large enough odd number can be represented
as a sum of three primes (see Vinorgadov, 1937; Wang Yuan, 1984). It has been recently
demonstrated that the claim holds for all odd n > 107200 (see Chen and Wang, 1996).
Assuming the GRH, the result was recently proved for all odd n > 5 (see Zinoviev, 1997;
Saouter, 1998; Deshouillers et al., 1997). In a different direction, it has been shown (see
Vinorgadov, 1954, and Karatsuba, 1992) that for any ε > 0 the number π3(n) of such
presentations satisfies

π3(n) = C3
n2

log3 n

∏
p|n

(p− 1)(p− 2)
p2 − 3p+ 3

+O

(
n2

log3.5−ε

)
,

where

C3 =
∞∏
p=3

(
1− 1

(p− 1)3

)
= 0.8553921037.

The main term of the above asymptotic formula was first discovered and proved by Hardy
and Littlewood, but their proof relies on the GRH. Now observe that∏

p|n

(p− 1)(p− 2)
p2 − 3p+ 3

>

∞∏
p=3

(p− 1)(p− 2)
p2 − 3p+ 3

≈ 0.5738139342.

This gives us the following result.

Theorem. (Vinogradov) For sufficiently large odd n we have

π3(n) > 0.49
n2

log3 n
.

If we modify our algorithm so that instead of Goldbach elements of cycle forms (p1, p2)
it uses elements of cycle forms (p1, p2, p3), we obtain an algorithm which, for large enough
n, has time complexity O([ρ+ ν + µ]n log3 n). Note, however, that it is unclear whether
such an algorithm would work for all odd n.

Going one step further, for six primes it is known (see Ramaré, 1995) that for all even
n > 10 there is a presentation n = p1 + · · · + p6. Consequently, another modification
of our algorithm will give an algorithm provably succeeding in O(n6) time. One can use
this modification for n smaller than the constant predicted by Vinogradov’s theorem. For
larger n one can use the previous version. This proves the following theoretical result.

Theorem 3. Provided that n is known, there exists a Las Vegas algorithm, which in time
O([ρ + ν + µ]n log3 n) can produce a data structure which can then be used to compute
an isomorphism φ : G→ Sn.

Note that the constant implied by O(·) notation is expected to be very large, so the
theorem is only of theoretical interest.

We can combine the above arguments into a single algorithm, in which for the given
n we find its representation as a sum of a number of distinct primes, thus locating an
element consisting of primes cycles of different lengths (Goldbach elements are a specific
case of these). Using these elements instead of only the Goldbach elements, we can expect
a somewhat faster algorithm. However, for the sake of brevity, we will not go into details
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of this, since the latter should not pose any significant conceptual problems over the
presented algorithm.

To summarize, we have chosen the venue which is at the same time efficient and easy
to present, although not formally proven.

6. Computing the Orders of Elements

Observe that throughout the algorithm we use the order r(x) of a random element
x ∈ G for the sole purpose of verifying whether r(x) = p1p2, where p1 + p2 = n for
n = 2k, or p1 + p2 = n − 1 for n = 2k + 1, and for verifying two similar properties. All
these properties revolve around the Goldbach pairs of primes p1, p2 for n and n − 1 (n
even), or n− 1 and n− 5 (n odd).

If the Goldbach pairs p1, p2 are pre-computed for these integers, these properties of
x ∈ G can be tested by computing xp1p2 and testing it for being the identity, together with
its component cycles xp1 and xp2 . Each such test involvesO(log p1+log p2) multiplications
for computing the power and a black box identity test (which is assumed to take time
comparable with a multiplication), i.e. no more than O(µ log n) complexity per pair (cf.
Pak, 1998).

Recall from Section 5 that there are at most O(n log log n/ log2 n) Goldbach pairs
available for any n. Therefore we need O(µn log log n/ log n) time for testing each random
element for the Goldbach property. This estimate takes the place of ν in the algorithm’s
overall complexity when no efficient trick for order computation is available. In other
words, one can always assume that

ν = O

(
µn log log n

log n

)
.

7. Modification for the Alternating Group An

It turns out that the Goldbach conjecture approach can be applied to the recognition
of a gray box group G known to be isomorphic to An. Indeed, An for n odd is generated
by a cycle of length 3 and a long cycle. For all odd primes p1, p2, the corresponding
Goldbach elements of Sn actually lie inside An. Therefore we can first locate a Goldbach
element in An and break it down into two prime cycles by raising it to corresponding
powers.

Then we find a 3-cycle using a technique similar to that of Section 2.1. Once a 3-cycle
is found, we can obtain any number of (nearly) uniformly distributed random 3-cycles by
conjugating it with random elements of the group G. We then find a 3-cycle that touches
both cycles of the Goldbach element. The product of these and the found 3-cycle gives
us a long cycle in G. Re-numbering the points accordingly, we arrive at two elements
a, b ∈ G such that there is an isomorphism ψ : G → An carrying a to (1, 2, 3) and b to
(1, 2, . . . , n).

The case of G ∼= A2k involves some additional work. In this case we need to consider
not one but two fixed points and connect them with our Goldbach cycles of lengths p1, p2.
Let us be more careful. First, locate an element x of order p1 ·p2, where p1 +p2 +2 = 2k,
p1 > p2 ≥ 5. Then x1 = xp2 and x2 = xp1 are two cycles of lengths p1 and p2, respectively.
Similarly locate a 3-cycle y. Consider random conjugates yg of y until we find a 3-cycle
z which does not commute with both cycles x1 and x2 (and therefore touches both of
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them). Now proceed with constructive recognition of A2k−1 generated by x1, x2 and
z (remember that they all fix one point). After this is done, consider again random
conjugates yg until we find a 3-cycle that touches the remaining point. Use version of
the algorithm in Section 4 to determine the remaining two vertices in the 3-cycle and
complete the recognition. We omit the technical details.

8. Checking the Isomorphism between G and Sn for a Known n

In this section we present a one-sided Monte Carlo version of our algorithm for verifying
that G is isomorphic to Sn for a known n. A positive answer is guaranteed to be correct,
while a negative answer may be incorrect, with probability of error ε > 0 that can be
made as small as desired.

Assume that G ∼= Sn, and start, as before, the search for a Goldbach element. If no
Goldbach element is found after a sufficient number N(ε, n) (discussed below) of random
elements have been tried, the algorithm stops and reports a negative answer. The same
happens during the search for a transposition. If both searches are successful, we have
elements a, b ∈ G.

Check if a, b satisfy the Moore’s defining relations for Sn (see Coxeter and Moser,
1972), namely

bn = a2 = (ba)n−1 = (ab−1ab)3 = (ab−jabj)2 = id, 2 ≤ j ≤ n− 2.

This can be done in O(µn) time. If this is the case, the mapping ψ : Sn → G defined
by ψ(1 2) = a, ψ(1, 2, . . . , n) = b defines a homomorphism of Sn onto its image
G0 = 〈a, b〉 ⊂ G. Being a homomorphic image of Sn, G0 can only be one of Sn, Z2 or
{id}, and excluding the latter two cases for G = 〈a, b〉 is trivial. Therefore G0

∼= Sn.
To demonstrateG ∼= Sn we need to check that G0 = G. Given G = 〈g1, . . . , gs〉, we need

to express the original generators g1, . . . , gs as words in a, b. Note that the cycle tree used
in the second phase of our algorithm is constructed entirely inside G0. Running the second
phase for gi, i = 1, . . . , s we obtain some permutations γi ∈ Sn, i = 1, . . . , s. Represent
these permutations as words in the generators (1 2), (1, 2, . . . , n) of Sn and construct
the images ψ(γi), i = 1, . . . , s. If ψ(γi) = gi, we have the desired isomorphism, if not,
we can claim that Sn ∼= G0  G. This step of verification procedure takes O(µ sn log n)
time.

Let us estimate the number N(ε, n) of trials that fail to produce a Goldbach element,
after which we can claim, with probability of error less than ε, that the group G is not
isomorphic to Sn. We need at most

N(ε, n) = 2
⌈

log
1
ε

⌉
1
Pn

trials. Indeed, if G ∼= Sn, then after 2/Pn trials the probability of finding a Goldbach
element is at least 1/2. Therefore after 2C/Pn trials the latter probability is at least
1− 1/2C . Taking C = dlog 1

εe proves the claim. A similar estimate holds for the number
of unsuccessful trials while searching for a transposition in G. Using the estimate of Pn
from the EGC and WGC, we obtain the following result.

Theorem 4. Let G = 〈g1, . . . gs〉 be a gray box group. Under the definitions of Theo-
rem 1, and provided that EGC holds, a one-sided Las Vegas algorithm exists which, in
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time

O

(
[ρ+ µ+ ν] log

(
1
ε

)
n log2 n+ µ sn logn

)
either proves that G is isomorphic to Sn or rejects this hypothesis with probability of
error ε.

Moreover, provided that WGC holds, the above algorithm completes in

O

(
[ρ+ µ+ ν] log

(
1
ε

)
n log n

log log n
+ µ sn log n

)
.

9. What To Do If n is Not Known?

The algorithm presented so far is Las Vegas only if we know the value of n, a priori.
Let us present a Monte Carlo way of finding an initially unknown n (which can be made
Las Vegas at the cost of admitting large storage requirements and significant increase in
complexity). We still assume that our gray box group G is isomorphic to Sn for some n.

We assume that there exists a natural upper bound for n. Such an upper bound arises
when the elements of the gray box group are encoded with bit strings of equal (finite)
length M . In that case we know that n < N := f(2M ), where f is the inverse factorial.
For simplicity assume N is even.

Denote by κ(N) the maximum of 1/P2i over all i = 1, . . . , N/2. Take a sequence of
2κ(N) random elements of G, and for every random element x compute its order

r(x) = pk1
1 · p

k2
2 · · · · · pkmm .

Take the maximum of sums
S = p1 + p2 + · · ·+ pm

over all these x. It is easy to see that S ≤ n, and equals n exactly when the element
x consists of cycles of distinct prime lengths p1, p2, . . . , pm (and no fixed points). In
particular, if x is a Goldbach element and n is even, we obtain equality, and if n is odd,
then S = n − 1. We claim that after 2κ(N) steps the probability of obtaining S = n
or S = n − 1 is at least 1/2. Indeed, the expected number of steps before a Goldbach
element is encountered is at most 1/Pn when n is even, or 1/Pn−1, when n is odd. This,
and the Markov bound immediately imply the above estimate.

Deciding whether S, the estimated degree of the group, is equal to n or n− 1 requires
more time and involves looking for elements of order 3p1p2, where p1 + p2 + 3 = S + 1.
If no such elements were found after 6κ(S) steps, we can conclude, with the probability
of error < 1/2, that S = n. Repeating this k times will improve the probability of error
to 1/2k.

Now recall that by the EGC we have κ(N) = O(N log2N). Analogously by the WGC
we obtain κ(N) = O(N logN/ log logN). This finishes the proof of the first part of
Theorem 2.

The above Monte Carlo algorithm outputs a number S which is smaller or equal to
the actual degree n of the group. Starting with this number, we obtain an element a of G
which is conjectured to be a transposition (if S = n, it is provably a transposition). Now
we can use original generators of our group G to generate the entire conjugacy class of
a, which is supposedly that of all transpositions in G ∼= Sn. The conjugacy class formed
by transpositions in Sn is the smallest non-trivial class, containing

(
n
2

)
elements. If the

class we have generated is not of this size, then either a is not a transposition, or we have
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Table 1.

n Raverage π2(n) π2(n− 2) t, s

20 121 2 2 0.045
30 224 3 2 0.135
40 468 3 2 0.375
50 201 4 5 0.208
60 377 6 4 0.459
70 847 5 2 1.207
80 474 4 7 0.775
90 558 9 4 1.040
100 1625 6 3 3.338
110 527 6 8 1.193
120 684 12 6 1.704
130 1971 7 3 5.310
140 923 7 8 2.682
150 1618 12 5 5.069
160 1507 8 5 5.055
170 849 9 13 3.020
180 1072 14 7 4.042
190 1627 8 5 6.521
200 779 8 13 3.302

Table 2.

n Raverage π2(n) π2(n− 2) t, s

25 586 3 2 0.312
35 422 4 3 0.309
45 1102 3 3 1.028
55 1111 5 4 1.240
65 841 5 6 1.131
75 1042 5 5 1.609
85 1506 8 4 2.624
95 1140 5 9 2.209
105 2011 5 6 4.344
115 2749 10 6 6.537
125 1267 5 12 3.271
135 3937 6 7 11.018
145 3659 11 7 11.082
155 2011 8 12 6.498
165 3650 5 8 12.64
175 2561 11 9 9.417
185 1793 8 14 6.992
195 3730 7 8 15.34

S < n. In either case, the conjugacy class of a is larger than
(
n
2

)
. This computation is

hardly practical, as it will take more than quadratic time in n.

10. Implementation of the Algorithm

The algorithm has been implemented in the computational group theory system GAP,
and can be obtained from the authors. We have tested the performance of our GAP im-
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Table 3.

n Raverage π2(n) π2(n− 2) t, s

2310 3309 114 34 369.13
2860 11367 68 38 1793.7

plementation on a Pentium II 400 MHz PC with 128 M RAM, running Linux 2.0.33. The
algorithm was tested on a family of symmetric groups of various degrees and representa-
tions, as well as on sporadic examples of groups non-isomorphic to Sn. A full discussion
of implementation will be given in Bratus and Pak (1999).

In Tables 1 and 2 we present partial test run results for two families of symmetric
groups. For each group we give the number Raverage of times a random element of the
black box group was sampled before the long cycle and the transposition were found, and
the CPU time in seconds, averaged over 100 runs. The former statistic is central to the
randomized part of the algorithm, as it clearly dominates the complexity. The running
time of the randomized part for Sn, n = 2k, is strongly affected by the numbers π2(n)
and π2(n − 2) of Goldbach pairs, and therefore we give these numbers for the groups
in Table 1. For Table 2, i.e. for the family Sn, n = 2k + 1, the same role is played by
π2(n − 1) and π2(n − 5). These numbers, connected with the probability of finding a
Goldbach element, explain why the algorithm may take a longer time to complete for
a smaller value of n. We remark here that the odd case algorithm is normally slower
by a factor of about 2. This factor can be explained by the fewer numbers of Goldbach
elements, and, consequently, the larger number of times the random sampling procedure
was called.

In Table 3 we present similar statistics for two large examples. The latter examples
were run only once, because of their larger size. The numbers 2310 = 2 · 3 · 5 · 7 · 11
and 2860 = 22 · 5 · 7 · 11 were chosen because of the large number of their prime factors.
We should warn the reader that the running time of the algorithm is subject to high
deviations, so the data in Table 3 may not represent the average case.

We chose not to report here the results of test runs on groups non-isomorphic to Sn
(in which the groups were rejected by the algorithm). We refer the reader to Bratus and
Pak (1999) for details.
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11. Appendix:† On the Fraction of Goldbach Elements in Sn

Throughout the paper we assumed that finding the Goldbach elements can be done
fairly fast. The EGC implies that this can be done in time O([ρ+ν+µ]n log2 n), which is
the dominating term in the running time of our algorithm. The purpose of this Appendix†

is to give a basis for the WGC, which implies that the running time of the algorithm is
O([ρ+ ν + µ]n log n/ log log n).

11.1. the lower bound

Recall that

Pn =
∑

p+q=n

1
p q
.

Everywhere in this section, by p, q we mean prime numbers. In the algorithm we also
required p 6= q in the summation, but for large n the difference in Pn is marginal and
will be ignored.

Theorem 5. For even N →∞ we have
1

N/2
(PN+2 + PN+4 + · · ·+ P2N ) ∼ log 2 · log logN

N logN
.

This shows that for average even n ∈ [N + 2, 2N ], the expected number of tries to find
a Goldbach element is Ω(n log n/ log log n). This gives a matching lower bound on the
running time of the algorithm.

Proof. We need several definitions and known results. Define

S(a, b) =
∑

a/2<i≤b/2

P2i =
∑

a<p+q≤b

1
pq
.

†The Appendix is due to the second author.
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We need to estimate S(N/2, N). If we show that

S(N/2, N) ∼ log 2 log log n
log n

this would immediately imply the result.
Recall the Euler–Mascheroni constant

γ = lim
N→∞

(
1 +

1
2

+ · · ·+ 1
N

)
− logN ≈ 0.5772156649

(see e.g. Hardy and Wright, 1960, and Tenenbaum, 1995), and Mertens constant

β = γ +
∑
p

(
log
(

1− 1
p

)
+

1
p

)
≈ 0.2614972128.

Versions of the following classical result go back to Euler, Mertens, Hadamard and de la
Vallée Poussin (see Hardy and Wright, 1960, and Tenenbaum, 1995):∑

1<p≤N

1
p

= log logN + β + o(1).

Furthermore, for N ≥ 286 we have∑
1≤p≤N

1
p

= log logN + β +
τ(N)

log2N
,

where −1/2 < τ(N) < 1/2. The latter result is due to Rosser and Schoenfeld (1962).
By analogy with S(a, b), define

T (a, b) =
∑
a<p≤b

1
p
.

For any α, ε > 0 and N large enough we have

T (αN, (α+ ε)N) = log log(α+ ε)N − log logαN +O

(
1

log2N

)
=
∫ (α+ε)N

αN

dx

x log x
+O

(
1

log2N

)
.

Now observe that given α1, α2 > 0 and ε→ 0 we have∑
α1N<p≤(α1+ε1)N
α2N<q≤(α2+ε2)N

1
pq

= T (α1N, (α1 + ε1)N) · T (α2N, (α2 + ε2)N).

This gives us

S(a, b) =
∫ ∫

D

dx

x log x
dy

y log y
+O

(
S(1, N)
log2N

)
where D = D(a, b) = {(x, y) | 2 ≤ x, y ≤ N, a < x+ y ≤ b}.

From Green’s formula we have∫ ∫
D

dx

x log x
dxx log x =

1
2

∫
∂D

log log x d log log y − log log y d log log x

= A1 +A2 +A3 +A4.
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(See Figure 1 below.) An explicit computation gives

A1 = A3 = O

(
1

logN

)
A2 +A4 ∼

log 2 log logN
logN

.

For the error term we have

S(1, N) =
∑

p+q≤N

1
pq

<
∑

1<p,q≤N

1
pq

(β + log logN)2 +O

(
log logN
log2N

)
= O((log logN)2).

This finishes proof of the theorem.2

11.2. probabilistic model

The probabilistic method in number theory dates back to Brun and perhaps even
earlier. While sometimes informal, this approach often gives answers of the right order
of magnitude. In this century, a spectacular progress was made by Erdös, Turán and
subsequent investigators, who proved a number of rigorous results (see Tenenbaum, 1995).

Consider now the following simple randomized model for prime numbers. For all k =
2, 3, . . . let Xk ∈ {0, 1} be independent, and Xk = 1 with probability 1/ log k. Denote
Sn = X2 + · · ·+Xn. Heuristically, Xn = 1 if n is a prime. We have

E(Sn) =
n∑
k=2

E(Xk) =
n∑
k=2

1
logn

= Lix+O(1),

where

Lix =
∫ n

2

dx

log x
∼ n

log n
.

Thus E(Sn) roughly agrees with the asymptotic law of prime numbers.
Since Xi are chosen to be independent, we can compute the variance

Var(Sn) =
n∑
k=2

Var(Xk) <
n∑
k=2

1
log n

= Lix+O(1).
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This gives an error term of the order
√
n/ log n, which roughly agrees with the error

term in the asymptotic law of prime numbers predicted by Riemann Hypothesis (see
Tenenbaum, 1995).

Here is a heuristic behind the asymptotic formula for the π2(n). We need to estimate
the behavior of the following random variable:

Zn = X2 ·Xn−2 +X3 ·Xn−3 + · · ·+Xn/2−1 ·Xn/2+1,

where n is even. We have

E(Zn) =
n/2−1∑
k=2

E(Xk ·Xn−k) =
n/2−1∑
k=2

1
log k log(n− k)

∼ 1
log(n)

n/2−1∑
k=2

1
log k

=
n

2 log2 n
(1 + o(1)).

One can use Chernoff bounds to show that Zn is concentrated around its mean. Similar
analysis can and has been done for π3(n), etc. (see Brun, 1915).

To justify the WGC, we need to find similar bounds for Pn. We are interested in the
behavior of the following random variable:

Rn =
1

2(n− 2)
X2 ·Xn−2 +

1
3(n− 3)

X3 ·Xn−3 + · · ·+ 1
(n/2− 1)(n/2 + 1)

Xn/2−1 ·Xn/2+1,

where n is even. Heuristically, Rn is the analog of Pn, i.e. a proportion of “Goldbach
elements” in our randomized model. We have

E(Rn) =
n/2−1∑
k=2

E(Xk ·Xn−k)
k (n− k)

=
n/2−1∑
k=2

1
k (n− k) log k log(n− k)

.

Using n/2 < n− k < n we obtain

E(Rn) = θ

(
1

n log n

)
·
n/2−1∑
k=2

1
k log k

= θ

(
log log n
n logn

)
,

which gives the same expected order of Rn as of Pn in the WGC.
It is important to note, however, that the average running time of the algorithm in this

model is given by E(1/Rn) = ∞ since with non-zero probability we have X2 · Xn−2 =
X3 ·Xn−3 = · · · = 0. The probability of this event is c 2−n/2. In all other cases we have
1/Rn = O(n2). The analog of the EGC in this case is the claim that 1/Rn < 3/4n log2 n
for most choices X1, . . . ,Xn. Indeed, if with high probability there are at least n/3 log2 n
choices of i such that Xi ·Xn−1 = 1, then we always have 1/i(n− i) > 4/n2. This gives
us Rn > 4/n2 · n/3 log2 n > 3/4n log2 n. On the other hand, in the best possible case we
have X2 = · · · = Xn−2 = 1 and thus

Rn ≥
n/2−1∑
i=2

1
i(n− i)

=
1
n

∑
i = 2n/2−1 1

i
+

1
n− i

=
log n+O(1)

n
.

This shows that 1/Rn > n/ logn (1 + o(1)) for any choices of Xi.
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Theorem 6. If Rn is as above, for sufficiently large n we have

Rn >
log log n
8n log n

with probability > 1− e−e
√

logn/2
.

Proof. For simplicity we will omit the floor/ceiling notation. Break an interval [2, n/2]
into r = n/2m intervals of length m each. Call these intervals I1, . . . , Ir. For all k =
1, . . . , r consider the number ak of i ∈ Ik such that Xi = Xn−i = 1. By definition,
Yi = Xi ·Xn−i, i = 1, . . . , r are independent Bernoulli trials with

P (Yi = 1) =
1

log i log(n− i)
>

1
log n log km

given i ∈ Ik. Therefore

E(ak) >
m

log n log km
.

The Chernoff bound gives

P (ak > E(ak)/2) > 1− e−m/8(logn)2
.

Therefore with probability Q > 1 − ne−m/8(logn)2
we have ai > E(ak)/2 for all i =

1, . . . , n/2. But in this case

Rn =
n/2−1∑
j=2

Xj ·Xn−j

j(n− j)
>

r∑
k=1

E(ak)/2
km (n− km)

>

r∑
k=1

1
2 log(km) log nk n

=
1

2n log n

r∑
k=1

1
k(log k + logm)

.

Given m < r the latter sum is bounded by
r∑

k=m

1
k(log k + logm)

>

r∑
k=m

1
2k log k

=
1
2

(log log r − log logm).

Recall that r = n/2m. Let m = e
√

1/2 log(n/2). We have log logm < 1/2 log log r then,
and

Rn >
1

2n log n
1
4

log log n =
1
8

log log n
n log n

with probability

Q > 1− ne−m/8(logn)2
> 1− ne−e

√
1/2 log(n/2)/8(logn)2

> 1− e−e
√

logn/2

when n is large enough. This proves the result.2

Remark. Let us conclude by saying that not being number theorists, we do not attempt
to make any progress in the WGC. We believe, however, that the following two weaker
versions are probably doable by the current techniques:

• The WGC holds for all but N ε even numbers n < N .
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• The analog of the WGC for triples of primes p1 + p2 + p3 = n holds for all large
enough odd n.
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