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Abstract. Let G be a finite group. For a given k, what is the probability that
a group is generated by k of its random elements? How can one uniformly
sample these generating k-tuples? In this paper we answer these questions for
the class of nilpotent groups. Applications to product replacement algorithms
and random random walks are discussed.

1. Introduction

Let G be a finite group. A sequence of group elements (g1, . . . , gk) is called a
generating k-tuple ofG if these elements generateG (we write 〈g1, . . . , gk〉 = G).
Let Nk(G) be the set of all generating k-tuples of G, and let Nk(G) = |Nk(G)|.

We consider two related problems on generating k-tuples. Given G and
k > 0,

1) Determine Nk(G).
2) Generate a random element of Nk(G), so that each element of Nk(G)

appears with probability 1/Nk(G).
The problem of determining the structure of Nk(G) is of interest in several

contexts. The counting problem goes back to Hall, who expressed Nk(G) as a
Möbius type summation of Nk(H), taken over all maximal subgroups H ⊂ G
(see [33]). Recently, the counting problem has been studied for large simple
groups, where remarkable progress has been made (see [39, 40, 41, 49]). In
this paper we analyze Nk(G) for nilpotent groups. We also show that Nk(G)
minimizes when G ' Zr2, r ≥ log2 |G|.

The sampling problem, while often used in theory as a tool for approximate
counting, recently began a life of its own. In [14] Celler et al. proposed a
product replacement Markov chain on Nk(G), which is believed to be rapidly
mixing. The subject was further investigated in [8, 15, 21, 22, ?]. We present
an efficient and economical algorithm for sampling in case when G is nilpotent.
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The generating k-tuples also occur in connection with the so-called random
random walks, which are ordinary random walks on G with random generating
sets. The analysis of these “average case” random walks was inspired by
Aldous and Diaconis in [1] and was continued in a number of papers (see e.g.
[26, 52, 47, 55]). We will show that one can use the sampling problem to
simulate these random random walks.

2. Definitions and main results

2.1. Counting problem Let G be a finite group. By |G| denote the order of
G. As in the introduction, let Nk(G) = |Nk(G)| be the number of generating
k-tuples 〈g1, . . . , gk〉 = G. It is often convenient to consider the probability
ϕk(G) that k uniform independent group elements generate G :

ϕk(G) =
Nk(G)

|G|k

Theorem 1. For any finite group G, 1 > ε > 0, we have

ϕk(G) > 1− ε

given k > log2 |G|+ max{3, 2 log2 1/ε}.
This is a slight improvement over a more general classical result by Erdős

and Rényi in [28] (see also [27]).
Define κ(G) to be the smallest possible number of generators of G. In

other words, let

κ(G) = min{k |Nk(G) > 0}.

The problem of evaluating κ(G) has been of intense interest for classes of
groups as well as for individual groups (see [17]).

It is known that κ(G) = 2 for all simple, nonabelian groups, and that

κ(G) ≤ n/2 for G ⊂ Sn, with equality achieved when G ' Zn/22 , and n is
even. Also, it is easy to see that κ(G) ≤ log2 |G|, with equality for G ' Zn2 .

Let ϑ(G) be the smallest k such that at least 1/3 of the random k-tuples
(g1, . . . , gk) generate the whole group. In other words, let

ϑ(G) = min

{
k |ϕk(G) >

1

3

}
.

Note that Theorem 1 immediately implies that

ϑ(G) ≤ log2 |G|+ 3

By definition ϑ(G)/κ(G) > 1. It is unclear, however, how big this ratio can
be (see [49, ?]).
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Here are few known results. When G is simple, it is known that ϕ2(G)→ 1
as |G| → ∞ (see [53]). This was the famous Kantor–Lubotzky conjecture,
now a theorem. For G = An, this is a famous result of Dixon (see [25]). For
classical simple groups of Lie type the result was confirmed by Kantor and
Lubotzky (see [39]). In full generality it was recently proved by Liebeck and
Shalev (see [40]). This immediately implies that ϑ(G) < C for any simple
group G and some universal constant C. It was noted in [22] that when G is
nilpotent, then ϕκ+1(G) > Const. The following result is an improvement.

Theorem 2. Let G be a finite nilpotent group. Then ϑ(G) ≤ κ(G) + 1.
We refer the reader to [23, 49, ?] for further discussion.

2.2. On presentations of groups There are several ways a finite group G
can be presented as input to an algorithm. Any group–theoretic algorithm
needs to be able to perform the group operation, to find inverse elements
and to compare the results of these operations with the identity element of
G. The complexity of an algorithm is expressed as a function of the times
necessary to perform these operations and other parameters. Thus, regardless
of the presentation of G, denote by µ the time necessary for group operations
(multiplication, taking an inverse, comparison with id1). Further, randomized
algorithms usually assume the ability to generate random elements of the group
G. Denote by ρ the complexity of generating a (nearly) uniform group element
(call this the random generation subroutine). It is also convenient to denote
by η the time required to check whether given k group elements generate the
entire group. We call this task a generation test.

We start with permutation groups, which are defined as subgroups of a per-
mutation group Sn. The group is presented by a set of generators. This is the
best understood class of groups with efficient management, random elements
generation, generation test, etc., based on the fundamental algorithms by C.
Sims (see e.g. [54, 16, 43]. In particular one has ρ = O(µn), and η = O(µn4)
(one can show that in this case by reducing the problem to group membership).

A matrix group is a group defined as a subgroup of GL(n; q). This is
a harder class of groups to work with (see [37, 8]). Recently some important
advances have been made in this setting (see [10, 13, 45, 42]). Still, polynomial
time management for matrix groups is yet to be discovered.

One of the most general and widely accepted is the black box setting (see
[8]), in which group elements are encoded by bit strings of a uniform fixed
length n (possibly non-uniquely, i.e. several different strings may correspond
to the same element of G). A black box oracle is given, that can multiply
elements, take their inverses (returning the results as bit strings of the same

1For some presentations, such as the presentation by generators and relations, the latter
task can be non-trivial. The black box model discussed below makes the assumption that
the identity test, i.e. comparison with id, can be performed efficiently.
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encoding), and compare elements with identity (see [8]), in time polynomial
in n. Note that n gives a bound on log2 |G|. This presentation of a group
generalizes both permutation groups and matrix groups. This setting proved
itself to be useful for working with general finite groups about which we have
limited information.

In his pioneering work [6], Babai was able to find a polynomial time algo-
rithm for generating (nearly) uniform group elements. The product replace-
ment algorithm of [14] was designed to give a practical algorithm for random
generation. These algorithms were used in a number of subsequent works, par-
ticularly on recognition of various classes of finite groups (see [11, 12, 38, 45]).
Following Babai (see [6]), there is no subexponential in n algorithm which can
perform the general generation test. When necesary, we isolate the complexity
of performing the generation test in a separate subroutine of complexity η.

Finally, a finite solvable group G can be given by a polycyclic generating
sequence, also referred to as an AG-system (see [54], Sec. 9.4). In this case,
both the random generation subroutine and the generation test can be easily
performed in nearly linear time. While no subexponential algorithm for finding
such a presentation is known, the existing algorithms implemented in GAP and
MAGMA are known to be very efficient in practice. We will consider nilpotent
groups that come in such a presentation.

2.3. Sampling problem Now consider the sampling problem (see introduc-
tion) from the computational point of view. We immediately obtain the fol-
lowing result.

Proposition 2.1. Let G be a black box group with a generation test oracle,
and a random generation oracle. Let ρ be the time required for the random
generation oracle to generate a (nearly) uniform random element of G, and η
be the time in which the generation test oracle can perform a generation test.
Let k ≥ ϑ(G). Then there exists a randomized algorithm for sampling from
Nk(G) in time O(ρk + η).

Indeed, given k ≥ ϑ(G), we can always sample from Nk(G) by simply
generating a uniform k-tuple and testing whether it generates the whole group
G. We call this method Choose–and–Check. The sampling problem is open for
κ(G) ≤ k < ϑ(G). We do not believe that there exists an efficient sampling
algorithm for general black box groups. However, such algorithm does exist
in special cases, when the group satisfies additional properties. In particular,
below we present such an algorithm for a finite nilpotent group given by an
AG-system.
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Theorem 2.2. Let G be a nilpotent group, given by an AG-system. k ≥
ϑ(G). Then there exists a randomized algorithm for sampling from Nk(G)
with running time O(kρ), and which requires k log2 |G| (1 + o(1)) random bits.

By random bits we mean, roughly speaking, the number of coin flips re-
quired in the algorithm. Algorithms which require fewer random bits are
considered to be better for applications. A formal definition will be given in
section 4.8.

Observe that the number of random bits cannot be smaller that log2Nk(G).
To demonstrate the strength of the algorithm in Theorem 6, consider the case
G = Zn2 . Then κ = n and Nn(G) is in one-to-one correspondence with the
set of nonsingular matrices GL(n; 2). It is known that ϕn(G) = c > 1/4
(see e.g. [44, 46]). The standard approach to sample from GL(n; 2) would be
to sample a random matrix and then check by Gaussian elimination whether
it is nonsingular. The expected number of random bits required for this is
1
c dlog2(n2)e. On the other hand, our algorithm requires only log2 n

2(1 + o(1))
random bits. The problem of saving random bits when sampling from GL(n; q)
was considered earlier by Randall (see [51]) and the second author (see [46]).
Thus Theorem 2.2 can be thought of as an advanced generalization of these
results.

3. Applications

3.1. Product replacement algorithm This algorithm is an important re-
cent advancement in computational group theory. In [14] Celler et al. defined
a Markov chain Xt on Nk(G) as follows. Let Xt = (g1, . . . , gk) ∈ Nk(G).
Define Xt+1 = (g1, . . . , hj , . . . , gk), where hj = gjg

±1
i or hj = g±1i gj , where

the pair (i, j), 1 ≤ i, j ≤ k, i 6= j is sampled uniformly; the multiplication
order and the ±1 degree are determined by independent flips of a fair coin.
By κ̃(G) denote the maximum size of the minimum generating set (i.e. of the
set such that no generator can be omitted). The authors showed that when
k ≥ 2 κ̃ this Markov chain is reversible, aperiodic and irreducible, and has a
uniform stationary distribution. Thus the chain is ergodic and can be used for
approximate sampling from Nk(G), k > 2κ̃(G).

At the moment it is not known whether the Markov chain converges in
time polynomial of k and log |G|. The empirical tests seem to indicate that it
mixes rapidly (see [14]). We refer the reader to the review article [?] by the
second author for references and detailed discussion of the matter.

Let us point out that if one knows how to sample generating k-tuples, one
can also test how close the product replacement Markov chain is to a stationary
distribution. Indeed, one can simply compare any given statistics on Nk(G)
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on samples obtained by the exact sampling and on samples obtained by the
product replacement algorithm. The authors in [14] use a chi-square statistic,
while the latter checking method allows more freedom.

3.2. Random random walks Let G be a finite group, and let (g1, . . . , gk) ∈
Nk(G) be a generating k-tuple. A random walk Xt on G is defined by X0 = id,
Xt+1 = Xt · gi, where i is chosen uniformly in [1, . . . , k]. One can think of the
walk Xt as of a nearest neighbor random walk on a Cayley graph.

It is known that under minor conditions the random walk converges to a
uniform distribution on G (see e.g. [2]). An important problem is to esti-
mate how long will it take to converge to stationary. Formally, let Qt(g) =
P(Xt = g) be the probability distribution of the walk after t steps. Define the
separation distance s(t) as follows:

s(t) = |G|max
g∈G

(
1

|G|
−Qt(g)

)
(see [18, 2]). In other words, s(t) = max{ε |Qt is ε− uniform}.

Usually estimating s(t) is a hard problem, from both theoretical and com-
putational points of view. Good estimates in cases of importance normally
require a detailed knowledge of the behavior of a random walk. In [1] Aldous
and Diaconis proposed to study “average case” random walks, and conjectured
that they must be rapidly mixing. Such random walk with random support
are often called random random walks.

A breakthrough was made by Dou and Hildebrand, who confirmed the
conjecture for superlogarithmic values of k. Roughly speaking, they showed
that after t > C a

a−1 logk |G| steps we have E(s(t)) → 0 as |G| → ∞, given
k > loga |G|. Different proofs and better bounds in special cases, such as
abelian groups, were obtained by subsequent investigators (see [4, 32, 35, 47,
50, 52, 55]). For fairly small k, such as k = o(log2 |G|), the problem is largely
unresolved (see [35, 47]). Say, for G = Sn it is believed that t = Ω(n3 log n)
implies s(t)→ 0 as n→∞ for any generating k-tuple, k = C ≥ 2 (see above).
However, no polynomial bound is known even for random random walks, the
best one in existence being due Babai and Hetyei (see [9, 47]).

Now, given this poor state of the art for k = o(log2 |G|), one may wish
to collect experimental evidence about the behavior of random random walks.
That is where one can apply the sampling procedures. Note also that in
general, if we can compute s(t) for random walks generated by random k-
tuples, there is no need to check whether this is a generating k-tuple. Indeed, if
a k-tuple does not generate G, the corresponding Cayley graph is disconnected
and s(t) = 1 for all t > 0. Thus if k > C ϑ(G) log(1/ε), then ϕk(G) > 1 − ε.
Let ε→ 0. We conclude that the expectation over all k-tuples E(s(t))→ 0 if
and only if so does the expectation taken over all generating k-tuples.
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4. Sampling problem

Let us first consider the elementary ’building blocks’ of finite abelian groups.
Clearly, Zp is generated by any one of its non-zero elements.

4.1. Generating k-tuples of G = Zpm We can think of elements of Zpm as
integers 0, . . . , pm − 1 written as numbers base p. Write for g ∈ Zpm

g = am−1p
m−1 + · · ·+ a1p+ a0, ai ∈ Zp

and call ai the ’coordinates’ of g. Let us also write

gmod p = a0.

for the last coordinate of g.
Then a k-tuple (g1, . . . , gk) generates Zpm if and only if at least one of

gi has a non-zero coordinate a0. The rest of the coordinates can be chosen
randomly. If we write our k-tuple in such coordinates as a matrix with k rows
and m columns, then any matrix with at least one non-zero element in the last
column will correspond to a generating k-tuple of Zpm and vice versa. This
establishes a simple algorithm for sampling generating k-tuples of Zpm .

4.2. Preparation for general abelian groups In order to produce gen-
erating k-tuples of more general abelian groups, we need the following two
algorithms. The first algorithm will sample permutations from Sm and the
second one (k −m)-subsets of the set {1, . . . , k}, with certain specific distri-
butions. Namely, we need to sample

• a permutation σ ∈ Sm with the probability proportional to q−inv(σ),

• a subset {i1, . . . , ik−m} ⊂ {2, . . . , k}, 1 < i1 < i2 < . . . < ik−m ≤ k, with
the probability proportional to q|I|,

where q is a prime power, inv(σ) is the number of inversions of σ ∈ Sm, and

|I| =
∑k−m
α=1 iα. More precisely, the probability of sampling σ ∈ Sm is

P (σ, q) =
q−inv(σ)

fm( 1
q )

,

where

fm(t) =
∑
σ∈Sm

tinv(σ) =

m∏
i=1

(1 + t+ · · ·+ ti−1).

Note that fm(q) is equal to the number of complete flags over Fq (see e.g.
[46]).
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The following algorithms for the two tasks above have been adopted from [46].
We will form a permutation by placing numbers 1, 2, . . . ,m on a line, one after
another. First place 1, then place 2 either to the right or to the left of 1, choos-
ing one of these two positions with certain probability, then place 3 in one the
three possible intervals into which the previously placed numbers divide the
line etc. Denote (i)x = (1+x+ · · ·+xi−1), where x > 0. When placing i, place
it in the right-most position with probability 1/(i)q−1 , in the second position
from the right with the probability q−1/(i)q−1 , etc., in the left-most position
with probability q−i+1/(i)q−1 . By the multiplicative property of fm(t) we will
have the desired sampling distribution when this process stops (i.e. when m
is placed into one of the m available intervals).

The second sampling problem is equivalent to sampling an (n−m)-subset of
{1, . . . , n} with probability depending on the sum of the chosen n−m numbers
(in our actual sampling 1 will be prohibited from being chosen). It is, in turn,
equivalent to sampling an (n −m)-subset with probability depending on the
number of inversions in it, where we define the number of inversions inv(A)
in A ⊂ {1, . . . , n} as the number of pairs (i, j), 1 ≤ i < j ≤ n, such that i ∈ A,
j 6∈ A. It can be checked that

n−m∑
α=1

iα =
1

2
(n+m+ 1)(n−m)− inv(A).

The method of sampling a (n−m)-subset A out of {1, . . . , n} with the prob-
ability proportional to q−inv(A) is analogous to the one for permutations. For
each number from 1 to n we will decide whether we want to include it in the
subset A or not, i.e. include it (or not include it) with a certain fixed proba-
bility, depending only on the number itself and the number of elements chosen
for A so far. Namely, suppose we are considering i ∈ {1, . . . , n} and have l
elements to go before A is complete (i.e. contains n−m elements). Then we
include i in A with probability

1 + β + β2 + · · ·+ βl−1

1 + β + β2 + · · ·+ βn−i+1
,

where β = 1/q. We stop when l = n−m. This algorithm is discussed in detail
in [46].

4.3. Generating uniform invertible matrices over Fq Consider G =
Zp ⊕ . . .⊕ Zp = (Zp)⊕m. The group G is then an m-dimensional vector space
over Zp, and we may think of its elements as m-dimensional vectors. Therefore
no k-tuple can generate G for k < m.

For k = m, an m-tuple (g1, . . . , gm) generates G if and only if the matrix
with the coordinates of gj ’s as rows is non-singular. Generating a random
non-singular m ×m matrix isn’t hard, since a matrix with randomly chosen
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entries is, with high probability, non-singular. For a detailed discussion of this
issue and an efficient method for generating uniformly distributed random
non-singular matrices see [46]. The method offered in [46] is based on Bruhat
decomposition of GL(m, q) and easily generalizes for other classical matrix
groups.

Define S(σ,Fq), where σ ∈ Sm, to be a set of matrices M = (ri,j) such
that ri,σ(i) = 1 and ri,j = 0 if j < σ(i) or σ−1(j) < i. For example, if m = 5,
σ = (2, 4, 3, 1, 5) ∈ S5 we get all M ∈ S(σ,Fq) as

M =


0 1 ∗ ∗ ∗
0 0 0 1 ∗
0 0 1 0 ∗
1 0 0 0 ∗
0 0 0 0 1


where by ”*” we mean any number x ∈ Fq. Denote by B(m,Fq) the set
of invertible upper-triangular matrices. Then the algorithm that outputs a
uniform random element of GL(m,Fq) is as follows.

Algorithm 1.

1. Input m, q;

2. Sample σ ∈ Sm with the distribution in which each σ ∈ Sm appears with
probability

q−inv(σ)∏m
i=1(1 + 1

q + · · ·+
(

1
q

)i−1
)

3. Sample M ∈ S(σ,Fq) uniformly;

4. Sample B ∈ B(m,Fq) uniformly;

5. Output M ′ = BT ·M .

The sets S(σ,Fq) are the Schubert cells of GL(m, q). They are in one-
to-one correspondence with the elements of the Weyl group Sm of GL(m, q).
The group GL(m, q) decomposes as a disjoint union of orbits of its upper-
triangular group B(m,Fq) on those Schubert cells (Bruhat decomposition).
Elements of both B(m,Fq) and S(m,Fq) are easy to generate randomly with
uniform distribution.

Denote the above matrix of 1’s and stars corresponding to σ by Mσ. There
are exactly

(
n
2

)
− inv(σ) ”stars” in Mσ corresponding to a permutation σ, so

|S(σ,Fq)| = q(
n
2)−inv(σ), (∗)
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The probability

q−inv(σ)

fm( 1
q )

,

of sampling σ ∈ Sm on step 2 is proportional to the size of the Schubert cell
corresponding to σ, where fm(t) is the generating function for the number of
complete flags over Fq mentioned in 4.2.

4.4. Generating k-tuples of G = Zp ⊕ . . . ⊕ Zp = (Zp)⊕m Let G = Zp ⊕
. . .⊕ Zp = (Zp)⊕m. As above, any generating k-subset of G must have k ≥ m
elements. The case k = m is done above, the case k > m can be handled in a
similar fashion as follows.

Denote the set of generating k-tuples of G by Γk. It decomposes as a
disjoint union analogous to the Bruhat decomposition for GL(m, q).

Pick a subset I = {i1, . . . , ik−m} of {2, . . . , k} such that 1 < i1 < i2 <
· · · < ik−m ≤ k. Denote by M ′σ the k×m matrix obtained by inserting k−m
rows of zeros into Mσ so that they become rows i1, . . . , ik−m in the resulting
matrix.

Denote by C(σ, {i1, . . . , ik−m}) the set of all matrices of the shape M ′σ,
and by B(k, I,Fq) the set of all invertible lower-triangular matrix that in
columns i1, . . . , ik−m have 1’s on the diagonal and zeros below the diagonal.
For example, if m = 5, k = 7, σ = (2, 4, 3, 1, 5) ∈ S5, and I = {3, 5} we have

M ′σ =



0 1 ∗ ∗ ∗
0 0 0 1 ∗
0 0 0 0 0
0 0 1 0 ∗
0 0 0 0 0
1 0 0 0 ∗
0 0 0 0 1


, B(k, I,Fq) =





∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ 1 0 0 0 0
∗ ∗ 0 ∗ 0 0 0
∗ ∗ 0 ∗ 1 0 0
∗ ∗ 0 ∗ 0 ∗ 0
∗ ∗ 0 ∗ 0 ∗ ∗




The algorithm yielding uniform generating k-subsets (k > m) of G =

(Zp)⊕m (uniform elements of Γk) is as follows.
Algorithm 2.

1. Input k, m, q;

2. Sample a pair (σ, I), σ ∈ Sm, I = {i1, . . . , ik−m} ⊂ {2, . . . , k} with the
distribution in which each pair (σ, I) appears with probability proportional
to

q|I|−inv(σ)

where |I| =
∑k−m
α=1 iα.
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3. Sample M ∈ C(σ, I) uniformly;

4. Sample B ∈ B(k, I,Fq) uniformly;

5. Output M ′ = B ·M .

Let us prove that the algorithm is correct. Consider a generating k-tuple
(g1, . . . , gk) ∈ Γk for k > m. Written as a k×m matrix, it must have a minor
of the full rank m. Such a minor is an invertible m × m matrix (and thus
lies in the orbit of some Schubert cell S(σ,Fq) of GL(m, q)), and the rest of
the rows are linear combinations of the minor’s rows. The full rank minor in
question can be chosen as the ’topmost’ of all full rank minors of the matrix,
in the following sense.

Suppose that rows i1, . . . , ik−m are each a linear combination of their re-
spective preceding rows. As we go from the top to the bottom row of the
original k ×m matrix of the k-tuple, each row is either linearly independent
of the rows above it and is added to our maximal minor (up to m rows) or is
linearly dependent on the preceding rows (up to k −m rows) .

The ’topmost’ maximal m-minor obtained in this fashion is an invertible
matrix in a Schubert cell corresponding to some permutation σ ∈ Sm. So Γk
decomposes into disjoint subsets numbered by a permutation σ ∈ Sm and a
list of rows i1, . . . , ik−m in which the next linear dependence occurs.

More precisely, any matrix with rows i1, . . . , ik−m linearly dependent on
their respective preceding rows and the rest forming an invertible m×m matrix
from the Schubert cell corresponding to σ ∈ Sm can be obtained by multiplying
a unique matrix of type M ′σ on the left by a unique k × k invertible lower-
triangular matrix, which in columns i1, . . . , ik−m has 1’s on the diagonal and
zeros below the diagonal,

Γk =
⋃

I∈I, σ∈Sm

B(k, I,Fq) · C(σ, I) (disjoint)

where I is the set of all I = {i1, . . . , ik−m} such that 1 < i1 < · · · < ik−m ≤ k.
All such sets I can be better enumerated as follows: take i′1 = i1 − 1, i′n =
in − in−1, n = 2, . . . , k −m. Then any k −m ordered set {i′1, . . . , i′k−m} such

that i′n ≥ 1 and
∑k−m
n=1 i

′
n ≤ k − 1.

The size of the B(k, I,Fq) orbit of C(σ, I) is

(q − 1)m q(
k
2)−

∑k−m
l=1 (k−il) q(

m
2 )−inv(σ) = (q − 1)mq(

m+k
2 )−k2+|I|−inv(σ),

where inv(σ) is the number of inversions in permutation σ, and |I| = i1 + · · ·+
ik−m. Therefore the probability of sampling a pair (σ, I) is

q|I|−inv(σ)∑
σ∈Sm, I∈I(q|I|−inv(σ))

=
q|I|−inv(σ)

Mk×m
,
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whereMk×m is the number of full rank matrices of size k×m. This is exactly
the probability from the algorithm above, which concludes the proof.

4.5. Generating k-tuples of G = Zpi1 ⊕ . . .⊕Zpim Let us now consider the
general case of a finite abelian group made of elementary components with the
same p. Namely, consider

G = Zpi1 ⊕ . . .⊕ Zpim ,

where i1, . . . , im need not be distinct.
A k-tuple (g1, . . . , gk) generates G if and only if the k-tuple modulo p,

(g′1, . . . , g
′
k) = (g1 mod p, . . . , gk mod p) ∈ (Zp)⊕m

generates (Zp)⊕m.
Indeed, let Pj be a straight line program in (Zp)⊕m to e′j = (0, . . . , 1, . . . , 0)

(with 1 on the j-th place):

(0, . . . , 1, . . . , 0) = Pj(g
′
1, . . . , g

′
k).

Take the same program with {gi} instead of their images {g′i}. With a suitable
α ∈ Z, for this element Pj(g1, . . . , gk) of G we have

(a1, . . . , aj−1, 1, aj+1, . . . , am) = α · Pj(g1, . . . , gk), where ai mod p = 0 .

Therefore the subgroup of G generated by the original k-tuple contains
elements with 1 on the l-th place and ai mod p = 0, where i 6= l, in all
other places. It follows that all ej = (0, . . . , 1, . . . , 0) ∈ G also lie in the
subgroup generated by the k-tuple (to see this, we only need to apply Gaussian
elimination.)

Write the elements g1, . . . , gk of the k-tuple in ’coordinates’ as follows. For
each

gj = (h1j , . . . , h
m
j ) ∈ Zpi1 ⊕ . . .⊕ Zpim

write in a single row the coordinates of h1 in Zpi1 , . . . , hm in Zpim , and form
a block matrix with k columns (and

∑m
n=1 in columns).

As we have just shown, only the last coordinate of each hnj (i.e. the last
column of each block) matters in determining whether each Zpin (and therefore
G) gets generated by the k-tuple.

Therefore, to obtain a random generating k-tuple of G, we can first find a
generating k-tuple of (Zp)⊕m (the desired, so to say, mod p) using Algorithm
2. Interpret the resulting matrix as that of the last coordinates of hlj and fill
in the rest of their coordinates randomly.

4.6. Generating k-tuples of a general finite abelian group G Let p1, . . . , pm
be distinct primes. A general finite abelian group G has a unique presentation
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as

G = Zp1i1 ⊕ . . .⊕ Zp1is ⊕ . . .⊕ Zpmj1 ⊕ . . .⊕ Zpmjt = Fp1 ⊕ . . .⊕ Fpm ,

where Fpi = Zpil1 ⊕ . . . ⊕ Zpils , the sum of all elementary components with
the same pi.

Write an element g ∈ G as g = (f1, . . . , fm), fi ∈ Fi. A k-tuple (g1, . . . , gk)
generates G if and only if the k-tuples of its components (f j1 , . . . , f

j
k) generate

Fpj . Indeed, the following trivial lemma is true:
Lemma 7. Let F1, . . . , Fm be abelian groups, |Fi| = pnii . Then a k-tuple

(g1, . . . , gk) generates G = F1 ⊕ . . .⊕ Fm if and only if for each α = 1, . . . ,m
the k-tuple (fα1 , . . . , f

α
k ) generates Fα, where gj = (f1j , . . . , f

m
j ), fjα ∈ Fα.

Indeed, consider the following maps

ϕj : g 7→ p1 · · · pj−1pj+1 · · · pm · g.

Clearly,

ϕj( f
1, . . . , fm ) = (0, . . . , f ′j , . . . , 0).

Moreover, on Fj this map acts as an automorphism (that is, πj ◦ ϕj ◦ ι is an
automorphism of Fj , where πj : G → Fj and ι : Fj → G are the standard
projection and inclusion). Applying ϕj to a k-tuple, we will get a k-tuple in
Fj which should generate the entire Fj if the original k-tuple generated G,
and vice versa, if the images of the original k-tuple generate Fj , then their
preimages generate the entire j-th summand of G.

Therefore the algorithm that yields a uniformly distributed generating k-
tuple of the general finite abelian group

G = Zp1i1 ⊕ . . .⊕ Zp1is ⊕ . . .⊕ Zpmj1 ⊕ . . .⊕ Zpmjt = Fp1 ⊕ . . .⊕ Fpm ,

is as follows.
Algorithm 3.

1. For each prime pα (α = 1, . . . ,m) find a random uniform generating
k-tuple (fα1 , . . . , f

α
k ) for (Zpα)⊕nα , using Algorithm 2.

2. Choosing additional coordinates randomly, complete

(fα1 , . . . , f
α
k ) ∈ (Zpα)⊕nα

to (f ′
α
1 , . . . , f

′α
k ) ∈ Fpα (see Section 4.5).

3. Output gj = (f1j , . . . , f
m
j ) for j = 1, . . . , k.

4.7. Nilpotent groups LetG be a nilpotent group. Consider its lower central
series Gi (G0 = G), Gi+1 = [G,Gi], i = 0, 1, . . . , n and

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}
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By definition, all subgroups Gi are normal in G, and all groups Hi = Gi/Gi+1

are abelian. For each factor-group Hi define its transversal H̃i ⊂ G to be the
set of coset representatives of Gi/Gi+1 with exactly one representative from

each coset. Then every element g ∈ G can be represented as g = h̃0h̃1 . . . h̃n,
for some h̃i ∈ H̃i. Moreover, if h̃i ∈ H̃i, i = 0, 1, . . . , n are random uniformly
distributed elements of H̃i for each i, then their product g = h̃0h̃1 . . . h̃n is uni-
formly distributed in G. Therefore, if we can sample uniform random elements
from the transversals H̃i, we can easily sample uniform random elements of G
itself.

For nilpotent groups it is known that H̃0 ⊂ G generates the entire group
G. In view of this, producing uniformly distributed generating k-tuples can
be done as follows:

Algorithm 4.

1. Sample a uniform generating k-tuple h10, . . . , h
k
0 of H0 = G/G1 using

Algorithm 1.3. Denote h̃10, . . . , h̃
k
0 the corresponding elements in H̃0.

2. Choose uniformly elements h̃ij ∈ H̃j for each i = 1, . . . , k, j = 1, . . . , n.
Compute

gi = h̃i0 · h̃i1 · · · · · h̃in ∈ G

3. Output (g1, . . . , gk).

Consider a classical example. Let G be the group of upper-triangular m×m
matrices over the finite filed Fp (p is prime) with 1’s on the diagonal. Then
G is nilpotent and each Gi consists of upper-triangular matrices with 1’s on
the main diagonal and zeros on i subdiagonals above the main diagonal (all
the non-zero entries concentrated in the smaller triangle above the ith subdi-
agonal), and Hi

∼= (Fq)m−i−1. Then the algorithm above amounts to picking
a generating k-tuple in (Fq)m−1 to fill the 1st subdiagonals of the correspond-
ing m×m matrices g1, . . . , gk, and picking all other non-zero entries of those
matrices at random.

In general, we claim that the above algorithm will indeed produce a gen-
erating k-tuple of G. Indeed, it is well known that a generating k-tuples in
H0 are in one–to–one correspondence with k-tuple in H̃0 which generates the
entire group G. Now simply take any elements in the remaining H̃i, and we
obtain a random generating k-tuple of G. This finishes proof of the claim.

4.8. On random bits Our aim is to present algorithms for obtaining uni-
formly distributed generating k-tuples of groupsG with known structure (abelian,
nilpotent and supersolvable), which are effective (and, in a sense, optimal) in
terms of random bits. By this we mean that the number of random bits (say,
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calls to procedures for generating random elements of a finite field) is not sig-
nificantly higher than that required for generating an arbitrary element of G in
some standard presentation. For instance, when obtaining generating k-tuples
of G = (Fq)n (that is to say, n×n non-singular matrices with entries in Fq) the
number of times a random element of Fq needs to be generated is no greater
than n2.

It is a routine exercise to check that the algorithm outlined above uses a
nearly optimal number of random bits. We will skip the details for the sake
of simplicity. This completes the proof of Theorem 6.

5. Counting problem

5.1. Nilpotent groups Let G be a nilpotent group, p1, . . . , pm are distinct
primes, and

G = Fp1 ⊕ . . .⊕ Fpm ,

where Fp is the Sylow p-subgroup of G (see section 4.6 above). Assume |Fpi | =
pλii . By the results of section 4.7 we have

ϕk(G) =

m∏
i=1

ϕk
(
Fpi
)

Also, for a p-group Fp,

Fp = Zα1
p ⊕ Zα2

p2 ⊕ . . .

Let κ = κ(Fp) = α1 + α2 + . . . . We have

ϕk(Fp) = ϕk
(
Zκ
p

)
=

κ∏
i=1

(
1− 1

pi−κ+k

)
≥

∞∏
i=k−κ+1

(
1− 1

pi

)
Let z = 1/p. By Euler’s pentagonal theorem

∞∏
i=1

(1− zi) =

∞∑
m=1

zm(3m±1) = 1− z − z2 + z5 + z7 − . . . ≥ 1− z − z2

Therefore

ϕk(Fp) ≥ 1− 1

p
− 1

p2
≥ 1− 1

2
− 1

4
=

1

4

for k = κ(G), and

ϕk(Fp) ≥ ϕκ+1(Fp) =

∞∏
i=2

(
1− 1

pi

)
≥

1− 1
p −

1
p2

1− 1
p

= 1− 1

p (p− 1)
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for k ≥ κ(G) + 1. We conclude that when k ≥ κ(G) + 1 we have

ϕk(G) ≥
∞∏
p=2

(
1− 1

p (p− 1)

)
> .373 > 1/3

where the product is over all primes p. The constant .373 is computed directly
(see Remark 8 below). This proves Theorem 2 for nilpotent groups (cf. [23]).

6. General groups

In this section we will prove Theorem 1.
Let G be a finite group. Consider the following random process. Pick a

uniform group element g1 ∈ G. If H1 = 〈g1〉 6= G, pick a uniform group
element g2 ∈ G. If H2 = 〈g1, g2〉 6= G, pick a another groups element, etc.
Denote by τ the first time we generate the whole group. We claim that for all k
and all G, and r = dlog |G|e, the probability P(τ = k) minimizes when G ' Zr2.
Indeed, regardless of the group structure, for any given i the probability that
Hi 6= Hi+1 is 1− |Hi|/|G|. Notice that then |Hi+1|/|Hi| ≥ 2 with the equality
always achieved when G ' Zr2. Therefore P(τ = k) minimizes in this case.

Now observe that ϕk(G) = P(τ ≤ k). Thus ϕk(G) minimizes when G '
Zr2, and it remains to compute ϕk(Zr2). Recall that ϕk(Zr2) is equal to the
probability that a random k × r-matrix over F2 has full rank and is equal to

ϕk(Zr2) ≥
r−1∏
i=0

(
1− 1

2k−i

)

≥
∞∏

i=k−r+1

(
1− 1

2i

)
=

∞∏
i=1

(
1− 1

2im

)
· . . . ·

(
1− 1

2im+m−1

)

≥
∞∏
i=1

(
1− 1

2im

)m
=

( ∞∏
i=1

(
1− 1

(2m)i

))m
,

where m = k − r + 1. Now use Euler’s pentagonal theorem (see section 5.1)
to obtain

ϕk ≥
(

1− 1

2m
− 1

22m

)m
≥ 1− m+ 3

2m

Now let m = d2 log2(1/ε)e, m ≥ 3. Then ϕk = ϕr+m−1 > 1− ε. This implies
the result and finishes the proof of Theorem 1.

7. Final remarks
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For the general finite group G constructing a direct generation algorithm as
above seems to be a very complicated problem, regardless of the standard
presentation we may select. For example, little is known of the classification
of such pairs of permutations that generate an alternating group An, although
the probability that a randomly chosen pair does generate An is high. Indeed,
recall that ϕ2(An) = 1− 1/n−O(1/n2) (see [5]).

In such cases it seems best to use the Choose–and–Check method, i.e.
produce k random elements of G and check if they form a generating k-tuple
(cf. Proposition 2.1). As discussed earlier, for permutation groups and solvable
matrix groups (see [42, 43]) this testing can be done in polynomial time.

On the other hand, if we are interested in a Monte Carlo algorithm which
will work with high probability, it is known that if two random elements do not
fix any point, they generate Sn with high probability (see [5, 53]). A similar
result holds for other simple groups of Lie type (see [39, 40, 53]). This result
is the key point in the proof of Theorem 3 (see [49]).

Regarding the efficient generation of the uniform group elements, let us
recall that the well-known Lie–Kolchin theorem, which states that every con-
nected solvable algebraic group is supersolvable, applies here. This hints at a
possibility of a natural generalization of Theorem 6 and the results of [42]. We
would like to note that the general subgroup algorithm for matrix groups in a
white box representation was outlined in [24].

Also notice that, unlike the product replacement Markov chain on Nk(G),
which requires that k ≥ 2 κ̃(G) (see section 3.1), the Choose–and–Check
method will efficiently work in case of solvable groups for all k ≥ κ(G) + 1, in
view of Theorem 2.

8. Acknowledgments

We would like to thank L. Babai, G. Cooperman, P. Diaconis, W. Feit, L. Finkel-
stein, W. Kantor, L. Lovász, A. Lubotsky, G. Margulis, D. Randall, A. Shalev
and E. Zelmanov for helpful conversations.

The second author was supported by NSF Postdoctoral Research Fellowship
in Mathematical Sciences.

References

[1] D. Aldous, P. Diaconis, Shuffling cards and stopping times, Amer. Math.
Monthly, vol. 93 (1986), 155-177

[2] D. Aldous, J. Fill, Reversible Markov Chains and Random Walks on Graphs,
monograph in preparation, 1996



18
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