
ENUMERATION OF INTEGER POINTS IN PROJECTIONS OF

UNBOUNDED POLYHEDRA

DANNY NGUYEN AND IGOR PAK

Abstract. We extend the Barvinok–Woods algorithm for enumeration of integer points
in projections of polytopes to unbounded polyhedra. For this, we obtain a new structural
result on projections of semilinear subsets of the integer lattice. We extend the results to
general formulas in Presburger Arithmetic. We also give an application to the k-Frobenius
problem.

1. Introduction

1.1. The results. The integer linear programming is a classical subject with many advances
and applications to other areas. The pioneer result by Lenstra [Len83] shows that the
feasibility of integer linear programming in fixed dimension can be decided in polynomial
time:

(◦) ∃x : Ax ≤ b.

This result was extended by Kannan [Kan90], who showed that parametric integer linear
programming in fixed dimension can be decided in polynomial time:

(◦◦) ∀y ∈ (P ∩ Zn) ∃x ∈ Zm : Ax + By ≤ b.

Both results rely on difficult results in geometry of numbers and can be viewed geometrically:
(◦) asks whether a polyhedron Q = {Ax ≤ b} ⊆ Rn has an integer point. Similarly, (◦◦)
asks whether every integer point in polyhedron P is a projection of an integer point in
polyhedron Q = {Ax +By ≤ b} ⊆ Rm+n.

Barvinok [Bar93] famously showed that the number of integer points in polytopes in fixed
dimension can be computed in polynomial time. He used a technology of short generating
functions (GF) to enumerate the integer points in general (possibly unbounded) rational
polyhedra in Rn in the following form:

(>) f(t) =

N∑
i=1

ci t
ai

(1− tbi1) · · · (1− tbiki )
,

where ta = ta11 · · · tann for a = (a1, . . . , an). This technology allows to compute the number
of integer points in the bounded case, but also take intersections, unions and complements
for general (possibly unbounded) polyhedra [Bar08, BP99].

Barvinok’s algorithm was extended to projections of polytopes by Barvinok and Woods
[BW03], see Theorem 4.1. The result has a major technical drawback: while it does gen-
eralize Kannan’s result for bounded P and Q as in (◦◦), it does not apply for unbounded
polyhedra. The main result of this paper is an extension of Barvinok’s algorithm to the
unbounded case.
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Theorem 1.1. Let m,n ∈ N be fixed. Given a (possibly unbounded) polyhedron Q = {x ∈
Rm : Ax ≤ b}, and a linear transformation T : Zm → Zn satisfying T (Zm) ⊆ Zn, let g(t)
be the GF for T (Q ∩ Zm) :

g(t) =
∑

y ∈ T (Q∩Zm)

ty .

Then there is a polynomial time algorithm to compute g(t) in the form of a short GF (>).

Our main tool is a structural result describing projections of semilinear sets, which are
defined as disjoint union of intersections of polyhedra and lattice cosets. More precisely, we
prove that such projections are also semilinear and give bound on (combinatorial) complex-
ity of the projections (Theorem 3.4). In combination with the Barvinok–Woods theorem
this gives the extension to unbounded polyhedra.

We then present a far-reaching generalization of our results to all formulas in Presburger
Arithmetic: we first prove a the structural result (Theorem 5.2) and then a generalization
of Theorem 1.1 (Theorem 5.3). We illustrate the power of our generalization in the case of
the k-Frobenius Problem.

1.2. Connections and applications. Lenstra’s original algorithm was further improved
in [Eis03, FT87]. Kannan’s algorithm was generalized in [ES08] by removing the condition
that P has a bounded affine dimension. Barvinok’s algorithm has been simplified and
improved in [DK97, KV08]. Both Barvinok’s and Barvinok–Woods’ algorithms have been
implemented and used for practical computation [D+04, Köp07, V+07].

Let us emphasize that in the context of parametric integer programming, there are two
main reasons to study unbounded polyhedra:

(1) Working with short GFs of integer points in unbounded polyhedra allows to compute
to various integral sums and valuations over convex polyhedra. We refer to [B+12, Bar08,
BV07] for many examples and further references.

(2) For a fixed unbounded polyhedron Q and a varying polytope P in (◦◦), one can count
the number of points in the projection of Q within P , by intersecting Q with a box of
growing size and then projecting it. The Barvinok–Woods algorithm is called multiple
times for different boxes. Our approach allows to call the Barvinok–Woods algorithm only
once to project Q (unbounded), and then call a more economical Barvinok’s algorithm to
compute the intersection with P . See Section 6 for an explicit example.

2. Standard definitions and notations

We use N = {0, 1, 2, . . .} and Z+ = {1, 2, . . .}.
All constant vectors are denoted a, b, c, d, n, v, etc.
Matrices are denoted A,B,C, etc.
Variables are denoted x, y, z, etc.; vectors of variables are denoted x,y, z, etc.
We write x ≤ y if xj ≤ yj for coordinate in vectors x and y.
We also write x ≤ N to mean that each coordinate is ≤ N .
GF is an abbreviation for “generating function.”
Multivariate GFs are denoted by f(t), g(t), h(t), etc.
A polyhedron is an intersection of finitely many closed half-spaces in Rn.
A polytope is a bounded polyhedron.
Polyhedra and polytopes are denoted by P,Q,R, etc.
The affine dimension of P is denoted by dim(P ).
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Integer lattices are denoted by L, T ,U ,W, etc.
Let rank(L) denotes the rank of lattice L.
Patterns are denoted by L,T ,S,U ,W , etc.
Let φ(·) denotes the binary length of a number, vector, matrix, GF, or a logical formula.
For a polyhedron Q described by a linear system Ax ≤ b, let φ(Q) denote the total length
φ(A) + φ(b).
For a lattice L generated by a matrix A, we use φ(L) to denote φ(A).

3. Structure of a projection

3.1. Semilinear sets and their projections. In this section, we assume all dimensions
m,n, etc., are fixed. We emphasize that all lattices mentioned are of full rank. All inputs
are in binary.

Definition 3.1. Given a set X ⊆ Rn+1, the projection of X, denoted by proj(X), is defined
as

proj(X) := {(x2, . . . , xn) : (x1, x2, . . . , xn+1) ∈ X} ⊆ Rn.
For any y ∈ proj(Q), denote by proj−1(y) ⊆ X the preimage of y in X.

Definition 3.2. Let L ⊆ Zn be a full-rank lattice. A pattern L with period L is a union
of finitely many (integer) cosets of L. For any other lattice L′, if L can be expressed as a
finite union of cosets of L′, then we also call L′ a period of L.

Given a rational polyhedron Q and a pattern L, the set Q ∩ L is called a patterned
polyhedron. When the pattern L is not emphasized, we simply call Q a patterned polyhedron
with period L.

Definition 3.3. A semilinear set X is a set of the form

(3.1) X =
k⊔
i=1

Qi ∩Li ,

where each Qi ∩ Li is a patterned polyhedron with period Li, and the polyhedra Qi are a
pairwise disjoint.1 The period length ψ(X) of X is defined as

ψ(X) =
k∑
i=1

φ(Qi) + φ(Li).

Note that ψ(X) does not depend on the number of cosets in each Li. Define

η(X) :=

k∑
i=1

η(Qi),

where each η(Qi) is the number of facets of the polyhedron Qi.

Our main structural result is the following theorem.

1In Theoretical CS literature, the semilinear sets are often given in a more explicit presentation which
makes some operations like projections easy to compute, while structural properties harder to establish (see
e.g. [CH16] and references therein).
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Theorem 3.4. Let m,n ∈ N be fixed. Let X ⊆ Zm be a semilinear set of the form (3.1).
Let T : Rm → Rn be a linear map satisfying T (Zm) ⊆ Zn. Then T (X) is also a semilinear
set, and there exists a decomposition

(3.2) T (X) =
r⊔
j=1

Rj ∩ Tj ,

where each Rj ∩ Tj is a patterned polyhedron in Rn with period Tj ⊆ Zn. The polyhedra Rj
and lattices Tj can be found in time poly(ψ(X)). Moreover,

r = η(X)O(m!) and η(Rj) = η(X)O(m!), 1 ≤ j ≤ r.

Remark 3.5. In the special case when X is just one polyhedron Q ∩ Zm, the first piece
R1 ∩ T1 in (3.2) has a simple structure. Theorem 1.7 in [AOW14] identifies and describes
R1 ∩ T1 as R1 = T (Q)γ and T1 = T (Zm). Here T (Q)γ is the γ-inscribed polyhedron inside
T (Q) (see [AOW14, Def. 1.6]). However, their result does not characterize the remaining
pieces Rj∩Tj in the projection T (X). Thus, Theorem 3.4 can also be seen as a generalization
of the result in [AOW14] to semilinear sets, with a complete description of the projection.

For the proof of Theorem 3.4, we need a technical lemma:

Lemma 3.6. Let n ∈ N be fixed. Consider a patterned polyhedron (Q ∩ L) ⊆ Rn+1 with
period L. There exists a decomposition

(3.3) proj(Q ∩L) =
r⊔
j=0

Rj ∩ Tj ,

where each Rj ∩ Tj is a patterned polyhedron in Rn with period Tj ⊆ Zn. The polyhedra Rj
and lattices Tj can be found in time poly(φ(Q) + φ(L)). Moreover,

r = O
(
η(Q)2

)
and η(Rj) = O

(
η(Q)2

)
, for all 0 ≤ j ≤ r.

We postpone the proof of the lemma until Subsection 3.3.

3.2. Proof of Theorem 3.4. We begin with the following standard definitions and nota-
tion.

Definition 3.7. A copolyhedron P ⊆ Rn is a polyhedron with possibly some open facets.
If P is a rational copolyhedron, we denote by bP c the (closed) polyhedron obtained from
P by sharpening each open facet (ax < b) of P to (ax ≤ b − 1), after scaling a and b to
integers. Clearly, we have P ∩ Zn = bP c ∩ Zn.

Recall that X has the form (3.1) with each Qi∩Li having period Li. Define a polyhedron

(3.4) Q̂i :=
{

(x,y) : y = T (x) and x ∈ Qi
}
⊆ Rm+n.

Consider the pattern Ui = Li ⊕ Zn ⊆ Zm+n with period Ui = Li ⊕ Zn. Then Q̂i ∩Ui is a
patterned polyhedron in Rm+n with period Ui. By (3.4), we have:

T (Qi ∩Li) = S(Q̂i ∩Ui) and T (X) =

r⋃
i=1

S(Q̂i ∩Ui),

where S is a vertical projection mapping (x,y) ∈ Rm+n to y ∈ Rn. We can write S =
S1 ◦ · · · ◦Sm, where each Si : Ri+n → Ri+n−1 is a projection along the xi+n coordinate. We
repeatedly apply Lemma 3.6 on Sm, . . . , S1.
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Start by applying Lemma 3.6 on Sm. We have:

(3.5) Sm(Q̂i ∩Ui) =

ri⊔
j=1

Rij ∩ Tij for all 1 ≤ i ≤ k,

where each Rij ∩ Tij is a patterned polyhedron in Zm+n−1 with period Tij . Note that two
pieces Rij and Ri′j′ can be overlapping for some i 6= i′. However, we can refine all Rij into
polynomially many disjoint copolyhedra P1, . . . , Pe , so that

(3.6)
k⋃
i=1

ri⋃
j=1

Rij =

e⊔
d=1

Pd .

For each Pd we can also find a pattern Wd with period Wd ⊆ Zm+n−1. The (full-rank)
period Wd can be taken as the intersection of polynomially many (full-rank) periods Tij for
which Pd ⊆ Rij . We then round each Pd to bPdc, see Definition 3.7. From (3.5) and (3.6)
we have:

k⋃
i=1

Sm(Q̂i ∩Ui) =
e⊔

d=1

bPdc+ Wd .

The above RHS is a semilinear set in Rm+n−1. A similar argument applies to Sm−1, . . . , S1.
In the end, we have (3.2).

Using Lemma 3.6, we can bound the number of polyhedra ri in (3.5), and also the number
of facets η(Rij) for each Rij . It is well known that any q hyperplanes in Rm partition the
space into at most O(qm) polyhedral regions. This gives us a polynomial bound on e,
the number of refined pieces in (3.6). By a careful analysis, after m projections, the total

number r of pieces in the final decomposition (3.2) is at most η(X)O(m!). Each piece Rj
also has at most η(X)O(m!) facets. �

3.3. Proof of Lemma 3.6. The proof is by induction on n. The case n = 0 is trivial. For
the rest of the proof, assume n ≥ 1.

Let L ⊆ Zn+1 be a pattern full-rank with period L as in the lemma. Then, the projection
of L onto Zn is another pattern L′ with full-rank period L′ = proj(L). Since L is of full
rank, we can define

(3.7) ` = min{t ∈ Z+ : (t, 0, . . . , 0) ∈ L}.

Let R = proj(Q). Assume Q is described by the system Ax ≤ b. Recall the Fourier–
Motzkin elimination method (see [Sch86, §12.2]), which gives the facets of R from those
of Q. First, rewrite and group the inequalities in Ax ≤ b into

(3.8) A1y + b1 ≤ x1, x1 ≤ A2y + b2 and A3y ≤ b3,

where y = (x2, . . . , xn+1) ∈ Rn. Then R is described by a system Cy ≤ d, which consists of
(A3y ≤ b3) and (a1y + b1 ≤ a2y + b2) for every possible pair of rows a1y + b1 and a2y + b2
from the first two systems in (3.8). Moreover, we can decompose

(3.9) R =

r⊔
j=1

Pj ,

where each Pj is a copolyhedron, so that over each Pj , the largest row in A1y + b1 is

aj1y + bj1 and the smallest row in A2y + b2 is aj2y + bj2. Thus, for every y ∈ Pj , we have
proj−1(y) = [αj(y), βj(y)], where αj(y) = aj1y + bj1 and βj(y) = aj2y + bj2 are affine
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rational functions. Let m = η(Q). Note that the system Cy ≤ d contains at most O(m2)
inequalities, i.e., η(R) = O(m2). Also, we have r = O(m2) and η(Pj) = O(m) for 1 ≤ j ≤ r.

For each y ∈ R, the preimage proj−1(y) ⊆ Q is a segment in the direction x1. Denote
by |proj−1(y)| the length of this segment. Now we refine the decomposition in (3.9) to

(3.10) R = R0 tR1 t · · · tRr , where

a) Each Rj is a copolyhedron in Rn, with η(Rj) = O(m2) and r = O(m2).
b) For every y ∈ R0, we have the length |proj−1(y)| ≥ `.
c) For every y ∈ Rj (1 ≤ j ≤ r), we have the length |proj−1(y)| < `. Furthermore, we

have proj−1(y) = [αj(y), βj(y)], where αj and βj are affine rational functions in y.

This refinement can be obtained as follows. First, define

R0 = proj[Q ∩ (Q+ `v1)] ⊆ R,
where v1 = (1, 0, . . . , 0). The facets of R0 can be found from those of Q ∩ (Q + `v1) again
by Fourier–Motzkin elimination, and also η(R0) = O(m2). Observe that |proj−1(y)| ≥ ` if
and only if y ∈ R0. Define Rj := Pj\R0 for 1 ≤ j ≤ r. Recall that for every y ∈ Pj , we
have proj−1(y) = [αj(y), βj(y)]. Therefore,

Rj = Pj\R0 = {y ∈ Pj : |proj−1(y)| < `} = {y ∈ Pj : αj(y) + ` > βj(y)}.
It is clear that each Rj is a copolyhedron satisfying condition c). Moreover, for each
1 ≤ j ≤ r, we have η(Rj) ≤ η(Pj) + 1 = O(m). By (3.9), we can decompose:

R = R0 t (R\R0) = R0

r⊔
j=1

(Pj\R0) =
r⊔
j=0

Rj .

This decomposition satisfies all conditions a)–c) and proves (3.10). Note also that by con-
verting each Rj to bRjc, we do not lose any integer points in R. Let us show that the part
of proj(Q ∩L) within R0 has a simple pattern:

Lemma 3.8. proj(Q ∩L) ∩R0 = R0 ∩L′.

Proof. Recall that proj(L) = L′, which implies LHS ⊆ RHS. On the other hand, for every
y ∈ L′, there exists x ∈ L such that y = proj(x). If y ∈ R0∩L′, we also have |proj−1(y)| ≥ `
by condition b), with ` defined in (3.7). The point x and the segment proj−1(y) lie on the
same vertical line. Therefore, since |proj−1(y)| ≥ `, we can find another x′ such that
x′ ∈ proj−1(y) ⊆ Q and also x′ − x ∈ L. Since L has period L, we have x′ ∈ L. This
implies x′ ∈ Q ∩ L, and y ∈ proj(Q ∩ L). Therefore we have RHS ⊆ LHS, and the lemma
holds. �

It remains to show that proj(Q∩L)∩Rj also has a pattern for every j > 0. By condition
c), every such Rj has a “thin” preimage. Let Qj = proj−1(Rj) ⊆ Q. If dim(Rj) < n, we
have dim(Qj) < n + 1. In this case we can apply the inductive hypothesis. Otherwise,
assume dim(Rj) = n. For convenience, we refer to Rj and Qj as just R and Q. We can
write R = R′ +D, where R′ ⊆ R is a polytope and D is the recession cone of R.

Consider y ∈ R, v ∈ D and λ > 0. Since y + λv ∈ R, from c) we have proj−1(y + λv) =

[α(y + λv), β(y + λv)]. Denote by α̃ and β̃ the linear parts of the affine maps α and β. By
property of affine maps, we have:

(3.11) proj−1(y + λv) = [α(y + λv), β(y + λv)] = [α(y) + λα̃(v), β(y) + λβ̃(v)].

Therefore,

|proj−1(y + λv)| = β(y)− α(y) + λ
[
β̃ − α̃

]
(v).
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Since (y + λv) ∈ R, by c) we have:

0 ≤ |proj−1(y + λv)| = β(y)− α(y) + λ
[
β̃ − α̃

]
(v) < `.

Because λ > 0 is arbitrary, we must have
[
β̃ − α̃

]
(v) = 0. This holds for all v ∈ D. We

conclude that
[
β̃− α̃

]
vanishes on the whole subspace H := span(D), i.e., for any v ∈ H we

have α̃(v) = β̃(v). Thus, we can rewrite (3.11) as

(3.12) proj−1(y + λv) = [α(y), β(y)] + λα̃(v) = proj−1(y) + λα̃(v).

Define C := α̃(D) and G := α̃(H). Note that span(C) = G, because span(D) = H.
Recall that R = R′+D with R′ a polytope. In (3.12), we let y vary over R′, λ vary over R+

and v vary over D. The LHS becomes Q = proj−1(R). The RHS becomes proj−1(R′) + C.
Therefore, we have Q = proj−1(R′) + C. Since proj−1(R′) is a polytope, we conclude that
C is the recession cone for Q.

Because proj−1(y) = [α(y), β(y)] for every y ∈ R, the last n coordinates in α(y) and

β(y) are equal to y. This also holds for α̃(y) and β̃(y), i.e., proj(α̃(y)) = proj(α̃(y)) = y.
This implies proj(G) = H, because G = α̃(H). In other words, α̃ is the inverse map for
proj on G (see Fig. 1).

R

D,H

Q
C,G

proj α̃

Figure 1. R and Q = proj−1(R), with R′ and proj−1(R′) shown in blue.
The cones C and D span G and H, respectively.

Recall that Q ∩L is a patterned polyhedron with period L, and proj(Q) = R. Define

S := L ∩G and T := proj(S) ⊂ proj(G) = H.

Since L is full-rank, we have rank(S) = dim(G). Since α̃ and proj are inverse maps, we have
S = α̃(T ). We claim that proj(Q∩L) ⊂ R is a patterned polyhedron with period T . Indeed,
consider any two points y1,y2 ∈ R with y2 − y1 ∈ T . Assume that y1 ∈ proj(Q ∩L), i.e.,
there exists x1 ∈ Q∩L with proj(x1) = y1. We show that y2 ∈ proj(Q∩L). First, we have
proj−1(y1) = [α(y1), β(y1)] and proj−1(y2) = [α(y2), β(y2)]. Let v = y2 − y1 ∈ T ⊂ H.
By (3.12), we have:

(3.13) [α(y2), β(y2)] = proj−1(y2) = proj−1(y1 + v) = [α(y1), β(y1)] + α̃(v).

Thus, we have α(y1)−β(y1) = α(y2)−β(y2). In other words, the points α(y1), β(y1), α(y2)
and β(y2) form a parallelogram inside Q. Since proj(x1) = y1, we have:

x1 ∈ proj−1(y1) = [α(y1), β(y1)] ⊆ Q.
So x1 lies on the edge [α(y1), β(y1)] of the parallelogram mentioned above. Therefore, we
can find another point x2 lying on the other edge [α(y2), β(y2)] = proj−1(y2) with

x2 − x1 = α(y2)− α(y1) = α̃(y2 − y1) = α̃(v) ∈ α̃(T ) = S.
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This x2 satisfies proj(x2) = y2. Recall that x1 ∈ L, with L having period L. Since
x2 − x1 ∈ S ⊂ L, we have x2 ∈ L. This implies x2 ∈ Q ∩L and y2 ∈ proj(Q ∩L).

So we have established that proj(Q ∩ L) ⊂ R is a patterned polyhedron with period T .
Note that

rank(T ) = rank(S) = dim(G) = dim(H) = dim(D).

If dim(D) = n then T is full-rank. If dim(D) < n, recall that R = R′ + D where R′ is a
polytope, and span(D) = H. Let H⊥ be the complement subspace to H in Rn, and R⊥

be the projection of R′ onto H⊥. Since R⊥ is bounded, we can take a large enough lattice
T ⊥ ⊂ H⊥ such that there are no two points z1 6= z2 ∈ R⊥ with z1 − z2 ∈ T ⊥. Now the
lattice T ⊥ ⊕ T is full-rank, which can be taken as a period for proj(Q ∩L).

To summarize, for every piece Rj and Qj = proj−1(Rj), 1 ≤ j ≤ r, the projection
proj(Qj ∩ L) ⊂ Rj has period Tj . Thus proj(Qj ∩ L) is a patterned polyhedron. This
completes the proof. �

4. Finding short GF for unbounded projection

4.1. Barvinok–Woods algorithm. In this section, we are again assuming that dimen-
sionsm and n are fixed. We recall the Barvinok–Woods algorithm, which finds in polynomial
time a short GF for the projection of integer points in a polytope:

Theorem 4.1 ([BW03]). Let m,n ∈ N be fixed. Given a rational polytope Q = {x ∈ Rm :
Ax ≤ b}, and a linear transformation T : Zm → Zn satisfying T (Zm) ⊆ Zn, there is a
polynomial time algorithm to compute a short GF for T (Q ∩ Zm) as:

(4.1) g(t) =
∑

y ∈ T (Q∩Zm)

ty =
M∑
i=1

ci t
ai

(1− tbi1) . . . (1− tbis)
,

where ci ∈ Q, ai, bij ∈ Zn, bij 6= 0 for all i, j, and s is a constant depending only on m.
Furthermore, the short GF g(t) has length φ(g) = poly(φ(Q) + φ(T )), where

(4.2) φ(g) =
∑
i

dlog2 |ci|+ 1e +
∑
i,j

dlog2 aij + 1e +
∑
i,j,k

dlog2 bij k + 1e.

Clearly, extend our main result Theorem 1.1 is an extension of Theorem 4.1. The proof
of Theorem 1.1 is based on Theorem 3.4 and uses the following standard result:

Proposition 4.2 (see e.g. [Mei93]). Let n ∈ N be fixed. Let R = {x ∈ Rn : Cx ≤ d} be a
possibly unbounded polyhedron. There is a decomposition

(4.3) R =

t⊔
k=1

Rk ⊕Dk ,

where each Rk is a copolytope, and each Dk is a simple cone. Each part Rk⊕Dk is a direct
sum, with Rk and Dk affinely independent. All Rk and Dk can be found in time poly(φ(R)).
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4.2. Proof of Theorem 1.1. Without loss of generality, we can assume dim(Q) = m and
dim(T (Q)) = n. Clearly, the set X = Q ∩ Zm is a semilinear, and we want to find a short
GF for T (X).

First, we argue that for any bounded polytope P ⊂ Rn, a short GF for T (X)∩P can be
found in time poly(φ(Q) + φ(P )). Assume P is given by a system Cy ≤ d. For any v ∈ P ,
we have v ∈ T (X) if and only if the following system has a solution x ∈ Zm:

(4.4) Sv :=
{
Ax ≤ b
T (x) = v

.

By bound on integer programming solutions (see [Sch86, Cor. 17.1b]), Sv has a solution
x ∈ Zm if and only if it has a solution x ∈ Zm with binary length at most poly(φ(Sv)).
Since v ∈ P , and P is bounded, we have φ(v) = poly(φ(P )). Because Sv involves only v,Q
and T , we have φ(Sv) = poly(φ(P ) + φ(Q) + φ(T )). Thus, we can find N ∈ N of length
log(N) = poly(φ(P ) + φ(Q) + φ(T )), such that (4.4) remains equivalent with the extra

condition −N ≤ x ≤ N . Define a polytope Q̂ ⊂ Rm by:{
Ax ≤ b

C T (x) ≤ d
−N ≤ x ≤ N

.

Applying Theorem 4.1 to Q̂, we get a short GF g(t) for T (Q̂ ∩ Zm) = T (X) ∩ P .
Now we are back to finding a short GF for the entire projection T (X). Applying Theo-

rem 3.4 to X, we have a decomposition:

(4.5) T (X) =
r⊔
j=1

Rj ∩ Tj .

We proceed to find a short GF gj for each patterned polyhedron Rj ∩Tj with period Tj .
For convenience, we refer to Rj , Tj , Tj , gj simply as R, T , T and g. By Proposition 4.2,
we can decompose

(4.6) R =

tj⊔
i=1

Ri ⊕Di and R ∩ T =

tj⊔
i=1

(Ri ⊕Di) ∩ T .

Recall from Theorem 3.4 that T has full rank. Let di = dim(Di) and v1i , . . . , v
di
i be the

generating rays of the (simple) cone Di. For each vti, we can find nt ∈ Z+ such that

wti = ntv
t
i ∈ T . Let Pi and Ti be the parallelepiped and lattice spanned by w1

i , . . . , w
di
i ,

respectively. We have Di = Pi + Ti and therefore

(4.7) Ri ⊕Di = Ri ⊕ (Pi + Ti) = (Ri ⊕ Pi) + Ti.

Each Ri ⊕ Pi is a copolytope. Note that Theorem 4.1 is stated for (closed) polytopes. We
round each Ri⊕Pi to bRi⊕Pic, where b.c was described in Definition 3.7 (Section 3.2). By
the earlier argument, we can find a short GF hi(t) for T (X) ∩ (Ri ⊕ Pi) = (Ri ⊕ Pi) ∩ T .
Since Ti ⊆ T , the pattern T also has period Ti. By (4.7), we can get the short GF fi(t) for
(Ri ⊕Di) ∩ T as

(4.8) fi(t) =
∑

y∈(Ri⊕Di)∩T

ty =
∑

y∈(Ri⊕Pi)∩T

ty.
∑
y∈Ti

ty = hi(t)

di∏
t=1

1

1− tw
t
i

.
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By (4.6), we obtain

(4.9) g(t) =
∑

y∈R∩T
ty =

∑
1≤ i≤ tj

fi(t).

In summary, we obtained a short GF gj(t) for each piece Rj ∩ Tj (1 ≤ j ≤ r). Summing
over all j in (4.5), we get a short GF for T (X), as desired. �

Remark 4.3. Throughout the paper we sidestep the convergence of GFs issue by working
with formal power series. When valuation is taken into account, any formal GF with infinite
line will vanish. We refer to [Bar08, BP99] for a careful explanation.

5. Sets defined by Presburger formulas

In this section, all variables x, y, z,x,y, z, etc., are over Z. Presburger Arithmetic (PA)
is the first order theory on the integers that allows only additions and inequalities. In other
words, each atom (quantifier and Boolean free term) in PA is an integer inequality of the
form

a1x1 + . . .+ anxn ≤ b,
where x = (x1, . . . , xn) are integer variables, and a1, . . . , an, b ∈ Z are integer constants.
A general PA formula is formed by taking negations, conjunctions, disjunctions of such
inequalities, and also quantifiers ∀/∃ over different variables. A sentence in PA is a formula
with all variables quantified. Every integer programming problem can be expressed as an
existential PA sentence of the form

∃x : Ax ≤ b.
This is because rational half-spaces describing a polyhedron Q can be rescaled to integer
inequalities.

Fix k ∈ Z+ and a vector of dimensions n = (n1, . . . , nk) ∈ Zk+. Let x1 ∈ Zn1 , . . . ,xk ∈ Znk

be vectors of integer variables. We consider the class PAk,n consisting of Presburger formulas
F of the form

F =
{
x1 : Q2x2 . . . Qkxk Φ(x1, . . . ,xk)

}
.

Here Q2, . . . , Qk ∈ {∀,∃} are any k quantifiers, and Φ(x1, . . . ,xk) is a Boolean combina-
tion of linear inequalities in x1, . . . ,xk. For a specific value of x1 ∈ Zn1 , the substituted
formula F (x1) is a Presburger sentence in variables x2, . . . ,xk. We say that x1 satisfies F
if F (x1) is a true Presburger sentence. To simplify the notation, we identify a formula F
with the set of integer points x1 that satisfy F . The length φ(F ) is the total length of all
symbols and constants in F written in binary.

Example 5.1. The formula F = {x : ∀y (5y ≥ x+1)∨ (5y ≤ x−1)} ∈ PA2,(1,1) determines
the set of non-multiples of 5.

Below is our main result for this section, which generalizes Theorem 3.4.

Theorem 5.2. Fix k and n. Given a Presburger formula F ∈ PAk,n, there exists a decom-
position

F =

r⊔
j=1

Rj ∩ Tj ,

where each Rj∩Tj is a patterned polyhedron in Rn1 with period Tj ⊆ Zn1. The polyhedra Rj
and lattices Tj can be found in time poly(φ(F )).
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Proof. Consider any F ∈ PAk,n of the form:

F = {x1 : Q2x2 . . . Qkxk Φ(x1, . . . ,xk)}.

Let x = (x1, . . . ,xk) and n = n1 + . . .+ nk. Let us show directly that

X = {x ∈ Zn : Φ(x)}

is semilinear. Recall that Φ is a Boolean combination of linear inequalities. Using Propo-
sition 5.2.2 in [Woo04], we can rewrite Φ into a disjunctive normal form of polynomial
length:

Φ = (A1x ≤ b1) ∨ . . . ∨ (Atx ≤ bt).
Here, each Aix ≤ bi is a system of inequalities, describing a polyhedron Pi ⊆ Rn. Moreover,
all polyhedra P1, . . . , Pt are pairwise disjoint, and

∑t
i=1 φ(Pi) = poly(φ(F )). In other

words, the set X consists of integer points in a disjoint union of t polyhedra. Thus, X is a
semilinear set with ψ(X) = poly(φ(F )), in the notation of Definition 3.3.

The proof goes by recursive construction of sets X(k), X(k−1), . . . , X(1). Let X(k) := X.
If Qk = ∃, we consider the set

X(k−1) :=
{

(x1, . . . ,xk−1) : ∃xk Φ(x)
}

=
{

(x1, . . . ,xk−1) : ∃xk [x ∈ X(k)]
}
.

This set X(k−1) is obtained from X(k) by projecting along the last variable xk, i.e., the
last nk coordinates in x. By Theorem 3.4, we can find in polynomial time a decomposition
of the form (3.2) for X(k−1). Moreover, we have ψ(X(k−1)) = poly(ψ(X(k))).

Similarly, if Qk = ∀, we consider

X(k−1) :=
{

(x1, . . . ,xk−1) : ∀xk Φ(x)
}

= ¬
{

(x1, . . . ,xk−1) : ∃xk [x ∈ ¬X(k)]
}
.

Here ¬ denotes the complement of a set. Observe that the complement ¬X of a semi-
linear set X is also semilinear, and ψ(¬X) = poly(ψ(X)). Indeed, assume that X has a
decomposition

X =

p⊔
i=1

Pi ∩Li .

Recall that the polyhedral pieces Pi are pairwise disjoint, but do not necessarily cover Rn.
Let us prove that the complement

(
Rn\ tpi=1 Pi

)
can also be partitioned into polyno-

mially many pairwise disjoint polyhedra. Indeed, we can represent tpi=1Pi by a Boolean
expression of linear inequalities in x. Therefore, the complement can also be represented
by a Boolean expression. By Proposition 5.2.2 in [Woo04] mentioned above, we can rewrite
the complement as a disjoint union of polynomially many polyhedra P ′1, . . . , P

′
q. From here,

we obtain the decomposition:

¬X =

p⊔
i=1

Pi ∩L′i

q⊔
j=1

P ′j ∩ Zn ,

where L′i is the complement of Li, with the same period Li. Therefore, we have ψ(¬X(k)) =

poly(ψ(X(k))). Applying Theorem 3.4, we can obtain X(k−1) by projecting ¬X(k).
Applying the above argument recursively for quantifers Qk−1, . . . , Q2, we obtain a poly-

nomial length decomposition for the semilinear set

X(1) = {x1 ∈ Zn1 : Q2x2 . . . Qkxk Φ(x)} = F.

This completes the proof. �
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Theorem 5.3. Fix k and n. Let F ∈ PAk,n be a Presburger formula and M be a positive
integer. Denote by fM (t) the partial GF

(5.1) fM (t) :=
∑

x∈F, |x|≤M

tx.

Suppose there is an oracle computing fM (t) as a short GF (>) in time µ(F,M). Then
there is an integer N = N(F ) with log(N) = poly(φ(F )), such that the GF f(t) =

∑
x∈F tx

for the entire set F can be computed as a short GF in time poly(µ(F,N)). The integer
N = N(F ) can be computed in time poly(φ(F )).

In other words, Theorem 5.3 says that the full GF f(t) can be computed in polynomial
time from the partial GF fN (t) for a suitable N .

Proof. Let n = n1. By Theorem 5.2, we have a decomposition

F =
r⊔
j=1

Rj ∩ Tj .

We proceed similarly to the proof of Theorem 1.1. Denote Rj and Tj by R and T respec-
tively, for convenience. We have the decomposition (4.6) for R and R ∩ T , which leads
to (4.7). Eventually, we can compute a short GF g(t) for R ∩ T using (4.8) and (4.9).
The only difference is that the GF hi for each patterned polytope (Ri ⊕ Pi) ∩ F , which
was (Ri ⊕ Pi) ∩ T in (4.8), cannot be obtained from Theorem 4.1, since F is no longer the
result of a single projection.

Recall that each Ri⊕Pi is a polytope, with facets of total length poly(φ(F )). Therefore,
the vertices of Ri⊕Pi can be found in polynomial time given F . This holds for all 1 ≤ i ≤ tj
and all 1 ≤ j ≤ r. Thus, we can find a positive integer N = N(F ), for which

log(N) = poly(φ(F )) and Ri ⊕ Pi ⊆ [−N,N ]n for all 1 ≤ i ≤ tj .
Given the partial GF fN (t), the GF hi(t) for each (Ri⊕Pi)∩F can be computed as follows.

Barvinok’s theorem [Bar93] (see also Theorem 4.4 in [BP99]) allows us to compute in
polynomial time a short GF

fi(t) =
∑

x∈(Ri⊕Pi)∩Zn

tx

for each polytope Ri ⊕ Pi. Theorem 10.2 in [BP99] allows us to compute in polynomial
time a short GF for the intersection of two finite sets, given their short GFs as input. Since
(Ri ⊕ Pi) ∩ F is the intersection of (Ri ⊕ Pi) ∩ Zn and F ∩ [−N,N ]n, we can compute

hi(t) =
∑

x∈(Ri⊕Pi)∩F

tx =

( ∑
x∈(Ri⊕Pi)∩Zn

tx

)
?

( ∑
x∈F∩[−N,N ]n

tx

)
= fi(t) ? fN (t).

in time poly(µ(F,N)). Here ? is the Hadamard product of two power series (see [BP99]).
The short GF fN (t) is obtained by a single call to the oracle in time µ(F,N). This completes
the proof. �

Remark 5.4. We emphasize that Theorem 5.3 does not directly compute the GF f(t)
in polynomial time, for a general F . It only claims that f(t) can be computed in time
poly

(
µ(F,N)

)
given the oracle. In fact, computing f(t) directly from F is an NP-hard

problem, even for F ∈ PA2,(1,1). This result is proved in [Woo04, Prop. 5.3.2], and is
ultimately derived from a result by Schöning [Sch97], which says that deciding the truth of
Presburger sentences of the form ∃x∀y Φ(x, y) is an NP-complete problem.
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6. The k-feasibility problem

We present an application of Theorem 5.3. Let n, d and k be fixed integers and A ∈ Zd×n.
In [ADL16], the authors defined a set Sg≥k(A) ∈ Zd of k-feasible vectors as

(6.1) Sg≥k(A) = {y ∈ Zd : ∃x1, . . . ,xk ∈ Nn, y = Axj , xi 6= xj if i 6= j, 1 ≤ i, j ≤ k}.
In other words, Sg≥k(A) consists of vectors that are representable in at least k different ways
as a non-negative combination of columns of A. In addition to some results about Sg≥k(A),
the authors also gave an algorithm to compute a short GF for Sg≥k(A) within a finite box:

Theorem 6.1 (Theorem 5 in [ADL16]). Fix n, d and k. Let A ∈ Zd×n, and let N be a
positive integer. Let

fN (t) =
∑

x ∈ Sg≥k(A)∩[−N,N ]d

tx

be the partial GF for Sg≥k(A) within the box [−N,N ]d. Then there is a polynomial time
algorithm to compute fN (t) as a short GF.

Using Theorem 5.3, we can extend Theorem 6.1 as follows:

Theorem 6.2. Fix n, d and k. Then there is a polynomial time algorithm to compute

f(t) =
∑

x ∈ Sg≥k(A)

tx

for the entire set Sg≥k(A), as a short GF.

Proof. From the definition (6.1), we see that Sg≥k(A) is a Presburger formula in vari-
ables y,x1, . . . ,xk with only an existential (∃) quantifier. Indeed, each condition y = Axj
is a system of of 2d inequalities. Each condition xi 6= xj is a disjunction of 2n inequal-
ities (xit < xjt) or (xit > xjt) for 1 ≤ t ≤ n. Therefore, we have Sg≥k(A) ∈ PAk+1,n,
where n = (d, n, . . . , n).

Applying Theorem 5.3, we can compute in polynomial time the a short GF f(t) for Sg≥k(A)
given the partial short GF fN (t). Finally, Theorem 6.1 allows us to compute fN (t) in poly-
nomial time. �

Theorem 6.1 was stated in [ADL16] for fixed n and k, but arbitrary d. The follow-
ing result is a straightforward consequence of the previous theorem and an argument by
P. van Emde Boas described in [Len83, §4].

Theorem 6.3. Fix n and k, but let d be arbitrary. Then there is a polynomial time algo-
rithm to compute

f(t) =
∑

x ∈ Sg≥k(A)

tx

for the entire set Sg≥k(A), as a short GF.

Proof. This can be easily reduced to the case when d is also fixed. Indeed, let LA ⊆ Zd be the
lattice generated by the n columns of A ∈ Zd×n. We have rank(LA) = rank(A) ≤ n. Hence,
we can find a d × d unimodular matrix U so that UA is non-zero only in the first n rows.
Let B ∈ Zn×n be the first n rows of UA, and LB be the lattice generated by the columns
of B. Observe that LB and LA are isomorphic. Therefore, the set of k-representable vectors
in LA are in bijection with those in LB. Now we apply Theorem 6.2 to get a short GF g(t)
for Sg≥k(B). The GF for Sg≥k(A) is easily obtained from g(t) by a variable substitution

via U−1. �
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7. Conclusion

We extend Barvinok–Woods algorithm to compute short GFs for projections of polyhedra.
The result fills a gap in the literature on parametric integer programming which remained
open since 2003. We also prove a structural result on the projection of semilinear sets by a
direct argument. Let us emphasize that we get effective polynomial bounds for the number
of polyhedral pieces and the facet complexity of each piece in the projection, but not on
the complexity of the pattern within each piece.

We refer to [Gin66] for a related investigation of semilinear sets in the context of Pres-
burger Arithmetic, and to [CH16] for most recent developments. The study of semilinear
sets has important applications in other areas, such as analysis of number decision diagrams
(see [Ler03, Ler05]), and integer optimization (see e.g. [AOW14]). Let us also mention that
in a forthcoming paper [NP17+] we give a far-reaching generalization of results by Lenstra,
Kannan, Barvinok and Barvinok–Woods to general Presburger Arithmetic formulas.

Finally, we refer to [RA05] for an extensive introduction to the Frobenius problem. This
was an original application by Kannan of his pioneering result [Kan92], an application first
suggested by Lovász [Lov89].
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[RA05] J. L. Ramı́rez Alfonśın, The Diophantine Frobenius problem, Oxford Univ. Press, Oxford, 2005.
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