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Abstract. Let G be a group generated by k elements G = ⟨g1, . . . , gk⟩, with group
operations (multiplication, inversion, comparison with id) performed by a black box. We
prove that one can test whether the group G is abelian at a cost of O(k) group operations.
On the other hand, we show that deterministic approach requires Ω(k2) group operations.

Introduction

Let G be a finite black box group (see e.g. [B2]), defined as follows. The elements are given
as binary strings of a fixed length, say N , and a “black box”, also called an oracle, performs
group operation: multiplication, inversion, and the recognition of the identity element. The
group G is assumed to be given by a generating set S = {g1, . . . , gk}, ⟨S⟩ = G.

Examples of black box groups include groups defined as subgroups of certain large
groups H. In this case G is generated by a set S ⊂ H. When H is isomorphic to Sn

these are called permutation groups, and when H ≃ GL(n,Fq) these are called matrix
groups. Permutation groups so far remain the best understood class of these, with the most
efficient algorithms available. These algorithms were built on the fundamental algorithms of
C. Sims [Si] that made it possible to determine group membership and group order. Matrix
groups are often difficult to work with, and many algorithms are defined in a generality of
black box groups (see [B2]). We refer to [HEO, Se, Y] for extensive overviews of various
aspects of recognition and property testing in black box, permutation and matrix groups.

In this note we resolve basic problem of testing whether a black box group is abelian. A
simple deterministic algorithm, consisting of checking whether [gi, gj ] = id for all i ̸= j,
is shown to be optimal up to a constant. On the other hand, in a probabilistic setting when
a small probability of error is allowed, there exists a randomized algorithm which tests
commutativity of a group at a cost of O(k) group multiplications. This is another example
of what we call the power of randomization.

As an application of our technique, we show that testing commutativity of matrix groups
can be done in time linear in the size of the input. This is done by combining our main
routine and the Freivalds approach [Fre]. Finally, we speculate that a solvability test can
be performed in nearly linear time.

This is perhaps the first time when commutativity testing was asked in a generality
of black box groups. The reason, probably, is the simple O(k2) deterministic algorithm
described above, which is fast enough for most practical and theoretical needs (k tends to
be small in practice).
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We should mention that various other properties (whether G is nilpotent, solvable, etc.)
have been studied in various settings (see [BCFLS, CF1, CF2, L1]). Our randomized al-
gorithm, when used as a subroutine, easily improves complexity of some of these advanced
algorithms.

Before we finish, let us clarify an important difference between our work and the work
on testing properties of relations, on group isomorphism, etc (see e.g. [Ka, L2, RS, V]). In
that case the input is a multiplication table, of size O(|G|2), while in our case we usually
assume that k = O(log |G|).

1. Randomized Algorithm

Let G = ⟨g1, . . . , gk⟩ be a black box group. Define random subproducts

h = gϵ11 · . . . · gϵkk ,

where ϵi ∈ {0, 1} are determined by independent flips of a fair coin. Now define the algo-
rithm to consist of a constant number of checks whether two independently chosen random
subproducts commute with each other. In black box notation, we will be testing whether
[h, h′] = id. We need the following result.

Lemma 1.1 Let G be nonabelian, and let h, h′ be two independently chosen random sub-
products. Then

P([h, h′] ̸= id) ≥ 1

4
.

We need the following terminology. A probabilistic algorithm is called one-sided Monte
Carlo if for any ε > 0 in the input, when it outputs Yes, then the right answer is Yes with
probability > 1− ε; but when it outputs No, then the right answer is indeed No, i.e., with
probability 1. We call ε the probability of error.

Everywhere below we denote by µ the cost of group operations, and by ν the cost of
identity recognition.

Theorem 1.2 Let G be a black box group generated by k elements. There exists a one-sided
Monte Carlo algorithm for testing whether the group is abelian, at a cost O

(
k log(1/ε) (µ+

ν)
)
, where ε > 0 is the probability of error.

Observe that Lemma 1.1 immediately implies Theorem 1.2. Before we prove the crucial
Lemma 1.1, let us first prove the following preliminary result.

Lemma 1.3 Let G = ⟨g1, . . . , gk⟩, H ( G, and let h be a random subproduct. Then
P(h /∈ H) ≥ 1

2 .

Proof of Lemma 1.3 Let i ∈ {1, . . . , k} be the smallest number such that gi /∈ H. Write
the subproduct h as follows:

h =
(
gϵ11 · . . . · gϵi−1

i−1

)
· gϵii ·

(
g
ϵi+1

i+1 · . . . · gϵkk
)
= u · gϵii · v.

Note that u ∈ H. When v ∈ H, with probability 1/2 we have ϵi = 1, and h = u · gi · v /∈ H.
Similarly, when v /∈ H, with probability 1/2 we have ϵi = 0, and h = u · v /∈ H. This
completes the proof. �
Proof of Lemma 1.1 Let G be nonabelian. Then the center H = C(G) is a proper subgroup
of G. By Lemma 1.3, P(h /∈ H) ≥ 1/2.
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Now assume h /∈ H = C(G). Let H ′ be the centralizer C(h) of h. Then H ′ is also a
proper subgroup of G and P(h′ /∈ H ′) ≥ 1/2. But this is equivalent to [h, h′] ̸= id. Therefore
probability that [h, h′] ̸= id is ≥ 1/2 · 1/2 = 1/4. �

Example 1.4 Theorem 1.2 implies that for checking whether G is abelian, O(k) group
multiplications suffice. While multiplication of permutations is linear in the size of the
input, the matrix multiplication is quite costly. Luckily, there is a way to avoid some of this
cost.

Theorem 1.5 Let G ⊂ GL(n,Fq) be a group of n× n matrices over the finite field Fq,
given by k generators. Denote by η the cost of addition and multiplication in Fq. There exists
a one-sided Monte Carlo algorithm for testing whether G is abelian, at a cost O

(
n2k log(1/ε) η

)
,

where ε > 0 is the probability of error.

Proof. Suppose we need to check whether a matrix M = A ·B ·A−1 ·B−1 is Id. Rather
than multiply (and invert) matrices, this can be done by a checking whether M v = v for
random v ∈ Fq

n. Indeed, if M ̸= Id, then the invariant subspace W = {v : M v = v} has
codimension ≥ 1. Therefore with probability ≥ 1/2 we have v /∈ W and M v ̸= v. Further,
observe that for all matrices R, T ∈ GL(n,Fq), the probability P(Rv = T v) ≤ 1

2 , given

R ̸= T . Indeed, Rv = T v is equivalent to (T−1R) v = v, and the claim follows from the
previous observation.

Now, let G = ⟨g1, . . . , gk⟩, gi ∈ GL(n,Fq). Let A, B be independent random subproducts
of gi. Assume that G is nonabelian. Then for random v ∈ Fq

n we have

P(AB v ̸= BAv) = P(AB ̸= BA) ·P(AB v ̸= BAv |AB ̸= BA) ≥ 1

8
.

On the other hand, computing AB v takes O(k · n2) additions and multiplications in Fq.
Therefore at a cost O(k n2η) we can discover that G is nonabelian with probability of error
≤ 7/8. This implies the result. �

Remark 1.6 Lemma 1.1 is motivated by the following result. Let G be nonabelian group.
Then

P([h1, h2] = id) =
r(G)

|G|
≤ 5

8
,

where h1, h2 are uniform and independent in G, and r(G) is the number of conjugacy classes.
The first identity goes back to Frobenius [Fro], while the second is due to MacHale [M].

Let us note that the proof of the latter follows along the lines of the proof of Lemma 1.1.
Indeed, as the quotient G/C(G) of a nonabelian group cannot be cyclic, we have P(h1 /∈
C(G)) ≥ 3

4 . Assuming h1 /∈ C(G), we have P(h2 /∈ C(h1)) ≥ 1
2 , and therefore P([h1, h2] ̸=

id) ≥ 3
8 .

Remark 1.7 Following [BCFLS, CF1], testing whether a black box group G is solvable
or nilpotent can be done in time O

(
log3 |G| log log |G|(µ+ ν)

)
, given k = O(log |G|). One

can ask whether this timing can be improved. We believe it can, assuming the following
conjecture holds.

Conjecture 1.8 Let G be nonsolvable, and let h, h′ be two independently chosen random
subproducts. Then P

(
⟨h, h′⟩ is nonsolvable

)
≥ ε, for some universal constant ε > 0.



4 IGOR PAK

The conjecture is motivated by Lemma 1.1, the previous remark, and a recent result of
Guralnick and Wilson [GW] that

(∗) P
(
⟨h, h′⟩ is nonsolvable

)
≥ 11

30
,

where h, h′ are uniform and independent in G. The inequality is tight for G = A5.
Let us remark that the conjecture is open even for G = An. On the other hand, in (∗),

the probability P → 1 as n → ∞. Further, for two random permutations σ, σ′ ∈ An we
have P(⟨σ, σ′⟩ = An) ∼ 1 − 1

n (see e.g. [Sh] for references and estimates for other simple
groups).

Theorem 1.9 Let G be a black box group generated by k elements. Assuming Conjecture
1.8, there exists a Monte Carlo algorithm for testing whether the group is solvable at a cost

O
(
(k + L) log4(L) log(1/ε) (µ+ ν)

)
,

where L ≤ log |G| is an a priori upper bound on the length of the longest subgroup chain of
G, and ε > 0 is the probability of error.

For example, if k = θ(log |G|), this gives a nearly linear algorithm for testing solvability.
Note also that if G ⊂ Sn, then L ≤ 2n (see references in [BCFLS]).

Proof. First, choose C independent random subproducts ⟨h1, . . . , hC⟩ = H1. Their O(C2)
commutators generate a subgroup whose normal closure is H ′ = [H1,H1]. Compute all
O(C3) conjugates [hi, hj ]

hr of the commutators by the generators of H1. Now compute C
independent random subproducts of these which generate H2. Repeat the procedure. Stop
after L iterations. If the obtained group HL is nontrivial, then G is nonsolvable, and if HL

is trivial, then G is solvable, both claims with probability of error α. Below, we show that
the error α defined here is constant.

Observe that if the number of subproducts C = C(α) is chosen appropriately, then at
each step, C random subproducts generate a nonsolvable group with probability > 1−α/L.
After L iterations the group HL is then trivial or perfect, depending on whether G is
solvable or nonsolvable with probability of error < α. Now check that it suffices to take
C = ⌈log(L/α)⌉. This follows from Conjecture 1.8, and the independence of successive
random subproducts pairs that we sample.

Compute the cost of the algorithm. It cost O(C k µ) to generate the first C subproducts.
It costs O(C3 µ) to compute O(C3) commutator conjugates, O(C4 µ) to compute C random
subproducts of these, etc. The total number of iterations is L and at each but the first one,
the cost is O(C4 µ). Thus the total cost is as in the theorem.1

Finally, let α = 1/4. Perform O(log(1/ε)) of the tests as above and choose the most
frequent answer. Now use Chernoff bound to prove that it is correct with high probability
> 1− ε. �

Remark 1.10 The notion of random subproducts goes back to Erdős and Rényi [ER]. Ver-
sions of Lemma 1.3 had previously appeared in connection to various permutation group
algorithms (see [BCFLS, CF1, CF2]). The problem of testing whether the group is abelian
was motivated by the randomized algorithms for generating random elements in finite groups
(see e.g. [P]). Note also that the algorithm applies to infinite black box groups as well, such
as subgroups of SL(n,Z). Finally, the conjectured algorithm for testing whether a group is

1In fact, the term involving k is much smaller, but for k = o(L) small this term is irrelevant anyway.
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solvable can be transformed to test whether a group is nilpotent with little difficulty. Con-
jecture 1.8 seems to be also somewhat related to additive combinatorics on noncommutative
groups [TV].

2. Deterministic Algorithm

We first need to define our model of computation. As before, we assume that the group G
is given as a black box group with k generators g1, . . . , gk. We assume that the multiplication
and inversion (both at cost µ), and recognition of identity (called identity test, performed
at cost ν), is done by an oracle. The “commutativity checker” is allowed to start with the
generators and obtain new group elements out of these. Namely, at any time the checker
can multiply any of the two elements found, invert any of them, and compare any of them
with identity. The decision of which operation to perform can also depend on the previous
observations of the checker. The goal of the checker is to determine whether G is abelian.

Theorem 2.1 Every deterministic algorithm as above for testing whether a black box group
G generated by k elements is abelian, works at a cost Ω

(
k2(µ+ ν)

)
. Moreover, every such

algorithm requires at least
(
k
2

)
identity tests.

Proof. First we show that the checker needs at least N =
(
k
2

)
calls for the identity test

oracle. We will design a strategy (of which answers to give) for an adversary of the checker,
so that after less than N such calls, there exists an abelian group A and a nonabelian group
B, which satisfy all the answers.

The adversary starts with A = Zk
2 and B = B0, where the latter is defined as

B0 = ⟨x1, . . . , xk⟩/(x2i = [xi, xj ]
2 = [xi, [xj , xr]] = id).

By definition, B0 is a central extension of A, and the center C(B0) ≃ ZN
2 is a group

generated by all commutators [xi, xj ]. We think of elements g ∈ B0 as of words

g = xϵ11 · · ·xϵkk · [x1, x2]α1,2 · [x1, x3]α1,3 · · · [xk−1, xk]
αk−1,k ,

where ϵi, αj,r ∈ {0, 1}, 1 ≤ i ≤ k, 1 ≤ j < r ≤ k.
After the i-th call, 1 ≤ i < N , the adversary keeps an abelian group A and produces a new

nonabelian group Bi as a quotient of Bi−1. By abuse of speech, denote by S = {x1, . . . , xk}
the natural set generators in both A and Bi.

Now, suppose at call i the checker asks whether the word wi in generators x1, . . . , xk is
id or not. The adversary always answers depending on what is the truth in A. If indeed
wi = id in A, then adversary sets Bi = Bi−1/⟨wi⟩. Observe that wi = id in A, only if
wi is equal in A to a product of commutators [xj , xr]. Now use induction to conclude that
Bi is a nilpotent group of class 2 with center of rank ≥ N − i.

We conclude that after i < N calls of the identity recognition oracle, the checker is unable
to distinguish between A and Bi, where the former group is abelian and the latter is not.
This implies that the cost is Ω(k2 ν). Note also that for the algorithm to work one needs
words wi to generate the group ZN

2 generated by the commutators. But this requires at
least N different words and therefore at least N group operations. Thus the total cost is
also Ω(k2 µ), which completes the proof. �

Remark 2.2 Recall the simple deterministic algorithm which consists of checking commu-
tativity all

(
k
2

)
commutators. Observe that the lower bound in Theorem 2.1 is tight up to
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a small constant then. We believe that this algorithm is actually the fastest in our model
of computation.

Remark 2.3 By analogy with the lower bound in Theorem 2.2, one can obtain a lower
bound Ω(kl/l) for testing whether a group is nilpotent of class < l. This is particularly
striking in comparison with polynomial (in both k and l < log |G|) randomized algorithms
(see Remark 1.8.)

To prove the above lower bound, apply the Witt formula (see [MKS]), to obtain a bound
on the dimension for the free Lie algebra on k generators of degree l. This gives a lower
bound Ω(kl/l) on the number of words w to be used to ensure that all the commutators
of length l in gi are trivial. Proof follows if one proceeds as in the proof of Theorem 2.2.

Remark 2.4 In the study of black box groups it is often convenient to assume the knowledge
of the upper bound M on the size of the group (in [B1], Babai proved an exponential lower
bound for approximating the size of a black box group). For example, for matrix groups
or permutation groups this is the size of the group it is imbedded into. A straightforward
modification of the proof gives the same lower bound under assumption that k < ⌊log2M⌋.
It would be interesting to extend this bound. Of course, the lower bound is false for large
k: there exists an easy algorithm which lists group elements and compares and commutes
new ones with them, at a cost O(kM (µ+ ν)).

Remark 2.5 Since this paper appeared in a preprint form, both the lower and upper
bound found applications to quantum algorithm and quantum complexity [AM, MN].
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