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On the Number of Faces of Certain Transportation Polytopes

IGOR PAK

Define the transportation polytopeTn,m to be a polytope of non-negativen×m matrices with row
sums equal tom and column sums equal ton. We present a new recurrence relation for the numbersfk
of thek-dimensional faces for the transportation polytopeTn,n+1. This gives an efficient algorithm
for computing the numbersfk, which solves the problem known to be computationally hard in a
general case.

c© 2000 Academic Press

1. INTRODUCTION

Let a = (a1, . . . ,am), b = (b1, . . . , bn) be two non-negative integer vectors, such that
a1+· · ·+am = b1+· · ·+bn. Define atransportation polytope T(a, b) to be a set of matrices
(xi, j ) ∈ R

m×n, 1 ≤ i ≤ m, 1 ≤ j ≤ n, which satisfy the following linear inequalities and
equations: 

xi, j ≥ 0,∑m
i=1 xi, j = b j , where 1≤ i ≤ m, 1≤ j ≤ n.∑n
j=1 xi, j = ai ,

(1)

These polytopes arise in many problems of enumerative combinatorics, statistics, combi-
natorial optimization, and linear programming (see [3, 5, 9, 11–13, 15]). Problems such as
computing the volume or sampling the integer points are known to be hard and have been
considered earlier (see [3, 4]). In this paper we study the problem of computing the number of
k-dimensional faces in a special case. As in [8], the problem is reduced to an enumeration of
certain labeled trees, which have simpler combinatorial structure.

In a celebrated paper [8], Klee and Witzgall described the facets and vertices of the trans-
portation polytopes. Nevertheless, little is known about the structure of their faces. Even when
there exists a full description (see [1]), it is often general combinatorial, and useless for fast
numerical computations. On the other hand, it is well known that if the polytope is simple, then
theoretically one can obtain the number ofk-dimensional faces from its graph (see [7, 15]).
Again, known algorithms run in exponential time (cf. [10]).

In this paper we present an efficient algorithm for computing the number of faces of trans-
portation polytopes in a special case whenn = m + 1, a = (m + 1, . . . ,m + 1) and
b = (m, . . . ,m). Denote this polytopePm. The dimension ofPm is d = m(m − 1). Let
fm,k be the number ofk-dimensional faces ofPm, 0≤ k ≤ d.

THEOREM 1. The set of numbers fm,k for 1≤ m ≤ n, 0≤ k ≤ n(n−1), can be computed
in a time polynomial in n.

This family of polytopesPn is of special interest for several reasons. First, they are simple
polytopes (see [5]). Second, their vertices and edges have a nice combinatorial description
(see [5, 8]). Third, they are known to have the maximal number of vertices amongst all the
transportation polytopes withm = n − 1. Finally, these polytopes can also be defined as
Newton polytopes of products of the leading minors in matricesn× (n+1) and related to the
study of the hypergeometric functions on grassmannianG2n+1,n (see [6, 14]).
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Proof of the Theorem follows from a new combinatorial identity for the numbersfn,k.
While somewhat cumbersome, it suffices for the proof of Theorem1. Formally, we prove the
following key result.

THEOREM 2. Let Fn(q) =
∑

k fn,kqk be the generating polynomial for the number of
k-dimensional faces. Then

Fn(q) =
n−1∑
k=0

(
n− 1

k

)
(q + 1)k(n−k)Cn,k(q + 1)Fk(q)Fn−k−1(q), (2)

where F0 = 1 and

Cn,k(q) =
∑

1≤i< j≤n+1

qi−1
j−i−1∑
l=0

(
j − i − 1

l

)(
n− j + i

n− k− l − 1

)
ql . (3)

Note that Theorem1 follows immediately from Theorem2. Indeed, computation of all the
polynomialsCm,k(q), 1≤ m ≤ n, according to (3) clearly takes a time polynomial inn. Now
use recurrence relation (2) to compute all the polynomialsFm, 1 ≤ m ≤ n. This proves the
result.

The rest of the article is organized as follows. In Section2 we recall some definitions and
known results on the structure of polytopesPn. In Section3 we prove the recurrence relation
for Fn(q) with some coefficients. In Section4 we prove an explicit formula (3) for polynomi-
alsCn,k(q).

2. COMBINATORICS OF Pn

Recall several definitions. LetP be a convex polytope in a vector spaceV of dimension
d = dim(P). The polytopeP is calledsimpleif each vertex is adjacent to exactlyd edges. It
is known thatPn is a simple polytope of dimensionn(n− 1) (see [5, 8]).

Define an f -vectorof a polytopeP to be a sequencef = ( f0, f1, . . . , fd), whered =
dim(P) and fk is the number ofk-dimensional faces inP. Characterization off -vectors of
polytopes is an important yet largely unsolved problem (see [13, 15]).

Let ϕ ∈ V∗ be a linear function onV which isgeneric, i.e., not constant on the edges of
P. Define an orientation of edges ofP to be in the direction of increase of the linear function
ϕ. Let v be a vertex ofP. Define anindexof v (denoted indϕ(v)) to be the number of edges
which are leavingv. Denote bygi the number of vertices ofP such that indϕ(v) = i . Define
a g-vectorof a polytopeP to be a sequenceg = (g0, g1, . . . , gd). It is known that whenP is
simple, theg-vector does not depend onϕ, and

F(q) = G(q + 1), (4)

whereG(q) =
∑

k gk qk, F(q) =
∑

k fk qk (see [2, 15]).
Of all the different linear functionsϕ, one will be particularly useful for our purposes.

Let E = {e1, e2, . . . ,em} be a linear basis in the vector spaceV . Define alexicographic
orientationof edges of the polytopeP by the following rule. Let edge(v1, v2) be oriented
from v1 to v2 if the first non-zero coordinate of a point(v2 − v1) is positive. It is easy to
see that this orientation can also be obtained by using a linear functionϕE(x) =

∑m
i=1 ai xi ,

wherea1 = 1 anda1� a2� · · · � am > 0.
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Definecolored treesto be trees withn edges labeled (colored) by the numbers from 1 to
n, and withn + 1 vertices labeled by the numbers from 1 ton + 1. LetRn be the set of all
colored treeswith n edges. By the Cayley formula, we have

|Rn| = n! (n+ 1)n−1.

Now let V be a vector space ofn× (n+ 1) real matrices. For anyt ∈ Rn, let ai, j (t) be the
number of verticesj ′ 6= j in t , such that the shortest path fromj to j ′ starts with an edgei ,
1 ≤ i ≤ n, 1≤ j ≤ n+ 1. Define a mapγ : Rn → V by the valuesai, j (t). It is known that
γ gives a bijection between the setRn and the vertices ofPn (see [8]). By an abuse of speech
we will refer to vertices when we talk about them corresponding to trees.

Now let us describe the edges ofPn in terms of trees. A pair of trees(t1, t2) corresponds
to an edge ofPn if and only if t2 can be obtained fromt1 by deleting an edgei = ( j, j1)
and adding an edgei = ( j, j2), such that the shortest path fromj to j2 in t1 starts with
an edgei (see [14]). We refer to the edges containing the vertexv ∈ Pn, v = γ (t) by the
ordered pair of vertices( j, j2) ∈ t , which are non-adjacent by an edge in the corresponding
colored treet . Note that their number is alwaysn(n − 1), which agrees with the dimension
dim(Pn) = n(n− 1).

By our definition,Pn = Tn,n+1 lies in a vector spaceV with a natural basisEn = {e1,1, . . . ,

e1,n+1, e2,1, . . . , e2,n+1, . . . ,en,1, . . . , en,n+1}, whereei, j is a matrix with 1 at(i, j ) and 0
elsewhere. Let us fix the lexicographic orientation onPn corresponding to the basisE and
any linear functionϕ which defines the same orientation. For the rest of the paperϕ will stand
for this particular linear function.

3. PROOF OF THERECURRENCERELATION

In this section we shall obtain the recurrence relation forf and g-vectors by the direct
counting of indices of colored trees for lexicographic orientation.

Let t ∈ Rn be a colored tree withn edges. Letρ(t) = indϕ(γ (t)) be the number of edges of
Pn leavingv = γ (t) in lexicographic orientation. For any subtreet1 of t defineρ(t1) = ρ(t ′1),
wheret ′1 is obtained fromt1 by monotonic relabeling of the vertices.

Let us fix anyt0 ∈ Rn. Consider an edge 1= (i0, j0), i0 < j0 in t0. Define the treest1 and
t2 to be subtrees oft0 obtained after removing edge 1, and such thati0 ∈ t1 and j0 ∈ t2. Below
we will expressρ(t) in terms ofρ(t1) andρ(t2). This will enable us to prove the recurrence
relation.

Recall that all edges ofPn correspond to non-adjacent pairs of vertices(i, j ). The num-
ber ρ(t) is the number of those pairs(i, j ) such that the linear functionϕ increases along
the corresponding edge(t0, t). We call theseincreasing edges. We will consider all possible
locations of verticesi and j on a treet0.

Let S1 andS2 be the sets of subtreest1\{i0} andt2\{ j0}. Letk = |S1|. Then|S2| = n−k−1.
Consider all possibilities of locations of verticesi and j . Compute the number of such pairs
which correspond to increasing edges.
(1) For i , j ∈ S1 ∪ {i0}, the number of increasing edges is equal toρ(t1).
(1′) For i , j ∈ S2 ∪ { j0}, the number of increasing edges is equal toρ(t2).
(2) For i ∈ S1, j ∈ S2∪{ j0}, the number of increasing edges is equal tok(n−k). Indeed, the

lexicographically first changing entry of the matrixA = (ai, j (t0) is a1,i0, which is increasing.
(2′) For i ∈ S2, j ∈ S1 ∪ {i0}, the number of increasing edges is equal to 0. Indeed, the

lexicographically first changing entry ofA = (ai, j (t0)) is a1,i0, which is decreasing.
(3) For i = i0, j ∈ S2, j < j0, all such edges are increasing. Indeed, the lexicographically
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first changing entry ofA = (ai, j (t0)) is a1, j , which increases from 0. Note thata1,i0 remain
unchanged.
(4) For i = i0, j ∈ S2, j > j0, all such edges are decreasing. Indeed, the lexicographically

first changing entry ofA = (ai, j (t0)) is a1, j0, which decreases to 0. Note thata1,i0 remain
unchanged.
(5) For i = j0, j ∈ S1, j < i0, all such edges are increasing. Indeed, the lexicographically

first changing entry ofA = (ai, j (t0)) is a1, j , which increases from 0.
(6) For i = j0, j ∈ S1, j > j0, all such edges are decreasing. Indeed, the lexicographically

first changing entry ofA = (ai, j (t0)) is a1,i0, which decreases to 0.
Summarizing all the previous cases we obtain the following result

ρ(t0) = ρ(t1)+ ρ(t2)+ k(n− k)+ α(S2)+ β(S1), (5)

where

α(S2) = |{ j ∈ S2, j < j0}| (6)

β(S2) = |{ j ∈ S1, j < i0}|. (7)

Now define the polynomialsCn,k(q) as follows:

Cn,k(q) =
∑

1≤i0< j0≤n+1

∑
S1,S2, S1∩S2=∅,

S1∪S2={1,...,n+1}\{i0, j0}

qα(S2)+β(S1). (8)

In the next section we will show that these polynomials are given by formula (3). Assuming
that, we prove our recurrence relation (2). Indeed, raiseq into power on both sides of (5) and
sum this over all possible pairs of subtrees(t1, t2). Substitution of (8) gives

Gn(q) =
n−1∑
k=0

(
n− 1

k

)
qk(n−k)Cn,k(q)Gk(q)Gn−k−1(q). (9)

Replacingq by q + 1 in (9) and applying (4), we obtain (2). This proves the first part of
Theorem2.

4. COMPUTING COEFFICIENTSCn,k(q)

We shall prove the following lemma, which implies the second part of Theorem2.

LEMMA 3. For any1≤ i < j ≤ n+ 1 we have

∑
S1,S2,S1∩S2=∅,

S1∪S2={1,...,n+1}\{i0, j0}

qα(S2)+β(S1) = qi−1
j−i−1∑
r=0

(
j − i − 1

r

)(
n− j + i

n− k− r − 1

)
qr . (10)

PROOF. For fixedi and j defineτ(S2) as follows

τ(S2) = |{l ∈ S2, i < l < j }|. (11)

Observe that

α(S2)+ β(S1) = i − 1+ τ(S2). (12)
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Define the coefficientsbi, j,r
n,k from the following identity:∑

S2,|S2|=n−k−1
S2⊂{1,...,n+1}\{i0, j0}

qi−1+τ(S2) =

∑
r

bi, j,r
n,k qi−1+r . (13)

Note that the left-hand side of (10) is equal to the left-hand side of (13).
By definition,bi, j,r

n,k is the number of subsetsS2 ⊂ {1, . . . ,n+1}\{i0, j0} such thatτ(S2) =

r . Divide S2 into a union of two non-intersecting subsetsS2 = S′2 ∪ S′′2 , whereS′2 = {l ∈
S2, i < l < j } andS′′2 = S2 \ S′2. It is easy to see that the number of ways to chooseS′2 is( j−i−1

r

)
and the number of ways to chooseS′′2 is

( n− j+i
n−k−r−1

)
. We conclude that

bi, j,r
n,k =

(
j − i − 1

r

)(
n+ i − j

n− k− r − 1

)
. (14)

Now (14) combined with (13) gives (10). This completes the proof of the lemma. 2

REMARK 4. Note the nice multiplicative formulas for several components of thef -vector.
Say, f0 = n! (n + 1)n−1, f1 = n! (n + 1)n−1

(n
2

)
and fd−1 = n (n + 1). We challenge the

reader to obtain similar formulas for other components.
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