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On the Number of Faces of Certain Transportation Polytopes

|GOR PAK

Define the transportation polytoa,m to be a polytope of non-negativex m matrices with row
sums equal tan and column sums equal to We present a new recurrence relation for the numlers
of the k-dimensional faces for the transportation polytdje,1. This gives an efficient algorithm
for computing the number$y, which solves the problem known to be computationally hard in a
general case.

(© 2000 Academic Press

1. INTRODUCTION

Leta = (a1,...,am), b = (by, ..., by) be two non-negative integer vectors, such that
ai+---+am = b1+ - - +by. Define atransportation polytope Ta, b) to be a set of matrices
(%i,j) € R™" 1 <i <m, 1< j < n,which satisfy the following linear inequalities and
equations:

Xi,j =0,
Yihixj=Dbj, where 1<i<m, 1<j<n. (1)
Yok =a,

These polytopes arise in many problems of enumerative combinatorics, statistics, combi-
natorial optimization, and linear programming (s&5 9, 11-13 15). Problems such as
computing the volume or sampling the integer points are known to be hard and have been
considered earlier (se8,[4]). In this paper we study the problem of computing the number of
k-dimensional faces in a special case. Asdh fhe problem is reduced to an enumeration of
certain labeled trees, which have simpler combinatorial structure.

In a celebrated pape8], Klee and Witzgall described the facets and vertices of the trans-
portation polytopes. Nevertheless, little is known about the structure of their faces. Even when
there exists a full description (se#]), it is often general combinatorial, and useless for fast
numerical computations. On the other hand, it is well known that if the polytope is simple, then
theoretically one can obtain the numberkeflimensional faces from its graph (ség 15)]).

Again, known algorithms run in exponential time (c£0]).

In this paper we present an efficient algorithm for computing the number of faces of trans-
portation polytopes in a special case when= m+ 1,a = (m+1,...,m+ 1) and
b = (m,..., m). Denote this polytopé,,. The dimension oy, isd = m(m — 1). Let
fmk be the number df-dimensional faces Py, 0 < k < d.

THEOREM 1. The set of numbersyfi for 1 <m < n,0 < k < n(n—1), can be computed
in a time polynomial in n.

This family of polytopesP, is of special interest for several reasons. First, they are simple
polytopes (seef]). Second, their vertices and edges have a nice combinatorial description
(see b, 8]). Third, they are known to have the maximal number of vertices amongst all the
transportation polytopes witm = n — 1. Finally, these polytopes can also be defined as
Newton polytopes of products of the leading minors in matricggn 4+ 1) and related to the
study of the hypergeometric functions on grassman@igii 1.n (see b, 14).
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Proof of the Theorem follows from a new combinatorial identity for the numbfglis
While somewhat cumbersome, it suffices for the proof of TheateRormally, we prove the
following key result.

THEOREM2. Let Ry(q) = )Y fn.kgk be the generating polynomial for the number of
k-dimensional faces. Then

n-1

-1

Fa(@) =) (” ) )(q + D¢ k(@ + 1) Fe(@) Fok-1(a), @)
k=0

where i = 1and

j—i—1

cwa= ¥ a2 (7)) e

I<i<j<n+1

Note that Theoren follows immediately from Theorer. Indeed, computation of all the
polynomialsCm k(Q), 1 < m < n, according to §) clearly takes a time polynomial im Now
use recurrence relatioR)(to compute all the polynomialgy,, 1 < m < n. This proves the
result.

The rest of the article is organized as follows. In Secflame recall some definitions and
known results on the structure of polytop@s In Section3 we prove the recurrence relation
for Fh(q) with some coefficients. In Sectighwe prove an explicit formula3) for polynomi-
alsCp k(q).

2. COMBINATORICS OF P,

Recall several definitions. Lé® be a convex polytope in a vector spa¢eof dimension
d = dim(P). The polytopeP is calledsimpleif each vertex is adjacent to exactlyedges. It
is known thatP, is a simple polytope of dimension(n — 1) (see b, g]).

Define anf-vectorof a polytopeP to be a sequencé = (fg, f1,..., fq), whered =
dim(P) and fi is the number ok-dimensional faces if?. Characterization of -vectors of
polytopes is an important yet largely unsolved problem (48gl[5]).

Let ¢ € V* be a linear function oV which isgenerig i.e., not constant on the edges of
P. Define an orientation of edges Bfto be in the direction of increase of the linear function
¢. Letv be a vertex ofP. Define anindexof v (denoted ing(v)) to be the number of edges
which are leaving. Denote byg; the number of vertices d? such that ing(v) = i. Define
a g-vectorof a polytopeP to be a sequenag= (do, g1, - - -, 9d)- It is known that wherP is
simple, theg-vector does not depend @n and

F) =G+, (4)

whereG(q) = >, sk 9%, F(@) = 3, fkq® (see R, 19)).

Of all the different linear functiong, one will be particularly useful for our purposes.
Let £ = {e,e,...,en} be a linear basis in the vector spae Define alexicographic
orientationof edges of the polytop® by the following rule. Let edgévs, v2) be oriented
from v to vy if the first non-zero coordinate of a poift, — v1) is positive. It is easy to
see that this orientation can also be obtained by using a linear fungtion = > {7, ax;,
wherea; = 1anda; > a2 > --- > am > 0.
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Definecolored treedo be trees witim edges labeled (colored) by the numbers from 1 to
n, and withn + 1 vertices labeled by the numbers from Inta- 1. Let R, be the set of all
colored treeswith n edges. By the Cayley formula, we have

|Rnl =n!'(n+ "L,

Now letV be a vector space af x (n 4 1) real matrices. For antye Rp, leta; j(t) be the
number of verticeg’ # j in t, such that the shortest path froprto |’ starts with an edge
1<i=n1<j=<n+1 Defineamap : Ry — V bythe valuesy; (). It is known that
y gives a bijection between the $&t, and the vertices oP, (see B]). By an abuse of speech
we will refer to vertices when we talk about them corresponding to trees.

Now let us describe the edges Bf in terms of trees. A pair of tregs;, to) corresponds
to an edge ofP, if and only if t; can be obtained frorty by deleting an edge = (j, j1)
and adding an edge = (j, j2), such that the shortest path fromto j, in t; starts with
an edgd (see [L4]). We refer to the edges containing the veriex P,, v = y(t) by the
ordered pair of vertice§j, j2) € t, which are non-adjacent by an edge in the corresponding
colored tree. Note that their number is alwaygn — 1), which agrees with the dimension
dim(Py) =n(n - 1).

By our definition,P, = Tn n41 lies in a vector spacé with a natural basig, = {eq 1, ...,
€,n+1, €1, .-+, €041, .-+, €01, ..., Enny1), Whereg j is a matrix with 1 at(i, j) and O
elsewhere. Let us fix the lexicographic orientation Bncorresponding to the basks and
any linear functiorpy which defines the same orientation. For the rest of the papélt stand
for this particular linear function.

3. PROOF OF THERECURRENCERELATION

In this section we shall obtain the recurrence relation foand g-vectors by the direct
counting of indices of colored trees for lexicographic orientation.

Lett € R, be a colored tree with edges. Lep (t) = ind, (y (t)) be the number of edges of
Pn leavingv = y (1) in lexicographic orientation. For any subtrigef t definep(t1) = p(ty),
wheret; is obtained front; by monotonic relabeling of the vertices.

Let us fix anytp € Rn. Consider an edge % (ig, jo), io < jo in tg. Define the treety and
t> to be subtrees df obtained after removing edge 1, and such that t; and jg € to. Below
we will expressop(t) in terms ofp(t1) andp(t2). This will enable us to prove the recurrence
relation.

Recall that all edges oP, correspond to non-adjacent pairs of verti¢es ). The num-
ber o(t) is the number of those paii$, j) such that the linear functiop increases along
the corresponding edgé, t). We call thesencreasing edgesiNe will consider all possible
locations of vertices and j on a tred.

Let S andS, be the sets of subtregs {io} andtz\{jo}. Letk = |S|. Then| S| = n—k—1.
Consider all possibilities of locations of verticeand j. Compute the number of such pairs
which correspond to increasing edges.

(1) Fori, j € S U {ig}, the number of increasing edges is equab ).

(1) Fori, j € $ U{jo}, the number of increasing edges is equab ().

(2) Fori € S, | € SU{jo}, the number of increasing edges is equddto—k). Indeed, the
lexicographically first changing entry of the matdx= (& j (to) is ay,j,, which is increasing.

(2)Fori € &, j € S U {io}, the number of increasing edges is equal to 0. Indeed, the
lexicographically first changing entry & = (g j (o)) is ay i,, which is decreasing.

(3 Fori =ip, ] € &, ] < jo, all such edges are increasing. Indeed, the lexicographically
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first changing entry oA = (g j(tg)) is a1 j, which increases from 0. Note thai j, remain
unchanged.

(4) Fori =g, ] € S, ] > jo, all such edges are decreasing. Indeed, the lexicographically
first changing entry oA = (g j (to)) is &y, j,, Which decreases to 0. Note thatj, remain
unchanged.

(5) Fori = jo, ] € S1, ] < ip, all such edges are increasing. Indeed, the lexicographically
first changing entry oA = (&;  (to)) is ay,j, which increases from 0.

(6) Fori = jo, j € S1, ] > jo, all such edges are decreasing. Indeed, the lexicographically
first changing entry oA = (&; j (to)) is aj,, which decreases to 0.

Summarizing all the previous cases we obtain the following result

p(to) = p(t) + p(t2) + k(N = k) + () + B(S). )
where
a(S)=I{j € . ] < joll (6)
B(S) =I{j € S1. ] <io}l. @)
Now define the polynomial€; k(q) as follows:
Cok@= Y 3 gD, ®)

1<igp<jo<n+1l  S1.5, $NS=H,
S US=(L.....n+1}\{ig. o}

In the next section we will show that these polynomials are given by form3il&§suming
that, we prove our recurrence relatid).(Indeed, raisg into power on both sides ob) and
sum this over all possible pairs of subtrégs to). Substitution of 8) gives

n—-1

-1

Gn(@) = (” ) )qk(nk)Cn,k(Q)Gk(Q)Gn—k—l(Q)~ )
k=0

Replacingg by q + 1 in (9) and applying 4), we obtain ). This proves the first part of
Theorem2.

4. COMPUTING COEFFICIENTSCy k(Q)

We shall prove the following lemma, which implies the second part of The@em
LEMMA 3. Foranyl <i < j <n+ 1we have

j—i—1

a(S)+B(S) _ gi-1 j—i—1\/ n—j+i \,
5 i | Z( r )(n—k_r_lq- (10)

5.8 50—, r=0
S$1US=(1,....n+1)\{ip. o}

PrROOF For fixedi andj definer () as follows
()=l e &i <l < |} (11)
Observe that

(D) + (&) =i -1+ (). (12)
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Define the coeﬁicientb:{ jk’r from the following identity:
Z qi—l—i-r(Sz) _ Z bir{,jqui_l+r~ (13)
r

$.1$l=n—k-1
Syc{l...n+1h\{ig. jo}

Note that the left-hand side 0fQ) is equal to the left-hand side dfg).

By definition,b}; " is the number of subse® C {L.....n+1}\{io. jo} Such that () =
r. Divide & into a union of two non-intersecting subs&@s= S, U S;, whereS, = {l €
$.i <l < jlandS = £\ S, Itis easy to see that the number of ways to chd8gsis
(! ’:’1) and the number of ways to chooSgis (,", ' +',). We conclude that

g j—i—1 n+i—j
Pr.k _< r )(n—k—r—l ’ (14)

Now (14) combined with £3) gives (L0). This completes the proof of the lemma. m|

REMARK 4. Note the nice multiplicative formulas for several components offthector.
Say, fo = ni(n+ D", f; = nl(n+ H"1() and fg_1 = n(n + 1). We challenge the
reader to obtain similar formulas for other components.
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