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Abstract

Let pc(G) be the critical probability of the site percolation on the
Cayley graph of groupG. In [2] of Benjamini and Schramm conjectured
thatpc < 1, given the group is infinite and not a finite extension of Z.
The conjecture was proved earlier for groups of polynomial and expo-
nential growth and remains open for groups of intermediate growth.

In this note we prove the conjecture for a special class of Grigorchuk
groups, which is a special class of groups of intermediate growth. The
proof is based on an algebraic construction. No previous knowledge of
percolation is assumed.

1 Introduction

While percolation on Zd has been studied for decades, percolation on general
Cayley graphs became popular only in the past several years. This direc-
tion of research was outlined in an important paper [2] of Benjamini and
Schramm. The authors conjectured that the critical probability pc for the
site percolation satisfies

pc < 1

given the group is infinite and not a finite extension of Z.
Since appearance of [2], a number of interesting results has been ob-

tained. The above conjecture has been established for groups of polyno-
mial or exponential growth, as well as for finitely presented groups (see
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[1, 3, 23]). In this note we prove the conjecture for a class of so called Grig-
orchuk groups, which are defined as groups of Lebesgue–measure–preserving
transformations on the unit interval. Recently other examples of groups
of intermediate growth were found, notably Gupta–Sidki groups and Grig-
orchuk p-groups (see [5, 9, 16, 17]). These are the only known examples of
groups of intermediate growth1.

Let G be an infinite group generated by a finite set S, S = S−1, and
let Γ = Γ(G,S) be the corresponding Cayley graph. Consider Bernoulli site
percolation in which all vertices are independently open with probability p
(closed with probability 1− p). By θ(p) denote the probability P (id ↔ ∞),
i.e. the probability that the open cluster containing id is infinite. Define the
critical probability

pc(G) = sup{p : θ(p) = 0}

It is known that pc(G) > 1/|S|, pc(Z2) = 1/2, and that pc(G1) ≤ pc(G2)
if G2 is a subgroup or a quotient group of G1. We refer to [12, 13] for
a thorough treatment of classical percolation, and to [2, 3] for the many
interesting questions and results for percolation on Cayley graphs.

Conjecture (Benjamini and Schramm)
If Γ is the Cayley graph of an infinite (finitely generated) group G, which

is not a finite extension of Z, then pc < 1.

The conjecture is one of the central unsolved questions of the percolation
theory on Cayley graphs. While it was established for groups of exponential
and polynomial growth (see [3, 23]), the conjecture remains open for groups
of intermediate growth. The conjecture has been also confirmed for finitely
presented groups (see [1]).

Let us remark here that the analogous conjecture for bond percolation is
equivalent to Conjecture (see e.g. [12, 13]). Recently Häggström also showed
equivalence of the conjecture with having a phase transition for Ising and
Widom–Rowlinson models (see [19]).

Let ω = (ω1, ω2, . . . ) be an infinite sequence of elements in the set
{0, 1, 2}. Grigorchuk group Gω is a infinite profinite 2-group whose construc-
tion depends on ω (see [8, 11]). Groups Gω are generated by 4 involutions,
while the structure and even the growth is different for different ω. We
postpone definition of Gω till the next section.

Theorem 1. The conjecture holds for Grigorchuk groups Gω for all ω.

1Of course, other groups of intermediate growth can be constructed from these groups.
Study of percolation then can be reduced to the latter.



The proof relies on growth considerations and a fractal structure of Grig-
orchuk groups. Essentially, we find Z2

+ in the corresponding Cayley graphs.
More precisely, we prove that Gω contains a subgroup of finite index which is
isomorphic to Aω ×Bω, where Aω, Bω are infinite finitely generated groups.
From here we show that conjecture holds for Aω×Bω, and therefore for Gω.

Let us conclude by saying that in a sequel paper [9] Grigorchuk intro-
duced a wider class of groups which correspond to sequences of 0, 1, . . . , p,
where p is a prime. Analogously, Gupta and Sidki in [16, 17] constructed
different series of p-groups, some of them later proved to have intermediate
growth (see [5]). While we do not consider these groups, it is not hard to
see that our analysis can be directly translated to these cases.

2 Growth of groups and percolation

Before we define the Gω and prove the theorem, let us comment on the
growth of groups and it’s relevance to percolation problems.

Let G be an infinite group generated by a finite set S, S = S−1, and
let Γ = Γ(G,S) be the corresponding Cayley graph. Let B(n) be the set of
elements g ∈ G at a distance ≤ n from id in graph Γ. The growth function
of G with respect to the set of generators S is defined as γ(n) = |B(n)|.

We say that a function f : N → R is dominated by a function g : N → R,
denoted by f 4 g, if there is a constant C > 0 such that f(n) ≤ g(C · n)
for all n ∈ N. Two functions f, g : N → R are called equivalent, denoted
by f ∼ g, if f 4 g and g 4 f . It is known that for any two finite sets of
generators S1, S2 of a group G, the corresponding two growth functions are
equivalent (see e.g. [21, 28]). Note also that if |S| = k, then γ(n) ≤ kn.

Growth of group G is called exponential if γ(n) ∼ en. Otherwise the
growth is called subexponential. For example, all nonamenable groups have
exponential growth (but not vice versa.) Growth of group G is called poly-
nomial if γ(n) ∼ nc for some c > 0. Otherwise the growth is called super-
polynomial.

We call a group G almost nilpotent (solvable, etc.) if it contains a
nilpotent (solvable, etc.) subgroup of finite index. The celebrated result of
Gromov implies that groups of polynomial growth must be virtually nilpo-
tent (see [15]). We add that by the Tits alternative all linear groups must be
either almost solvable or contain a free group F2. Finally, the Milnor–Wolf
theorem states that all solvable groups have either polynomial or exponential
growth (see [21, 28]).



If the growth of G is subexponential and superpolynomial, it is called
intermediate. In a pioneer paper [7] Grigorchuk disproved Milnor’s conjec-
ture by exhibiting a group of intermediate growth. In [8] he defined a class
of groups and proved that they have growth

exp(nα1) 4 γ(n) 4 exp(nα2)

for some 1/2 ≤ α1, α2 < 1.
A sequence ω = (ω1, ω2, . . . ) is called constant if ω1 = ω2 = . . . . Oth-

erwise ω is called non–constant. It is not hard to see that if ω is constant,
then Gω

∼= {a, b | a2 = b2 = id} (see section 3). Thus Gω is Z2 ∗ Z2 and
the conjecture holds. If ω is non–constant we will show that the natural
Cayley graph in this case contains Z2

+ as a subgraph, which proves the the-
orem. Note that under mild conditions Gω is a torsion group, so it does not
contain Z2 as a subgroup.

A sequence ω = (ω1, ω2, . . . ) is called stabilizing if ωN = ωN+1 = . . . for
some N . We remark here that if ω is stabilizing sequence, then Grigorchuk
group Gω has an intermediate growth (see [8, 20, 27]).

Let us return to percolation on Cayley graphs. Let us first note that if
the critical percolation pc is strictly less than 1 for some generating set, the
same is true for all generating sets. While we could not find this precise
result in the literature, we believe it to be known and refer to [25] for similar
coupling arguments.

Now recall that when the growth of G is polynomial, G is virtually
nilpotent. We have the following result.

Theorem 2. (Benjamini) If Γ is a Cayley graph of an infinite group G
of polynomial growth which is not a finite extension of Z, then pc(G) < 1.

The case when the growth of G is exponential was solved in [23]. First,
observe that the natural Cayley graph of a free group Fk, k ≥ 2 is isomorphic
to regular 2k-ary tree, where the percolation is well understood (see e.g.
[24]). While the general exponential groups do not have to contain Fk, their
Cayley graphs have been shown to contain a tree with positive branching
number (see [22, 23]), which proves that conjecture in this case.

Let us briefly outline the Lyons’ argument. Fix a lexicographic ordering
on generators in S and connect each element g ∈ G with id by a path which
corresponds to the reduced words of minimum length. This gives a spanning
subtree T in the Cayley graph. Now, the exponential growth function of G
gives the positive Minkowski dimension of T , which by the famous result
of Furstenberg implies positive Hausdorff dimension of T (see [6, 22]). The



latter implies that T has critical probability < 1 and proves the following
theorem (see [22, 23]).

Theorem 3. (Lyons) If G has exponential growth, then pc(G) < 1.

As a corollary we obtain the pc(G) < 1 for almost solvable and linear
group, which are not almost Z, as well as for Burnside group B(n, p), where
p > 661 (see [21, 28]). Let us also mention here a different result of Grig-
orchuk that if γ(n) 4 e

√
n, and G is residually finite p-group, then G has

polynomial growth (see [10]). This confirms Conjecture 1 for such groups as
well.

A few words about group presentation. First, it is known that when ω
is non–stabilizing, the Grigorchuk group Gω is not finitely presented (see
[8, 26]). Thus Theorem 1 does not follow from results in [1] for finitely
presented groups. Moreover, it was conjectured by Adian that all finitely
presented groups must have either polynomial or exponential growth (see
[11]). Further, it was conjectured by Grigorchuk that all finitely presented
groups must either contain F2 or be virtually nilpotent. Even if (weaker)
Adian conjecture holds, this would prove that results of [1] are inapplicable
to groups of intermediate growth.

3 Grigorchuk Group

In this section we will describe a construction of Grigorchuk’s 2-group. For
a complete description and further results see [8].

Let ∆ be an interval. Denote by I an identity transformation on ∆ and
by T a transposition of two halves of ∆.

Let Ω be a set of infinite sequences ω = (ω1, ω2, . . . ) of elements of the
set {0, 1, 2}. For each ω ∈ Ω define a 3 ×∞ matrix ω by replacing ωi with
columns ωi where

0̄ =

 T
T
I

 , 1̄ =

 T
I
T

 , 2̄ =

 I
T
T


By Uω = (uω1 , u

ω
2 , . . . ), V

ω = (vω1 , v
ω
2 , . . . ),W

ω = (wω
1 , w

ω
2 , . . . ) denote

the rows of ω. Think of them as of infinite words in the alphabet {T, I}.
Define transformations aω, bω, cω, dω of an interval ∆ = [0, 1] \Q as fol-

lows:



aω :
0 1

T

bω :
0 1

◦
1
2

◦
3
4
. . .

uω1 uω2 . . .

cω :
0 1

◦
1
2

◦
3
4
. . .

vω1 vω2 . . .

dω :
0 1

◦
1
2

◦
3
4
. . .

wω
1 wω

2 . . .

Observe that aω is independent of ω, and will be further denoted by
a. Let Gω be a group of transformations of the interval ∆ generated by
a, bω, cω, dω. This family of groups was introduced and analyzed by Grig-
orchuk in [8] (see also [20] for further references). We refer to Gω as Grig-
orchuk groups.

Observe that the generators of Gω satisfy the following relations:

a2 = b2ω = c2ω = d2ω = 1,

cωbω = bωcω = dω,

dωbω = bωdω = cω,

cωdω = dωcω = bω,

We call these simple relations. Under mild conditions, the groups Gω are
known to be not finitely presented (see [8, 20]).

Denote by Γω a Cayley graph of the group Gω with respect to the gen-
erators a, bω, cω, dω. For every element g ∈ Gω by ∂(g) denote the smallest
distance between g and id in Γω. The paths in Γω correspond to words
in the alphabet {a, bω, cω, dω}∗. The shortest paths (there could be many
of them between two given elements) correspond to the reduced words in
the alphabet. Recall that the balls in the Cayley graph Γω are defined as
Bω(n) = {g ∈ Gω|∂(g) ≤ n}.

Let σ : Ω → Ω be a right shift operator acting on the infinite sequences
as follows

σ : (ω1, ω2, ω3, . . . ) → (ω2, ω3, . . . )

Denote by ∆0 and ∆1 the half intervals ∆ ∩ [0, 1/2] and ∆ ∩ [1/2, 1].
Define Hω ⊂ Gω to be a stabilizer of ∆0. Clearly, g : ∆0 → ∆0 and
g : ∆1 → ∆1 for all g ∈ Hω.

Define ϕω
0 : Hω → Gσω by restricting h ∈ Hω to ∆0. Formally, while Hω

acts on ∆0 rather than ∆ we can rescale the interval to obtain transforma-
tions in Gσω. Similarly define ϕω

1 : Hω → Gσω by restricting to ∆1 and then
rescaling to the unit interval.



It is easy to see that Hω is a normal subgroup of index 2, which is
generated by 6 elements bω, cω, dω, abωa, acωa, adωa.

We will omit superscript ω in ϕω
0,1 when it is clear on which Hω the map

ϕω
i acts. The following table summarizes the images of homomorphisms of

ϕ0, ϕ1 on the generators of subgroup Hω.

TABLE

bω cω dω abωa acωa adωa

ϕ0 uω1 vω1 wω
1 bσω cσω bσω

ϕ1 bσω cσω bσω uω1 vω1 wω
1

4 Lifted subgroups

Let F1, F2 ⊂ Hω be subgroups which act trivially on ∆0 and ∆1 respectively:

F1 = {h ∈ Hω |h ≡ I on ∆0}

F2 = {h ∈ Hω |h ≡ I on ∆1} .

Define a subgroup Dω = F1 · F2. Observe that F1 commutes with F2,
F1 ∩ F2 = {id}, and Dω ≃ F1 × F2. Also, let F ≃ F1 = aF2a ≃ F2.

Lemma 1.2 Dω is a normal subgroup of Gω.

Proof. Observe that

a(F1 · F2)a = aF1a · aF2a = F2 · F1 = F1 · F2,

bω(F1 · F2)bω = bωF1bω · bωF2bω = F1 · F2,

cω(F1 · F2)bω = cωF1cω · cωF2cω = F1 · F2,

dω(F1 · F2)bω = dωF1dω · dωF2dω = F1 · F2

Since a, bω, cω, dω are the generators in Gω, we obtain g Dω g−1 = Dω for
all g ∈ G. This proves the result. �

Lemma 2. If ω is non–constant, Dω has a finite index in Gω.

2It was pointed out to us by the referee that in [18] a related result on subgroups was
proved. The referee suggests that this might lead to a generalization of our main result.
We challenge the reader to obtain such a generalization.



Proof. Since ω is non–constant, there exist an integer k such that ωk ̸=
ω1. Without loss of generality assume that ω1 = 0, ωk = 1, and k is the first
1 in ω. To simplify the notation denote s = k − 1.

Since Dω is a normal subgroup in Gω, consider a natural map to the
quotient group

π : Gω → Gω/Dω

Observe that π(dω) = id, π(cω) = π(bωdω) = π(bω). Therefore π(G) =
π(⟨a, cω⟩). We will prove below that the subgroup ⟨a, cω⟩ has a finite order.
This immediately implies that the quotient group has a finite order. Thus
Dω has a finite index which proves the Lemma.

We claim that the element acω ∈ Gω has a finite order. This immediately
implies that the order of subgroup ⟨a, cω⟩ ⊂ G is finite.

The proof by induction on k any for any sequence τ , such that τk = 1.
For k = 1, from the TABLE we have

ϕ0(acτacτ ) = cστ and ϕ1(acτacτ ) = cστ .

By definition the element cστ has order 2. Therefore acτ has order 4.
Assume acτ has finite order for any k ≤ n, where τk = 1. For k = n+1,

we have
ϕ0(acτacτ ) = cστa and ϕ1(acτacτ ) = acστ .

By induction hypothesis for στ we conclude that each element on the right
hand side has a finite order. Therefore acτ has a finite order. This finishes
step of induction and proves the claim. �

Corollary 1. If ω is non–constant, then F1 ≃ F2 is infinite.

Proof. By Lemma 2 Dω ≃ F1×F2 has a finite index in an infinite group
Gω. This implies the result. �

5 Proof of Theorem 1.

By results in section 3, we need to consider only the case when ω is non-
constant. We will prove that pc(Gω) < 1. The proof of this claim follows
from the results in the previous section.

Indeed, consider a percolation on D = Dω. We claim that pc(D) < 1.
Recall from the previous section that D ≃ F1 × F2 and both F1 and F2 are
infinite. We need the following simple result.



Lemma 3. Let A and B be two infinite finitely generated groups. Then
pc(A×B) < 1.

The lemma immediately proves Theorem 1. Indeed, pc(G) ≤ pc(D) < 1
which finishes the proof. �

Proof of Lemma 3. Let S1 = {a1, . . . , an} and S2 = {b1, . . . , bm} be any
generating sets of A and B respectively. Assume that S1 = S−1

1 , S2 = S−1
2 .

Denote by Γ1, Γ2 the corresponding Cayley graphs.
Observe that the set {(a1, 1), . . . , (an, 1), (1, b1), . . . , (1, bm)} generates

A×B. The corresponding Cayley graph Γ is isomorphic to a direct product
Γ1 × Γ2.

Since A is infinite group we can choose an infinite self–avoiding path
(x1, x2, . . . ) ⊂ Γ1 (i.e. path with distinct vertices.) Analogously, we can
choose an infinite self–avoiding path (y1, y2, . . . ) ⊂ Γ2.

Now consider a spanning subgraph Ξ in Γ with vertices (xi, yj) ∈ A×B.
By construction Ξ ⊃ Z2

+. Therefore pc(A × B) ≤ pc(Ξ) ≤ pc(Z2
+). Recall

that pc(Z2
+) < 1 (see [12]). This finishes the proof. �

6 Odds and ends

Using a weak version of the axiom of choice one can conclude that the Cayley
graph of Gω contains Z2. Simply choose bi-directed paths in both Cayley
graphs Γ1, Γ2 and let the length go to infinity.

In a different direction, a beautiful proof of Burton and Keane in [4]
implies that for all amenable groups the infinite percolation cluster is almost
surely (a.s.) unique. Now, using a more complicated construction of lifted
subgroups (going to the next level) one can show that the Cayley graph of
Gω contains Z4

+. While similar, the proof is somewhat more involved and will
be omitted. As a corollary we conclude that the (a.s. unique) percolation
cluster is a.s. transient when p > pc. This follows from the transience of
the percolation cluster on Z3 (see [13, 14]). Note also that for Gupta–Sidki
groups a similar construction of lifted subgroups gives immediately Z3

+. We
leave the details to the reader.

As an ultimate challenge to the reader we ask about the behavior of
the critical percolation on Grigorchuk groups. We refer to [2, 3, 13] for the
references and details.
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