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Abstract

Let G be a group with Kazhdan’s property (T), and let S be a transitive
generating set (there exists a group H ⊂ Aut(G) which acts transitively
on S.) In this paper we relate two definitions of the Kazhdan constant
and the eigenvalue gap in this case. Applications to various random walks
on groups, and the product replacement random algorithm, are also pre-
sented.

1 Introduction

Let G be a group generated by a finite set S. We say that a unitary represen-
tation π : G → U(Hπ) almost has invariant vectors if for every ε > 0 there
exists a vector uε ∈ Hπ such that ‖π(s)uε − uε‖ < ε ‖uε‖ for every s ∈ S.
The group G is said to have Kazhdan’s property (T) (see [16]), if every uni-
tary representation π of G which almost has invariant vectors has a non-zero
invariant vector.

It is known (see [14]) that if the group G has property (T) then there exists
a positive constant ε(S) > 0, which might depend on the set S (see [12]), such
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that for every unitary representation π : G → U(Hπ) with no invariant vectors
and for every u ∈ Hπ one has:

max
s∈S

‖π(s)u− u‖ ≥ ε(S) ‖u‖. (1)

The largest such a constant K =
(
ε(S)

)2 is called the Kazhdan constant
with respect to the set S. The main result of this paper is a new inequality
between ε and the eigenvalue gap of Schreier graphs of G.

Let H ⊂ G be a subgroup of finite index. A Schreier graph Γ = Γ(G/H, S)
is defined to have cosets G/H as vertices, and unoriented edges corresponding
to multiplication by S on the left. Denote by A the adjacency matrix of Γ, and
let 1 = λ0 > λ1 ≥ . . . ≥ λ|Γ| ≥ −1 be the eigenvalues of A/|S|. Denote by
β = 1− λ1 the eigenvalue gap of Γ.

We say that Φ ⊂ Aut(G) is S-preserving (write H(S) = S), if φ(s) ∈ S for
all φ ∈ Φ and s ∈ S. We say that S is transitive, if there exists Φ ⊂ Aut(G)
such that Φ is S-preserving and acts transitively on S.

Theorem 1 Let G be a group with a finite generating set S, and suppose there
exists a finite S-preserving subgroup Φ ⊂ Aut(G). Let us denote by S1, . . . , Sn

the partition of S into orbits under Φ. Let

α = min
i=1,...,n

{
|Si|
|S|

}
.

Finally, let Γ = Γ(G/H, S) be a finite Schreier graph with an eigenvalue gap β.
Then

β ≥ αK

2
.

The result of Theorem 1 improves and generalizes the lower bound for the
eigenvalue gap

β ≥ K

2 |S|
obtained in [15]. When |S| is bounded, these lower bounds are essentially the
same, but when (as often the case) the size of S grows, while S remains transi-
tive, Theorem 1 gives a much sharper bound on the eigenvalue gap. We illustrate
this in several cases of Cayley graphs of Sn and SL(n, Fq), where Theorem 1
is used to obtain sharp bounds on the eigenvalue gap and the mixing time of
random walks on certain Cayley graphs. We also obtain a ρ < 1− c

n4 bound
on the spectral radius ρ of SL(n, Z), generated by elementary transvections (see
section 6.)

The rest of the paper is constructed as follows. In the next section we present
a new inequality for two variants of the Kazhdan constants. Then we elaborate
on connection with the eigenvalue gap and prove Theorem 1. In section 4 we
consider random walks on groups and mixing time. Section 5 is dedicated to
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examples. It is split into two subsections, dealing with Cayley graphs of Sn

and SL(n, Fq), respectively. In the last section 6, we apply Theorem 1 to the
analysis of product replacement algorithm. We conclude with final remarks.

2 Two Kazhdan constants

Let G∗
0 denote the space of unitary representations of G with no invariant non-

zero vectors. One can ask for the best constant in the inequality (1). For many
applications it is also natural to consider the mean instead of the maximum over
the generators s ∈ S in the inequality (1). Thus we have two possible natural
definitions of Kazhdan constants K(G, S) and K(G, S):

K = K(G, S) = inf
π∈G∗

0

inf
u∈Hπ

max
s∈S

‖π(s)u− u‖2

‖u‖2
(2)

K = K(G, S) = inf
π∈G∗

0

inf
u∈Hπ

1
|S|

∑
s∈S

‖π(s)u− u‖2

‖u‖2
. (3)

In a general case one has the following estimate

K ≥ K ≥ K

|S|
. (4)

But in some cases one can improve these inequalities. Namely:

Proposition 1 Let G be a group generated by a finite set S for which there
exists a finite S-preserving subgroup Φ ⊂ Aut(G) such that Φ acts transitively
on S. Then

K = K.

Proof By (4), we have K ≤ K. Let us prove that K ≥ K. For ε > 0 let
π ∈ G∗

0 and let u ∈ Hπ be such that∑
s∈S ‖u− π(s)u‖2

|S| · ‖u‖2
≤ K + ε.

Denote N = |Φ|, and suppose Φ = {φ1, . . . , φN}. Consider H = ⊕N
i=1Hπ, a

direct sum of N copies of H. Let π : G → U(H) be a unitary representation
defined as follows. For γ ∈ G and v = (v1, . . . , vN ) ∈ ⊕N

i=1Hπ, let

π(γ)(v) = (π ◦ φ1(γ)v1, . . . , π ◦ φN (γ)vN ).

It is clear that π has no invariant non-zero vectors. Let u = (u, . . . , u) ∈ H.
We have:

max
s∈S

‖π(s)u− u‖2H
‖u‖2H

= max
s∈S

∑N
i=1 ‖π ◦ φi(s)u− u‖2H∑N

i=1 ‖u‖2H
.
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As the last expression does not depend on s ∈ S, we have

max
s∈S

‖π(s)u− u‖2H
‖u‖2H

=
∑N

i=1 ‖π ◦ φi(s)u− u‖2H∑N
i=1 ‖u‖2H

=
∑
s∈S

‖π(s)u− u‖2H
|S| · ‖u‖2H

≤ K + ε,

which implies
K ≤ K + ε

and finishes the proof as ε > 0 can be arbitrarily small. 2

Even if the subgroup φ ⊂ Aut(G) does not act transitively on the generating
subset S, in some cases one can still obtain nontrivial estimates. Namely:

Proposition 2 Let G be a group generated by a finite set S for which there
exists a finite S-preserving subgroup Φ ⊂ Aut(G). Let us denote by S1, . . . , Sn

the partition of S into orbits under Φ. Then

K ≥ K min
i=1,...,n

{
|Si|
|S|

}
.

Proof For ε > 0 let π ∈ G∗
0 and let u ∈ Hπ be such that∑
s∈S ‖u− π(s)u‖2

|S| · ‖u‖2
≤ K + ε.

Let H = ⊕N
i=1Hπ, π : G → U(H) be as in the proof of Proposition 1. Again,

it is clear that π has no invariant non-zero vectors. Let u = (u, . . . , u) ∈ H.
Recall that

max
s∈S

‖π(s)u− u‖2H
‖u‖2H

= max
s∈S

∑N
i=1 ‖π ◦ φi(s)u− u‖2H∑N

i=1 ‖u‖2H
.

The last expression does not depend on the generator s ∈ S but only on
the orbit Si that contains s. Let s1, . . . , sn be any representatives for the orbits
S1, . . . , Sn. Then we have:

max
s∈S

‖π(s)u− u‖2H
‖u‖2H

= max
i=1,...,n

∑
s∈Si

‖π(s)u− u‖2H
|Si| · ‖u‖2H

≤ max
i=1,...,n

∑
s∈S

‖π(s)u− u‖2H
|Si| · ‖u‖2H

≤ max
i=1,...,n

{
|S|
|Si|

} ∑
s∈S

‖π(s)u− u‖2H
|S| · ‖u‖2H

≤ max
i=1,...,n

{
|S|
|Si|

} (
K + ε

)
,

which implies

K ≤ max
i=1,...,n

{
|S|
|Si|

} (
K + ε

)
.

Since as ε > 0 can be arbitrarily small, this completes the proof. 2
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3 The eigenvalue gap

As in the introduction, let H ⊂ G be a subgroup of finite index. Consider a
Schreier graph Γ = Γ(G/H, S), and let β = 1− λ1 be the eigenvalue gap of Γ.

Proposition 3 Let Γ = Γ(G/H, S) be a finite Schreier graph. Then β ≥ K/2.

Different versions of the proposition can be found in [14, 15, 17, 19]. We
present here a short proof for completeness.

Proof Let 〈·, ·〉 denote the scalar product on the space of real functions on
the Schreier graph Γ with the weight |S|. Then the space l20(Γ) of functions
orthogonal to constant functions, with the action of Γ by the multiplication on
the left, gives a unitary representation with no invariant vectors. Consider the
(normalized) Laplace operator ∆ on l20(Γ), i.e.

∆f(x) = f(x)− 1
|S|

∑
y∼x

f(y),

where f ∈ l20(Γ), x, y are vertices of Γ and x ∼ y means that x and y are
connected by an edge. Then

2β = inf
f∈l20(Γ)

2〈∆f, f〉
〈f, f〉

= inf
f∈l20(Γ)

∑
s∈S

∑
γ∈Γ |f(sγ)− f(γ)|2∑
γ∈Γ f2(γ)|S|

= inf
f∈l20(Γ)

1
|S|

∑
s∈S

∑
γ∈Γ |f(sγ)− f(γ)|2∑

γ∈Γ f2(γ)

≥ inf
π∈G∗

0

inf
u∈Hπ

1
|S|

∑
s∈S

‖π(s)u− u‖2

‖u‖2
= K.

2

From Proposition 3, one can immediately deduce Theorem 1, the main result
of this paper:

Proof of Theorem 1. By Propositions 2, 3, we have:

β ≥ K

2
≥

(
min

i

|Si|
|S|

)
K

2
=

α K

2
. �

Now let us extend Proposition 3 to infinite Schreier graphs. Let Γ =
Γ(G/H, S) be an infinite Schreier graph of the group G generated by a finite
set S, |S| = k, and the subgroup H. Define a spectral radius ρ = ρ(G/H, S) :

ρ = lim
n→∞

(
an

|S|

)1/n

,
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where an is the number of loops of length ≤ n in Γ starting and ending at id.
Existence of the limit follows from submultiplicativity am+n ≤ aman (see e.g.
[13]).

Proposition 4 Let Γ = Γ(G/H, S) be an infinite Schreier graph. Then
ρ ≤ 1−K/2.

Proof Denote by λ0 the bottom of the spectrum of the Laplace operator ∆ on
l2(Γ). Then

ρ = 1− λ0.

The same argument as in the proof of Proposition 3 gives

ρ ≤ 1−K/2.

2

Before we finish this section, let us note a relationship between the eigenvalue
gap for Cayley graphs and Schreier graphs.

Proposition 5 Let G be a finite group, and let S be a generating set. Consider
a Cayley graph Γ = Γ(G, S) and a Schreier graph Γ1 = Γ1(G/H,S). Then
β(Γ) ≤ β(Γ1).

This proposition is well known in a much greater generality (see e.g. [2]).

4 Random walks on groups

Consider a finite group G and a symmetric set of generators S = S−1. Define
a random walk W = {Xt} on G as follows:

X0 = id, Xt+1 = Xt · s,

where s ∈ S is chosen uniformly and independently at each t ≥ 0. One can think
of W as of nearest neighbor random walk on the Cayley graph Γ = Γ(G, S).

Denote by Qt(g) = P(Xt = g) the probability that the walk W is at g at
time t. Unless Γ is bipartite, the walk W converges to a uniform distribution:

Qt(g) → 1
|G|

, as t →∞.

We define a mixing time mix = mix(G, S) as follows:

mix = min
{

t : Qt(g) ≥ 1
2 |G|

, ∀g ∈ G

}
.

We refer to [2] for this and other definitions of the mixing time.
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From now on, to avoid periodicity problem, we consider only lazy random
walks W◦ = W̃(G, S) on G, defined as follows:

Y0 = id, Yt+1 = Yt · sε,

where s ∈ S and ε ∈ {0, 1} are chosen uniformly and independently at each
t ≥ 0. One can define walk W◦ = {Yt} as a nearest neighbor random walk
on Γ = Γ(G, S), where before each step the walker flips a fair coin to decide
whether to make this step or stay put.

By analogy with the classical case, we define the probability distribution
Qt
◦ and the mixing time mix◦. It is well known and easy to see (see [2, 7, 21])

that
1

2β(G, S)
< mix◦(G, S) <

16 log |G|
β(G, S)

,

where β = β(G, S) is the eigenvalue gap defined as above.
Finally, one can define a random walk W = W(G/H, S) as a nearest neigh-

bor random walk on the Schreier graph Γ = Γ(G/H, S). The above definitions
have a straightforward extension to this case.

Corollary 1 In condition of Theorem 1, for the mixing time mix◦ of the lazy
random walk W◦ = W◦(G/H, S), we have:

mix◦ <
32 log |Γ|

α K
.

5 Examples

Computing or even estimating Kazhdan constants is a delicate matter, and has
been done only in few special cases. Here we consider two special cases which
seem of particular interest for applications.

5.1 Symmetric group and adjacent transpositions

Let G = Sn be a symmetric group with a generating set

Rn = {(1, 2), (2, 3), . . . , (n− 1, n)}.

Very recently, in two subsequent papers [3, 4], Bacher and de la Harpe computed
exactly the eigenvalue gap β of the Cayley graph Γ = Γ(Sn, Rn), and a
Kazhdan constant K = K(Sn, Rn):

β =
2

(
1− cos π

n

)
(n− 1)

=
π2

n3
+ O

(
1
n4

)
, and K =

24
n3 − n

=
24
n3

+ O

(
1
n4

)
.
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Consider the biggest subgroup Φ ⊂ Aut(Sn) = Sn, such that Φ(Rn) = Rn.
Clearly, there exists only one nontrivial symmetry given by an involution ω =
(n, n − 1, . . . , 1) ∈ Sn. Thus |Φ| = 2 in this case. Now Theorem 1 gives us a
poor estimate:

β ≥ |Φ|K
2 |Rn|

=
24
n4

+ O

(
1
n5

)
,

where n is assumed to be odd so that each orbit has size |Φ| = 2. On the other
hand, we will show that Propositions 3 and 2 are virtually tight in a related
case.

Consider a bigger generating set R′
n = Rn ∪ {(1, n)}. By definition, the

Kazhdan constant K ′ = K(Sn, R′
n) satisfies K ′ ≥ K. Since a group of cyclic

transformations Φ ' Zn acts transitively on R′
n, we have:

β′ ≥ K ′

2
≥ K

2
=

12
n3

+ O

(
1
n4

)
,

where β′ is the eigenvalue gap for the Cayley graph Γ′ = Γ(Sn, R′
n). This

is even sharper than the estimate given by the comparison technique [8] in this
case:

β′ ≥ β
|Rn|
|R′

n|
=

π2

n3
+ O

(
1
n5

)
(note that π2 ≈ 9.87 < 12.) At the same time this is easily of the right order of
magnitude as can be seen from the following argument.

Consider a Schreier graph Γ1 = Γ(Sn/Sn−1, R
′
n), where Sn−1 = Stab(1)

acts by permuting elements {2, . . . , n}. Observe that Γ1 ' Γ(Zn, {±1, 0n−2}) =
Γ2, i.e. a circle with n − 2 loops at each vertex. By Proposition 5, we have
β′ ≤ β(Γ1). Since

β(Zn, {±1}) = 1− cos
2π

n
=

2π2

n2
+ O

(
1
n4

)
,

we immediately have

β′ ≤ β(Γ1) =
2
n

β(Zn, {±1}) =
4π2

n3
+ O

(
1
n5

)
.

Note here that 4π2 ≈ 39.48 > 12.
Few words about random walks W◦ = W◦(Sn, Rn), W ′

◦ = W◦(Sn, R′
n),

and the mixing times mix◦ and mix′◦, respectively. In this case, Corollary 1
gives only a bound O(n4 log n) for both mixing times. On the other hand, a tight
upper bound O(n3 log n) can be proved in both cases by means of comparison
technique [8] or a coupling argument [1]. A matching lower bound Ω(n3 log n)
was recently obtained in [27].
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5.2 Special linear group and transvections

Let G = SL(n, Z), and let S = {E±1
i,j , 1 ≤ i 6= j ≤ n}, where Ei,j is a matrix

with 1 on diagonal and at (i, j), and 0 elsewhere. These matrices are called
elementary transvections. It is known that 〈S〉 = G for n > 2 (see e.g. [20]).

In this special case Y. Shalom [26] recently obtained bounds on the Kazh-
dan constants K = K

(
SL(n, Z), {E±1

i,j }
)
, when n ≥ 3 :

c1

n
> K >

c2

n4
,

where c1, c2 > 0 are universal constants.
Now observe that a group of permutations Φ ' Sn acts on SL(n, Z) by

permuting coordinates and has two orbits O1 = {Ei,j} and O1 = {E−1
i,j } of

the same size n(n− 1). Therefore, by Propositions 2 and 4, the spectral radius
ρ = ρ(SL(n, Z), S) satisfies

ρ ≤ 1− K

2
≤ 1− K

2 · 2
< 1− c3

n4
,

where c3 = c2/4 is also a universal constant. Although computation and
estimates on the spectral radius has played a crucial role in the study of proba-
bility on (infinite) groups [13, 28], until now such an estimate was not possible
to obtain.

Consider now a related case G′ = SL(n, Fq), with a generating set S as
above. The above estimates on Kazhdan constants for SL(n, Z) hold also for
SL(n, Fq) (see [26]). Therefore from Proposition 3 and above estimates, we
immediately have:

β′ = β
(
SL(n, Fq), S

)
>

c3

n4
.

It is interesting to compare this bound with a weaker bound obtained in [9] by
different means:

β >
1

8∆2
>

c4

n4(log q)2
,

where ∆ = ∆
(
SL(n, Fq), S

)
, is the diameter of the Cayley graph Γ′. Here

the first inequality follows from the conductance bound in this case (also called
isoperimetric or Cheeger inequality), while the second follows from elementary
arguments and expansion property of Γ

(
SL(2, Fq), S

)
(see [9, 17] for details).

As for mixing time of the lazy random walk W◦ = W◦
(
SL(n, Fq), S

)
, Corol-

lary 1 and log |G| = n2 log q gives us

mixo ≤ c5n
6 log q.

Again, it is interesting to compare this bound with that obtained in [9] by use
of the comparison technique:

mixo ≤ c6n
4 (log q)3.
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Since the two bounds are incomparable, and there seem to be no good lower
bound, it is conceivable that one can combine the techniques to improve these
bounds.

6 The product replacement algorithm

The product replacement algorithm (PRA) is a recent heuristic designed to
generate random elements in finite groups [6, 22]. In its heart, the PRA consists
of a simple random walk, called the product replacement random walk, on
generating k-tuples of a finite group. In the recent years, there has been much
effort to study this random walk and prove rigorous results about its mixing
time (see e.g. [9, 10, 11, 18, 23]). Despite recent progress, the rapid mixing of
this random walk remains a mystery.

In this section, we follow [18] to reformulate the problem in terms of the
Schreier graphs. Then we show how Theorem 1 can be applied to obtain sharper
bounds on the mixing time of the product replacement random walk.

The product replacement algorithm works as follows [6]: Given a finite group
G, let ik(G) be the set of k-tuples (g) = (g1, . . . , gk) of elements of G such
that 〈g1, . . . , gk〉 = G. We call elements of ik(G) the generating k-tuples.
Given a generating k-tuple (g1, . . . , gk), define a move on it in the following
way: choose uniformly a pair (i, j), such that 1 ≤ i 6= j ≤ k, then apply one of
the following four operations with equal probability :

R±
i,j : (g1, . . . , gi, . . . , gk) → (g1, . . . , gi · g±1

j , . . . , gk),

L±i,j : (g1, . . . , gi, . . . , gk) → (g1, . . . , g
±1
j · gi, . . . , gk).

Note that these moves map a generating k-tuple into a generating k-tuple. Now
apply these moves t times and return a random component of the resulting
generating k-tuple. This is the desired “random” element of the group G. Of
course, here and below we assume that k ≥ d(G), where d(G) is the minimum
number of generators of G.

We shall think of ik(G) as of a 4k(k − 1)-regular graph with vertices
as above and edges corresponding to moves R±

i,j and L±i,j . Now the product
replacement random walk can be defined as a nearest neighbor random walk
on Γk(G). The main problem in the subject is to determine the mixing time
mix◦ = mix◦

(
Γk(G)

)
. We refer to an extensive survey article [22] for a review

on the mixing time, connectivity of Γk(G), and other problems which arise in
the analysis of PRA.

Following [18], consider the case when G = Fk. Then the moves R±
i,j , L

±
i,j

are (a subset of) the Nielsen generators, and generate a subgroup Aut+(Fk) ⊂
Aut(Fk) of index two. Denote by Υ the set automorphisms of Fk corresponding
to R±

i,j , L
±
i,j . Since d(G) ≤ k, we have Aut+(Fk) acts on ik(G) with Υ.

Therefore, the graph ik(G) is isomorphic to a Schreier graph of Aut+(Fk):

ik(G) ' Γ(Aut+(Fk)/H,Υ),

10



for some H ⊂ Aut+(Fk).
The question whether Aut+(Fk) (or, equivalently, Aut(Fk)) has Kazhdan’s

property (T) is an open problem (see [17]). Assume this is true, i.e. suppose
K = K(Aut+(Fk),Υ) > 0. Observe that a permutation group Φ = Sk acts
on Aut+(Fk), and Υ has four orbits of the same size (α = 1/4). Then by
Theorem 1 we obtain:

β
(
ik(G)

)
≥ αK

2
≥ K

8
.

While our assumption is by no means justified, in some special cases much
progress been made. In [18] it was proved that a special group of automorphisms
of a free nilpotent group of class ` − 1 with at most k generators A(k, `) =
Aut+(Fk/γ`(Fk)) has Kazhdan’s property (T). Following [18], we observe that
ik(G) ' Γ

(
A(k, `)/H ′,Υ′), where Υ′ are the natural generators of A(k, `),

obtained by projection of Υ. In a similar manner, we conclude that if G is
nilpotent, d(G) < k and the nilpotency class `(G) < `, then

β
(
ik(G)

)
≥ K ′

8
,

where K ′ = K(A(k, `),Υ′) > 0.
We should note that we need connectivity of ik(G) for general groups. When

G is nilpotent and k > d(G), this is known indeed (see [22] for proofs and
references). Now, using the mixing time bound and log |ik(G)| < k log |G|, we
get:

Corollary 2 Let G be a nilpotent group of class `(G) < `, such that d(G) < k.
Let K = K

(
Aut+(Fk/γ`(Fk)),Υ′) > 0 be the Kazhdan constant. Then the

the mixing time mix◦ of the lazy product replacement random walk on ik(G)
satisfies

mix◦ < 256 k log |G| 1
K

. �

7 Final Remarks

The question of estimating Kazhdan constants goes back to J.-P. Serre, and to
de la Harpe and Valette [14]. The difficulty of this task can be seen from the first
breakthrough [5], where the Kazhdan constant for SL(3, Z) was estimated.
Most recently, new advanced techniques were introduced [25, 26, 29]. Still, as
of now, there are very few cases when the Kazhdan constant is estimated, and
perhaps only two or three examples when it is computed exactly.

In the literature, many versions of the Kazhdan constants have been studied,
with differences mostly due to various restrictions on representations considered
in the definition. The notion of K seems to be new. It arose from an attempt
to improve the inequality β ≥ K

2 |S| , obtained in [15]. Basically, Proposition 1
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implies that |S| is irrelevant when S is a transitive set of generators. Roughly
similar improvements are well known for the Cheeger (or isoperimetric) inequal-
ity [2]. Unfortunately, the straightforward ‘averaging’ idea used there can not
be applied to Kazhdan constants.

The random walks on finite group are special cases of finite Markov chains,
which are of intense interest in probability, computer science, statistical physics,
etc. There are several different techniques and a large number of results regard-
ing eigenvalue gap and mixing time, in this special case, as well as for general
Markov chains [2, 7]. We hope that an approach based on Kazhdan’s property
(T) will grow to become an established technique for random walks on finite
groups, very much as it became standard for creating expanders [17].

The product replacement algorithm is a practical heuristic which showed
a remarkable performance in experiments [6]. Even sharp results, such as a
recent polynomial bound on the mixing time (for k = Ω∗(log |G|)), seem to pale
in comparison with the ‘reality’. It was not until [18], that the mysterious rapid
mixing received an explanation. Although the assumption that Aut(Fk) has
Kazhdan’t property (T) may be false, we remain optimistic that Aut(Fk) has
property (τ) for a certain family of normal subgroups [17], and thus the graphs
ik(G) are expanders, when k is fixed and |G| → ∞.
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