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1 Introduction

The Robinson-Schensted-Knuth correspondence (RSK, see [8] and Corol-
lary 2.5 below) is a bijection between pairs of semi-standard Young tableaux
of the same shape and matrices with nonnegative integer entries with pre-
scribed column and row sums. This correspondence plays an important
role in the representation theory of the symmetric group and general lin-
ear groups, and in the theory of symmetric functions.

It is possible (see [2, 3, 4, 5, 10]) to construct an analogue of the RSK for
oscillating tableaux, i.e., sequences of Young diagrams α = (α(0), . . . , α(k))
such that each α(i) and α(i+1) differ by a horizontal strip.

We present a new approach to the RSK correspondence for oscillating
tableaux. First, we show that the number of oscillating tableaux of a given
weight and shape is equal to the multilplicity of the corresponding irreducible
representation in a certain naturally defined Sp × Sq-module. This allows
us to recover the enumerative results from [4, 10, 11, 12] (see Section 4).
In Section 5, we extend this construction to oscillating supertableaux. In
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Section 6, we discuss commutation relations for the operators which add or
delete horizontal or vertical strips (cf. [5, 6]) and give a generalization of
these relations.

In Section 7, we introduce a piecewise-linear analogue of RSK for oscillat-
ing tableaux in the spirit of [1]. We construct a continuous piecewise-linear
map which establishes a bijection between two convex polyhedra. The re-
striction of this map to integer points gives the the RSK correspondence for
oscillating tableaux.

We are grateful to Arkadiy Berenstein and Sergey Fomin for useful dis-
cussions.

2 Oscillating tableaux

We can view tableaux as paths in certain graph Y . The vertices of Y are
Young diagrams and diagrams λ and µ are connected by an edge in Y if λ/µ
or µ/λ is a horizontal strip. We call Y the extended Young graph because
it is obtained from the Young graph by adding some edges connecting non-
adjacent levels. It is clear that Young tableaux correspond to decreasing
paths in the graph Y . An oscillating tableau is an arbitrary path in Y .

Definition 2.1 Let λ, µ be partitions and β = (β1, β2, . . . , βk) ∈ Zk. An
oscillating tableau α of shape (λ, µ) and weight β is a sequence of partitions
(α(0) = λ, α(1), α(2), . . . , α(k) = µ) such that for all i = 1, 2, . . . , k the following
conditions hold:

1. If βi ≥ 0 then α(i−1) ⊃ α(i) and α(i−1)/α(i) is a horizontal βi-strip,

2. If βi < 0 then α(i) ⊃ α(i−1) and α(i)/α(i−1) is a horizontal (−βi)-strip.
By OT (λ, µ, β) denote the set of all oscillating tableaux of shape (λ, µ) and
weight β. If |βi| = 1 for all i then an oscillating tableau of weight β is called
standard.

Analogous definition was given in [10]. Standard oscillating tableaux were
earlier considered in [12].

Definition 2.2 Let δ = (δ1, . . . , δk) ∈ Zk be a sequence such that
∑

i δi =
0. An intransitive graph of type δ is an oriented graph γ on the vertices
{1, 2, . . . , k} (multiple edges allowed) such that:
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1. If (i, j) is an edge of γ then i < j.

2. If δi ≥ 0 then indegree of i is δi and outdegree of i is 0.

3. If δi ≤ 0 then outdegree of i is −δi and indegree of i is 0.

Denote by G(δ) the set of all intransitive graphs of type δ.

Theorem 2.3 Let β ∈ Zk be such that
∑

i βi = 0. Then the number of
oscillating tableaux of shape (0̂, 0̂) and weight β is equal to the number of
intransitive graphs of type β

|OT (0̂, 0̂, β)| = |G(β)|.

This theorem in slightly different notation was proven by T. W. Roby [10]
who generalized S. Fomin’s results [3, 4, 5]. The following result was found
in [12].

Corollary 2.4 The number of paths in the Young graph from 0̂ to 0̂ of length
2k is equal to (2k − 1)!! = (2k − 1)(2k − 3) . . . 1.

Show how oscillation tableaux and intransitive graphs are connected with
classical Robinson-Schensted-Knuth correspondence [8]. For weight β =
(β1, β2, . . . , βk) such that β1, . . . , βp ≤ 0, βp+1, . . . , βk ≥ 0 we get the fol-
lowing

Corollary 2.5 Let β′ ∈ Ns and β′′ ∈ Nt. Then the number of pairs (P,Q)
of Young tableaux of the same shape and with weights β′ and β′′ respectively
is equal to the number of s×t-matrices A = (aij) such that

1. aij ∈ N for i = 1, 2, . . . , s, j = 1, 2, . . . , t,

2.
∑

j aij = β′
i for i = 1, 2, . . . , s,

3.
∑

i aij = β′′
j for j = 1, 2, . . . , t.

3 Sp×Sq-module M(p, β, q)

We consider a permutational representation of Sp×Sq in the linear space
generated by intransitive graphs. Multiplicities of irreducible components in
this representation are given by the numbers of oscillating tableaux.
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Let p, q ∈ N, β = (β1, . . . , βk) ∈ Zk such that p − q =
∑

i βi, r = p + k,
and n = p + k + q. Let G(p, β, q) be the set of intransitive graphs of type
δ = (δ1, δ2, . . . , δn), where

δi =


−1 for i = 1, . . . , p,
βi−p for i = p+ 1, . . . , r,
1 for i = r + 1, . . . , n.

The direct product of two symmetric groups Sp×Sq acts on the graphs
γ ∈ G(p, β, q) as follows: the group Sp permutes the first p vertices in γ and
the group Sq permutes the last q vertices in γ.

Let M(p, β, q) be the linear space over C with basis {vγ}, γ ∈ G(p, β, q).
The action of the group Sp×Sq on G(p, β, q) gives a linear representation
M(p, β, q) of Sp×Sq.

Let πλ be the irreducible Sn-module associated with a partition λ ⊢ n
(see [7, 9]). Every irreducible representation of the group Sp×Sq is of the
form πλ ⊗ πµ, where |λ| = p and |µ| = q.

Theorem 3.1

M(p, β, q) ≃
∑

|OT (λ, µ, β)| · πλ ⊗ πµ,

where the sum is over all partitions λ ⊢ p and µ ⊢ q.

Clearly, Theorem 2.3 is a special case of Theorem 3.1 for p = q = 0.

Example 3.2 Let p = q and β = ∅ be the empty sequence. Then graphs from
G(p, ∅, p) can be identified with permutations in Sp. In this case M(p, ∅, p)
is the regular representaion Reg(Sp) of Sp × Sp, i.e., the group algebra C[Sp]
on which one copy of Sp acts by left multiplications and the other copy of
Sp acts by right multiplications. Theorem 3.1 gives the following well-known
identity.

Reg(Sp) =
∑
λ⊢p

πλ ⊗ πλ.

Example 3.3 Let q = 0 and βi ≥ 0 for all i = 1, 2, . . . , k. Then a graph
γ ∈ G(p, β, 0) can be identified with the word w = w1w2 . . . wp with β1 1’s, β2
2’s, etc. The symmetric group Sp acts on such words w by permutation of
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letters wi. The representation Mβ = M(p, β, 0) is the well-known monomial

representation, see [7], i.e., Mβ = Ind
Sp

Sβ1
×...×Sβk

Id. By Theorem 3.1 we get

Mβ =M(p, β, 0) =
∑
λ⊢p

|Y T (λ, β)| · πλ

This is the classical Young’s rule for decomposition of monomial representa-
tions Mβ, see [7, 9].

4 Combinatorial theorem

A sequence τ = (τ1, τ2, . . . , τk) ∈ Zk is called normal if there exist 0 ≤ r ≤
l ≤ k such that τ1, τ2, . . . , τr > 0 ; τr+1 = . . . = τl = 0 ; τl+1, . . . , τk < 0.
For a sequence β ∈ Zk, let nor(β) denote the normal sequence obtained
from β by shuffling all positive entries of β into the beginning and all neg-
ative entries into the end. For example, nor(0,−3, 1,−1, 0,−2, 0, 1, 3) =
(1, 1, 3, 0, 0, 0,−3,−1,−2).

For β, δ ∈ Zk the expression δ ≺ β means that for all i = 1, 2, . . . , k either
0 ≤ δi ≤ βi or 0 ≥ δi ≥ βi.

It is not difficult to deduce from Theorem 3.1 the following result.

Theorem 4.1 Let λ, µ be some partitions, β ∈ Zk. Then

|OT (λ, µ, β)| =
∑

|G(δ)| · |OT (λ, µ, nor(β − δ))|,

where the sum is over all δ ∈ Zk such that
∑

i δi = 0 and δ ≺ β.

An analogous result but in different notation was obtained in [10]. Clearly,
Theorem 2.3 is a special case of Theorem 4.1 for λ = µ = 0̂.

It is possible (see [10]) to construct a bijection Φλµβ between two sets
in Theorem 4.1. This construction is based on certain local operations (see
Section 6).

5 Superanalogue

In this section we give superanalogues of definitions and theorems from Sec-
tions 2–4.
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Let β ∈ Zk, ε = (ε1, . . . , εk) ∈ {1,−1}k. By βε denote the sequence b =
(b1, b2, . . . , bk) in the alphabet {m,m | m ∈ Z} such that bi = βi (respectively
bi = βi) if εi = 1 (respectively, εi = −1).

Definition 5.1 Let λ, µ be partitions. An oscillating supertableau of shape
(λ, µ) and weight b = βε is a sequence of partitions (α(0) = λ, α(1), . . . , α(k) =
µ) such that for all i = 1, 2, . . . , k the following conditions hold.

1. If εi = 1 then (a) for βi ≥ 0 we have α(i−1) ⊃ α(i) and α(i−1)/α(i) is a
horizontal βi-strip;

(b) for βi < 0 we have α(i)⊃α(i−1) and α(i)/α(i−1) is a horizontal (−βi)-
strip;

2. If εi = −1 then (a) for βi ≥ 0 we have α(i−1)⊃α(i) and α(i−1)/α(i) is
a vertical βi-strip;

(b) for βi < 0 we have α(i)⊃α(i−1) and α(i)/α(i−1) is a vertical (−βi)-
strip.

The set of all oscillating supertableaux of shape (λ, µ) and weight b = βε is
denoted by OST (λ, µ, b).

Definition 5.2 Let δ ∈ Zk and ϵ = (ϵ1, ϵ2, . . . , ϵk) ∈ {1,−1}k. An intran-
sitive graph of type d = δϵ is an oriented graph γ on the set of vertices
{1, 2, . . . , k} satistying the conditions 1–3 of Definition 2.2 and also the con-
dition:

4. If ϵi ̸= ϵj then γ contains at most one edge (i, j).

Let SG(δϵ) be the set of all such graphs.

The following algebra A(ϵ) is closely related to Definition 5.2.

Definition 5.3 Let ϵ = (ϵ1, ϵ2, . . . , ϵk) ∈ {1,−1}k. The algebra A(ϵ) gener-
ated by variables xij, 1 ≤ i < j ≤ k with the following relations.

1. xij xjr = 0 for any 1 ≤ i < j < r ≤ k,

2. xij xlm = (−1)σijσlmxlm xij, where

σij =

{
0 ϵi = ϵj,
1 ϵi ̸= ϵj.
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Let mγ denote the product of xij over all edges (i, j) of a graph γ. Let
Aδ(ϵ) denote the subspace of A(ϵ) which is generated (as a linear space) by
monomialsmγ for γ ∈ SG(δϵ). It is clear that A(ϵ) =

⊕
δAδ(ϵ). Let p, q ∈ N,

β = (β1, . . . , βk), ε = (ε1, . . . , εk) ∈ {1,−1}k, b = βε, and ψ, ω ∈ {1,−1}.
Suppose that δϵ = (−1ψ, . . . ,−1ψ, b1, . . . , bk, 1

ω, . . . , 1ω) (we have−1ψ p times
and 1ω q times.

Let SG(p, βε, q) be the set of intransitive graphs of type δϵ. Denote by
M(p, βε, q) the subspace Aδ(ϵ), where p = pψ and q = qω. Then {mγ : γ ∈
SG(p, βε, q)} is a basis of the space M(p, βε, q).

The group Sp×Sq acts on this space, cf. Section 3. The symmetric group
Sp permutes the first index of variables xij with i = 1, 2, . . . , p and Sq per-
mutes the second index of variables xij with j = p+k+1, . . . , p+k+q.

The following example gives an odd analogue of the regular representation
of Sp (see Example 3.2).

For a partition λ ∈ P and ψ ∈ {1,−1}, λψ = λ if ψ = 1 and λψ = λ′

(the conjugate partition) if ψ = −1. Now we can present a superanalogue of
Theorem 3.1.

Theorem 5.4

M(pψ, βε, qω) ≃
∑

|OST (λψ, µω, βε)| · πλ ⊗ πµ,

where the sum is over all partitions λ ⊢ p and µ ⊢ q.

Example 5.5 Let βε = ∅ be the empty sequence, p = p and and q = p,
p ∈ N. Then Altp = M(p, ∅, p) is the representation of Sp×Sp on the group
algebra C[Sp] such that for (σ, π) ∈ Sp×Sp and f ∈ C[Sp] we have (σ, π) ·f =
sgn(σπ−1) σfπ−1. By Theorem 5.4 we have Altp =

∑
λ⊢p πλ ⊗ πλ′. This is

an odd analogue of Example 3.3. Of course this formula easily follows from
definition of Altp.

Now we give a superanalogue of Theorem 4.1. Let b = (b1, b2, . . . , bk) = βε

Let nor(b) denote the word obtained from the word b = (b1, b2, . . . , bk) by
shuffling negative entries into the beginning and positive entries into the end.
For example, nor(0, 3,−1, 1, 0, 2, 0,−1,−3) = (−1,−1,−3, 0, 0, 0, 3, 1, 2).

Theorem 5.6 Let λ, µ ∈ P be some partitions, β ∈ Zk, ε ∈ {1,−1}k. Then

|OST (λ, µ, βε)| =
∑
δ≺β

|SG(δε)| · |OST (λ, µ, nor((β − δ)ε))|.
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This theorem can be deduced from Theorem 5.4 in the same way as
Theorem 4.1 from Theorem 3.1.

It is possible to construct a bijection Φsuper
λµb between two set from Theo-

rem 5.6 using local operations ψ3 and ψ4 from Section 6.
If λ = µ = 0̂ then Theorem 5.6 implies the following

Corollary 5.7 Let β ∈ Zk and ε ∈ {1,−1}k. Then the number of oscil-
lating tableaux of shape (0̂, 0̂) and weight b = βε is equal to the number of
intransitive graphs of type b

|OST (0̂, 0̂, b)| = |G(b)|.

Corollary 5.8 Let β′ ∈ Ns and β′′ ∈ Nt. Then the number of pairs of
tableaux (P,Q) with conjugated shapes and with weights β′ and β′′ respec-
tively is equal to the number of s×t-matrices satisfying the conditions 1–3 of
Corollary 2.5 with all entries equal to 0 or 1.

Knuth in [8] constructed also a variant of RSK which gives a bijection
between the set of such s×t-matrices and the set of such pairs of tableaux
(P,Q). In this case the bijection Φsuper

λµb coincides with Knuth’s correspon-
dence.

6 Local operators

Let n ∈ N. Consider the operators I(n), I(n), D(n), D(n) in the infinite-
dimensional space R of formal linear combinations of partitionssuch that
I(n) (respectively, I(n)) deletes a horizontal (respectively, vertical) n-strip
and D(n) (respectively, D(n)) add a horizontal (respectively, vertical) n-
strip. These operators were considered by I. Gessel [6].

Let b ∈ {n, n | n ∈ Z}. If b ≥ 0 denote by ⟨b⟩ the operator I(b). If b ≤ 0
denote by ⟨b⟩ the operator D(−b). It is clear that (⟨b1⟩ · ⟨b2⟩ · . . . · ⟨bk⟩)λµ =
|OST (λ, b, µ)|.

Theorem 6.1 Let m,n ∈ N. The following relations hold.

1. [I(m), I(n)] = [I(m), I(n)] = [D(m), D(n)] = [D(m), D(n)] = 0.

2. [I(m), I(n)] = [D(m), D(n)] = 0.

3. [I(m+1), D(n+1)] = I(m)D(n), [I(m+ 1), D(n+ 1)] = I(m)D(n).

8



4. [I(m+1), D(n+ 1)] = D(n)I(m), [I(m+ 1), D(n+1)] = D(n)I(m).

Clearly, this theorem follows from

Proposition 6.2 Let m,n ≥ 1. There exist bijections between the following
sets

1. ψ1 : Y T (λ/ν, (m,n)) → Y T (λ/ν, (n,m)),

2. ψ2 : ST (λ/ν, (m,n)) → ST (λ/ν, (n,m)),

3. ψ3 : OT (λ, ν, (−m,n)) →
⨿

0≤k≤min(m,n)OT (λ, ν, (n−k,−m+k)),

4. ψ4 : OST (λ, ν, (−m,n)) →
⨿

k=0,1OST (λ, ν, (n−k,−m+k)).

Here Y T (λ/ν, β) and ST (λ/ν, β) denote the set of Young tableaux and su-
pertableaux, resp., of weight β

It is not difficult to construct these bijections. Here we construct bijection
ψ3 which is analogous to a bijection given [6].

Let α = (λ, µ, ν) ∈ OT (λ, µ, (−m,n) , λ = (λ1, λ2, . . .), µ = (µ1, µ2, . . .),
and ν = (ν1, ν2, . . .). On the following diagram arrow x → y denotes the
inequality x ≥ y.

λ1 λ2 λ3 . . . λi λi+1 . . .
↗ ↘ ↗ ↘ ↗ ↘ ↗

µ1 µ2 µ3 . . . µi+1 . . .
↘ ↗ ↘ ↗ ↘ ↗ ↘
ν1 ν2 ν3 . . . νi νi+1 . . .

Let ai = min(λi, νi) and bi = max(λi+1, νi+1), i = 1, 2 . . .. Set µ̃i = ai +
bi − µi+1, i = 1, 2, . . . and k = µ1 −min(λ1, ν1). Clearly, 0 ≤ k ≤ min(n,m).
Now µ̃ = (µ̃1, µ̃2, . . .) is a partition and α̃ = (λ, µ̃, ν) ∈ OT (λ, µ, (n −
k,−m+ k)). Define ψ3 : α 7→ α̃. Then ψ3 gives a bijection between the sets
OT (λ, µ, (−m,n)) and

⨿
k OT (λ, µ, (n − k,−m + k)), 0 ≤ k ≤ min(m,n).

Indeed, if we have a partition µ̃ = (µ̃1, µ̃2, . . .) and 0 ≤ k ≤ min(m,n) then
we can reconstruct µ setting µ1 = k + min(λ1, ν1) and µi+1 = ai + bi − µ̃i,
i = 1, 2, . . ..

Remark 6.3 Note that in this construction we can assume that λi, µi, νi,
m, n, and k are arbitary real numbers. So we can give a continuous analogue
of bijection ψ3.
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In the end of this section we give a generalization of Theorem 6.1. Let
Λ be the ring of symmetric function of infinite many variables x1, x2, . . .,
see [9]. Then Λ has a basis of Schur functions sλ(x) with the norm such that
⟨sλ, sµ⟩ = δλµ. Consider the linear operator on Λ given by Sλ/µ : f → sλ/µ ·f .
Let S∗

λ/µ be the conjugate operator. Now we can view operators D(n), D(n),

I(n), and I(n) as Sn, S1n , S
∗
n, and S

∗
1n , respectively. We have the following

relation for operators Sλ and S∗
ν .

Theorem 6.4
S∗
ν Sλ =

∑
µ⊂λ∩ν

Sλ/µ S
∗
ν/µ.

7 Continuous analogue

In this section we sketch a continuous piecewise-linear analogue of RSK for
osclillating tableaux

Using operations π3 from the previous section (see Remark 6.3) it is
possible to construct a continuous piecewise-linear volume-preserving map
Φ : A → B between two convex polyhedra. Rather than state the theorem
in it full generality we give an example.

Consider some array {pij} whose shape is a Young diagram

p11 p12 p13 p14

p21 p22 p23

p31 p32

where all entries pij are nonnegative real numbers weakly increasing along
from left to right and from top to bottom. Consider the polyherdon A con-
sisting of all such arrays with fixed diagonal-sums: p31 = γ1, p21 + p32 =
γ2, p11 + p22 = γ3, p12 + p23 = γ3, p13 = γ5, p14 = γ6.

Consider another array {qij} of the same shape where all entries qij are
nonnegative real numbers. Let B be the polyhedron of all such arrays with
fixed row and column sums q11+q21+q31 = α1, q12+q22+q32 = α2, q13+q23 =
α3, q14 = α4, q31 + q32 = β1, q21 + q22 + q23 = β2, q11 + q12 + q13 + q14 = β3.

Suppose that γ1 = α1, γ2 = γ1 + α2, γ3 = γ2 − β1, γ4 = γ3 + α3, γ5 =
γ4 − β2, γ6 = γ5 + α4.
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Repeting operations ψ3 from the previuos section, we can construct a
continuous piecewise linear bijection Φ between A and B. If all pij and qij
are integer we get the RSK for osclillating tableaux.
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