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Abstract

We show that the longest k-alternating substring of a random permutation has
length asymptotic to 2(n− k)/3.

1 Introduction

An alternating permutation is a permutation π ∈ Sn satisfying

π(1) < π(2) > π(3) < π(4) > · · · .

Alternating permutations have been well studied and enumerated (see e.g. [S3]). Let Ln
be the length of the longest alternating subsequence of a permutation chosen at random
uniformly from Sn. Motivated by the study of longest increasing subsequences, Stanley
computed the mean and variance of Ln :

ELn =
4n+ 1

6
, (1)

VarLn =
8n

45
− 13

180
(2)

for all n > 4 [S2] (see also [S1, Rom]). In fact, the distribution is asymptotically normal
with these parameters [Wid] (see also [HR, Theorem 2.1]).

A k-alternating permutation is a permutation π ∈ Sn such that

(−1)j(π(j)− π(j + 1)) > k for all j ∈ {1, . . . , n− 1}.
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In other words, π must be alternating and its jumps |π(j+1)−π(j)| must all be at least k.
For k = 1 we get the ordinary alternating permutations. We learned of k-alternating per-
mutations from D. Armstrong [Arm], who attributes the definition to R. Chen (personal
communication, inspired by a 2011 talk by R. Stanley).

Let π be a uniformly chosen random permutation in Sn and let Ln,k = Ln,k(π) denote
the length of the longest k-alternating subsequence of π. Armstrong [Arm] made the
following conjecture, and verified it via exact computation for certain small values of n
and k.

Conjecture 1 (Armstrong, 2014). For all n > 2 and k ∈ {1, . . . , n− 1}, we have:

ELn,k =
4(n− k) + 5

6
. (3)

In this note we use probabilistic methods to prove the following asymptotic version of
the conjecture.

Theorem 2.

ELn,k =
2(n− k)

3
+O(n2/3) .

This is proved via the related notion of x-alternation for x ∈ (0, 1), cf. [ACSS]. A
vector y = (y1, . . . , yn) ∈ [0, 1]n is called x-alternating if (−1)n(yj − yj+1) > x for all
1 6 j 6 n − 1. Let µ denote product Lebesgue measure on [0, 1]n. Let Ψ be the map
taking y ∈ [0, 1]n to the element π ∈ Sn defined by

π(j) = #{i 6 n : yi 6 yj} .

A well known fact attributed to Rényi (see [Res]) says that if y has law µ then Ψ(y) is
uniformly distributed on Sn. Let Ln,x(y) denote the length of the longest x-alternating
subsequence of y. No confusion can result between this and the definition of Ln,k above,
provided that we restrict x to [0, 1) and k to positive integral values.

2 Proof of Theorem 2

Theorem 2 is a consequence of the following results.

Lemma 3. Let Z be a binomial random variable with parameters n and 1− x. Then

Ln,x(y)
D
= LZ,1 .

In other words, the law of the longest x-alternating subsequence may be exactly simulated
by choosing Z ∼ Bin(n, 1 − x), choosing π uniformly on SZ, and taking the longest
alternating subsequence of π.
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Corollary 4.

ELn,x =
2

3
n(1− x) +

1

6
, (4)

VarLn,x = (1− x)(2 + 5x)
4n

45
. (5)

Proof. Taking expectations in (2) gives ELn,x = (2/3)EZ+1/6, proving (4). The identity
Var (Y ) = EVar (Y |Z) + VarE(Y |Z) applied to Y = Ln,x gives

Var (Ln,x) = E
8Z

45
− 13

180
+ Var

(
2

3
Z +

1

6

)

=
8n(1− x)

45
− 13

180
+

4

9
nx(1− x)

=
8n(1− x) + 20nx(1− x)

45

and proves the corollary.

Lemma 5. Let y be random with law µ. Denote

x1(k, n) := k/n− n−1/3,
x2(k, n) := k/n+ n−1/3.

Then the following two implications hold with probability 1− o(1) as n→∞.

(i) For all subsequences y′ of y, if y′ is x2-alternating then π′ := Ψ(y′) is k-alternating.

(ii) For all subsequences y′ of y, if y′ is not x1-alternating then π′ := Ψ(y′) is not
k-alternating.

Consequently, with probability 1− o(1),

Ln,x2(y) 6 Ln,k(Ψ(y)) 6 Ln,x1(y) . (6)

Proof of Theorem 2. The theorem follows from Corollary 4 and Lemma 5. Taking expec-
tations in (6) we find that

ELn,x2 6 ELn,k 6 ELn,x1 .
Corollary 4 then sandwiches ELn,k between two quantities both of which are asymptotic
to (2/3)(n− k):

ELn,xj =
2

3
n(1− xj) +

1

6

=
2

3
(n− k) +O(n2/3) ,

where j ∈ {1, 2}.
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Proof of Lemma 5. Let F̂ denote the empirical distribution of the values of y: F̂ (t) :=
n−1

∑
j 1yj6t. If (i) fails then there are i, j 6 n with |yi − yj| > x2 and |π(i)− π(j)| < k,

where π = Ψ(y). Letting t denote the minimum of yi and yj, this implies that F̂ (t+x2)−
F̂ (t) < k/n. Because

F̂ (t+ x2)− F̂ (t) =
(
F̂ (t+ x2)− (t+ x2)

)
−
(
F̂ (t)− t

)
+ x2

it follows that

|F̂ (s)− s| > 1

2

(
x2 −

k

n

)
=

1

2
n−1/3

either for s = t or s = t+x2. Similarly, if (ii) fails then there are i, j 6 n with |yi−yj| < x1
and |π(i)− π(j)| > k, leading to

|F̂ (s)− s| > 1

2

(
k

n
− x1

)
=

1

2
n−1/3

for some s ∈ (0, 1). In either case,

sup
s∈[0,1]

|F̂ (s)− s| > 1

2
n−1/3 .

But
√
n sups∈[0,1] |F̂ (s)− s| converges in distribution to the Kolmogorov-Smirnov statistic

(the law of the maximum of a Brownian bridge). Because n−1/3/n−1/2 →∞, this implies
that

P

(
sup
s∈[0,1]

|F̂ (s)− s| > 1

2
n−1/3

)
→ 0

proving the lemma.

3 Proof of Lemma 3

We begin with another well known fact, attributed to M. Bóna in [S1]: for π ∈ Sn,
one alternating subsequence (π(i) : i ∈ A) of maximal length is obtained by selecting
i ∈ A if and only if i is a peak or a valley, that is, π(i − 1) < π(i) > π(i + 1) or
π(i− 1) > i < π(i + 1), except that we select 1 if and only if π(1) < π(2) (see the proof
in [HR, §2]). This generalizes to k-alternating subsequences via the following algorithm
which selects the index set A of a k-alternating subsequence of a given permutation s ∈ Sn.

GREEDY PROVISIONAL ACCEPTANCE:

Initialize i := 1, j := 2, state := up, A := empty.

While j <= n do:

IF (state = up) and s(i) < s(j) < s(j) + k THEN j := j+1 ELSE

IF (state = up) and s(i) > s(j) THEN i := j , j := j+1 ELSE
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IF (state = up) THEN

A := A union {i}, i := j, j := j+1, state := down ELSE

IF s(i) > s(j) > s(j) - k THEN j := j+1 ELSE

IF s(i) < s(j) THEN i := j, j := j+1 ELSE

A := A union {i}, i := j, j := j+1, state := up

In other words, when it is time for an upward step, if the next value goes up but not
by k ignore it, if it goes up by k or more, accept it as the new provisional value, and if it
goes down, replace the old provisional down step by the new value. The pointer i points
to the provisional value at any time, and when a new provisional value is accepted (rather
than replacing and old one), the old one becomes permanent.

Lemma 6. Let s ∈ Sn. Then the subsequence (s(i) : i ∈ A) defined by the foregoing
algorithm is a k-alternating subsequence of maximal length.

Proof. Regarding s as a word of length n, let s′ denote the word of length n− 1 obtained
by removing the initial element of s and let s′′ denote the word of length n−1 obtained by
removing the second element of s. Let L∗n,k denote the length of the longest k-alternating
sequence beginning with a down step instead of an up step. We claim that

s(1) < s(2) < s(1) + k ⇒ Ln,k(s) = Ln,k(s
′′),

s(1) > s(2) ⇒ Ln,k(s) = Ln,k(s
′),

s(1) + k 6 s(2) ⇒ Ln,k(s) = 1 + L∗n,k(s
′).

The first holds because we can’t use both s(1) and s(2) and starting with s1 dominates
starting with s(2). The second holds because again we can’t use both and this time start-
ing from s2 dominates starting from s(1). The last is true for the following reason. The
LHS cannot be more than the RHS because any k-alternating subsequence restricts to a
reverse k-alternating sequence of s′ upon removal of its first element (here the inequalities
in the definition of alternating sequence are reversed, not the word itself). On the other
hand, if w is a reverse k-alternating subsequence of s′, then there are two cases. If the first
element w(1) is at least s(2), we can prepend s(1) and obtain a k-alternating subsequence
of s longer by one. Similarly, if the first element in w is less than s(2), we can replace
w(1) by s(2) and then prepend s(1). This proves the claim. The lemma now follows by
induction.

Replacing k-alternation by x-alternation, an identical argument shows that greedy
provisional acceptance will also identify an x-alternating subsequence of y having maximal
length. Next, we adjust the bookkeeping slightly as follows. The way the algorithm is
written, the first element y1 begins in a state of provisional acceptance. When y1 > 1−x,
it is doomed eventually to be replaced, so instead of provisionally accepting it, we reject
each initial value until we see a value that is at most 1−x. This yields the following easy
lemma.

Lemma 7. Conditional on y1, . . . , yj, the probability of rejecting yj+1 is always precisely
x.
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Proof. If no value has yet been provisionally accepted, then by rule we reject precisely
those values above 1−x. On the other hand, if any value has been provisionally accepted,
it is easy to check inductively that when the state is “up”, the provisional value y is at
most 1− x, and the rejection interval for the new value, [y, y + x) is entirely within [0, 1]
and has length x. Similarly, when the state is “down”, the provisionally accepted value
is at least x and the rejection interval (y − x, y] again has length x.

Let A ⊆ {1, . . . , n} be the subset of indices i for which yi was at least provisionally
accepted. The previous lemma shows that A has the distribution of a set selected by
independent coin flips with success probability 1− x.

Lemma 8. Let j1 < j2 < · · · < jr enumerate the set A. Let zi := yji when yji was
provisionally accepted initially or after a down step and let zi := yji − x when yi was
provisionally accepted after an up step. Then z is a collection of independent variables
uniform on [0, 1− x] and is independent of A.

Proof. Condition on the y1, . . . , yj. We know that P(j + 1 ∈ A) = 1 − x. We therefore
need to show that conditional on j + 1 ∈ A, and on y1, . . . yj, the value zi+1 is uniform on
[0, 1−x] where i is the cardinality of A∩{1, . . . , j}. When i = 0 we are in the initial phase
and the result is obvious. If not, suppose first that the state is “up”. Then zi 6 1−x and
the values of yj+1 for which provisional acceptance will occur are the union of two intervals
[0, zi] ∪ [zi + x, 1]. If yj+1 lies in the upper of these two intervals, it will be provisionally
accepted after an up step while if it is in the lower interval it will be provisionally accepted
replacing a previous down step value. Thus the two intervals together will map to the
single interval [0, 1−x]. Similarly, supposing instead that the state is “down”, provisional
acceptance will occur in [0, zi − x]∪ [zi, 1]; zi+1 will be yj+1 − x in the upper interval and
yj+1 in the lower interval, and again we see that zi+1 is uniform on [0, 1− x].

Proof of Lemma 3. Let z be as in Lemma 8. By Lemma 6, the quantity Ln,x(y) is equal

to L|z|,0(z). By Lemma 8, the joint distribution of

(
|z|, z

1− x

)
is the product measure

Bin(n, 1− x)×µ. The permutation associated with z is the same as that associated with
the dilation z/(1−x), whence the conditional distribution of Ψ(z) given |z| is uniform on
S|z|, which is enough fo prove the lemma.

4 Final remarks

The maximum of (1−x)(2+5x) on [0, 1] occurs at x = 3/10. Consequently the variance of
the length of the longest x-alternating sequence is maximized not at ordinary alternating
sequences (x = 0) but at 0.3-alternating sequences.

The asymptotics in Lemma 5 can be sharpened. Instead of tightness of the maximum
of a Brownian bridge, use tightness of the renomralized bridge statistic

max{X(t)/
√
t(1− t)| log(t(1− t))| : 0 6 t 6 1}.
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This allows us to replace x2 by k/n+min{n−1/3, C(n−k)1/2+ε} in Lemma 5. The estimate
in Theorem 2 then becomes a sharp asymptotic ELn,k ∼ (2/3)(n − k), uniform down to
n− k > (n− k)δ, where δ can be made arbitrarily small.

Note added in revision: We have heard (Richard Stanley, personal communication).
that Tommy Cai has a soon to be available preprint “Average maximal length of k-
alternating subsequences of permutations” in which Conjecture 1 is proved.
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