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Abstract. We prove that for every two convex polytopes P, Q ∈ R
d with vol(P ) = vol(Q),

there exists a continuous piecewise-linear (PL) volume-preserving map f : P → Q. The
result extends to general PL-manifolds. The proof is inexplicit and uses the corresponding
fact in the smooth category, proved by Moser in [Mo]. We conclude with various examples

and combinatorial applications.

Introduction

The study of piecewise-linear (PL–) manifolds and PL-homeomorphisms goes back to the
early days of topology, and blossomed in recent years in part due to modern advances in
combinatorics. The main result of this paper is the following theorem:

Theorem 1. Let M1,M2 ⊂ Rd be two PL-manifolds, possibly with boundary, which are PL-

homeomorphic and equipped with piecewise-constant volume forms ω1 and ω2. Suppose M1

and M2 have equal volume:
∫

M1

ω1 =
∫

M2

ω2. Then there exists a volume-preserving PL-

homeomorphism f : M1 → M2, i.e. a map f satisfying f∗(ω2) = ω1.

Here by a PL-manifold we mean a topological space, obtained by gluing polytopes in Rd

along some of their facets, and which is locally PL-homeomorphic to Rd [Br, RS]. We may
assume that the volume form is inherited from the standard volume form in Rd. The result also
holds for PL-pseudomanifolds. Note that it is nontrivial even for d = 2. We were motivated by
the following application to convex polytopes:

Theorem 2. Let P,Q ⊂ Rd be two convex polytopes of equal volume: vol(P ) = vol(Q). Then

there exists a one-to-one map f : P → Q, which is continuous, piecewise-linear and volume-

preserving. Moreover, if both P and Q are rational, then f can be also made rational.

Here by rational polytopes and rational maps we mean polytopes and maps defined over Q.

One can think of Theorem 2 as of a modified version of Hilbert’s Third Problem, which asks
whether every two polytopes P,Q ⊂ Rd of equal volume are scissor-equivalent, i.e. whether
there exists polyhedral subdivisions P = ∪k

i=1Pi and Q = ∪k
i=1Qi such that Pi can be moved

into Qi by a Euclidean motion [Bo]. The problem was resolved negatively by Dehn who proposed
an invariant of polytopes for d = 3. In a special case the invariant implies that cube and regular
tetrahedron of equal volume are not scissor-equivalent. Much later Sydler proved that Dehn’s
invariant is in fact the only obstacle. Namely, any two convex polytopes with same volume
and same Dehn invariant are scissor equivalent. While the situation remains similar for d = 4,
in higher dimension there are additional (Hadwiger) invariants and proving the analogue of
Sydler’s result remains an important open problem [Car].

Now, the maps considered in Theorem 2 are less restrictive in one direction, and more restric-
tive in the other. We allow here all volume-preserving affine linear transformations between Pi
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and Qi, not just Euclidean motions. On the other hand, we add the condition of continuity on
the map f , which amounts to saying that the common faces Pi ∩ Pj have to be mapped into
faces Qi ∩ Qj .

It is instructive to ask what happens when either of the three conditions in Theorem 2
is omitted: the map f is continuous, piecewise-linear, and volume-reserving. Without the
continuity the result is straightforward. Indeed, without loss of generality we can assume that
vol(P ) = vol(Q) = 1. Consider any two simplicial subdivisions P = ∪m

i=1Pi, Q = ∪n
j=1Qj , and

let αi = vol(Pi), βj = vol(Qj). Subdivide further each of these simplices into smaller simplices:
Pi = ∪n

j=1Pij , Qj = ∪m
i=1Qij , such that vol(Pij) = vol(Qij) = αiβj . Since every simplex Pij

can be mapped into simplex Qij by a volume-preserving map, this implies the claim.
When the volume-preserving condition is omitted, the result is the starting point of our

proof; this simplified version is established in Lemma 1.1. On the other hand, if piecewise-
linearity is substituted with smoothness, the claim in the Theorem 2 becomes a corollary of a
well known result of Moser [Mo]. This result is another ingredient in our proof, and will be
stated in Section 2. The use of Moser’s theorem is one of the inexplicit parts in our otherwise
rather explicit construction of the desired map f between polytopes. Let us also emphasize the
importance of smoothness in the proof of Moser’s theorem—it is used later in the construction
of the desired map.

Notation. Throughout the paper we refer to simplices by their vertices, i.e. (v0, . . . , vd) ⊂
Rd is a d-dimensional simplex.

1. Piecewise-linear maps

We begin with a preliminary result which reduces the first part of Theorem 2 to Theorem 1.
The following lemma is very natural, but we were unable to find it in the literature.

Let P,Q ⊂ Rd be two convex polytopes. Recall that a map f : P → Q is piecewise-linear (PL)
if there exists a simplicial subdivisions P = ∪n

r=1Pr and Q = ∪n
r=1Qn, such that Qr = f(Pr)

and the map f is linear on each Pr.

Lemma 1.1. For any two convex polytopes P,Q ⊂ Rd there exists a PL-homeomorphism f :
P → Q.

Proof. We can assume that P,Q are simplicial; otherwise subdivide each facet into simplices.
We can also assume that the origin O ∈ Rd lies in the interior of both polytopes: O ∈ P,Q.

Now, consider the simplicial fan F = ∪m
i=1Fi ∈ Rd defined as the union of infinite cones Fi

which start at O and span over the facet simplices. Similarly, consider a fan G = ∪n
j=1Gi ∈ Rd

over facet simplices of Q. Let C be the ‘union fan’ which consists of cones Fi ∩ Gj , and

denote by C̃ = ∪rC̃r a simplicial subdivision of C. Finally, define simplicial subdivisions

P = ∪rPr, Q = ∪rQr by intersecting the fan C̃ with the polytopes P and Q: Pr = P ∩ C̃r,

Qr = Q ∩ C̃r.
Fix r and consider the simplices Pr and Qr. Denote by v1, . . . , vd and w1, . . . , wd their vertices

other than O. From above, wi = αivi, for some α1, . . . , αd > 0. Now define a piecewise-linear
map f : P → Q, which is linear on each Pr and maps Pr into Qr:

f :
∑

xivi 7→
∑

xiwi , where xi ≥ 0.

The map f is clearly continuous and invertible. �

The 2-dimensional example in Figure 1 illustrates the construction of the PL-map in Lemma 1.1.
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Figure 1. The polytope P with its fan F , the polytope Q with its fan G, the

union fan C = C̃, and the PL-homeomorphism f : P → Q.

Remark 1.2. Let us mention here that there exist homeomorphic polyhedra which are not
PL-homeomorphic. The first such example was constructed by Milnor [Mi]. We refer to [Br,
§9] for further references and related results.

2. Volume-preserving maps

In this section we ‘sacrifice’ the linearity condition (by ‘downgrading’ it to smoothness) in
favor of the volume-preserving condition; we will get back piecewise-linearity in section 4. We
start with a number of definitions and an important technical result.

Let P,Q ⊂ Rd be two convex polytopes. We say that a homeomorphism f : P → Q
is piecewise-smooth if there exists a simplicial subdivision P = ∪n

r=1Pr, such that map f is
continuous and smooth on each Pr. Note that this definition is asymmetric: if f : P → Q is
piecewise-smooth, this does not necessarily imply that f−1 : Q → P is piecewise-smooth.

Consider the standard volume form ω◦ = dx1 ∧ · · · ∧ dxd, so that vol(X) =
∫

X
ω◦ for all

X ⊂ P . A general volume form can written as

(?) ω = ξ(x1, . . . , xd) dx1 ∧ · · · ∧ dxd , where ξ(·) > 0.

To every piecewise-smooth map f : P → Q as above corresponds a pull back volume form
f∗(ω◦) on P defined by (?), with

ξ(x1, . . . , xd) :=

∣∣∣∣det

(
∂fi

dxi

)∣∣∣∣ .

We say that a smooth map f = (f1, . . . , fd) : X → Y , where X,Y ⊂ Rd, is volume-preserving

at x = (x1, . . . , xd) ∈ X if the Jacobian ξ(x1, . . . , xd) is equal to 1. We say that f is volume-

preserving if f is volume-preserving at every x ∈ X where the above Jacobian is defined.
Let P,Q ⊂ Rd be two convex polytopes, and let ∂P denote the boundary of P . Denote by

(∂P )ε the set of points x ∈ P which are at a distance ≤ ε from ∂P . We say that two functions
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f, g on P are equal near the boundary ∂P if there exists ε > 0 such that f(x) = g(x) for all
x ∈ (∂X)ε. Similarly, a (piecewise-) smooth map f : P → Q is volume-preserving near the

boundary if there exists ε > 0 such that f ∗(ω◦) = ω◦ in (∂X)ε. In other words, the function f
is volume preserving at all x ∈ (∂X)ε.

Lemma 2.1. Let ∆1,∆2 ⊂ Rd be two simplices. Then there exists a continuous piecewise-

smooth homeomorphism f : ∆1 → ∆2 which is volume-preserving near the boundary, linear on

the boundary, and such that f∗(ω◦) is smooth.

The proof of the lemma is technical and somewhat involved. It is postponed until Section 6
so as to separate it from the main ideas of the paper.

Lemma 2.2. Let P,Q ⊂ Rd be two convex polytopes. Then there exists a continuous piecewise-

smooth homeomorphism f : P → Q which is volume-preserving near the boundary ∂P , and such

that f∗(ω) is a smooth everywhere non-zero volume form.

Proof. By Lemma 1.1 there exists a simplicial subdivision P = ∪rPr and a piecewise-linear
map f : P → Q which is linear on Pr. By Lemma 2.1 each linear map f = fr : Pr → Qr can be
replaced by a continuous piecewise-smooth map gr : Pr → Qr which is volume-preserving near
the boundary ∂Pr. Define g : P → Q by gr on Pr. By continuity and since ∂P ⊂ ∪r∂Pr, we
conclude that g is as desired. �

The following is the key result which enables us to extend the volume-preserving condition
to the whole domain. It is applied to polytopes in Lemma 2.4 below, to obtain a continuous
piecewise-smooth volume-preserving map f : P → Q.

Lemma 2.3 (Moser’s Theorem). Let P ⊂ Rd be a convex polytope, let ω◦ be the standard

volume form, and let ω be a volume form which satisfies
∫

P
ω = vol(P ). Assume that ω = ω◦

near the boundary ∂P . Then there exists a smooth map g : P → P which is equal to identity

map IdP near the boundary ∂P , and such that ω = g∗(ω◦).

The lemma is a special case of the the main theorem in [Mo]. For completeness and for the
reader’s convenience, we present a short proof below.

Proof. Let us prove a slightly more general statement: for every two volume forms ω0, ω1

such that
∫

P
ω0 =

∫
P

ω1 and ω0 = ω1 near ∂P , there exists a smooth map g : P → P such
that ω1 = g∗(ω0) and g = Id near the boundary ∂P .

Since
∫

P
(ω1 −ω0) = 0, the form ω1 −ω0 represents zero in the relative de Rham cohomology

group Hd
DR(P, ∂P ) ' R. Take a form α ∈ Ωd−1(P, ∂P ) satisfying dα = ω1 − ω0. For t ∈ [0, 1],

let ωt := t ω1 + (1 − t)ω0, and let vt be the unique vector field satisfying ιvt
ωt = α. Since α

is zero near the boundary ∂P , then so is the vector field vt. Integrating (the time dependent)
vector field vt we obtain a flow Φ : P × [0, 1] → P . Let us show that

Φ∗
t (ω0) = ωt , where Φt := Φ(·, t).

Indeed,
d

dt
ωt = ω1 − ω0 = dα = dιvt

ωt

and
d

dt
Φ∗

t (ω0) = Lvt
Φ∗

t (ω0) = dιvt
Φ∗

t (ω0) + ιvt
d Φ∗

t (ω0) = dιvt
Φ∗

t (ω0).

Since both Φ∗
t (ω0) and and ωt are solutions to the same differential equations d

dt
νt = dιvt

νt and
satisfy the same initial conditions ν0 = ω0, they are equal. Since vt = 0 near the boundary ∂P ,
we have Φt =Id near ∂P . Letting g := Φ1 gives the desired map. �
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Lemma 2.4. Let P,Q ⊂ Rd be two convex polytopes of equal volume: vol(P ) = vol(Q). Then

there exists a piecewise-smooth volume-preserving homeomorphism f : P → Q.

Proof. Lemma 2.2 gives a continuous map f : P → Q which is piecewise-smooth and volume-
preserving near the boundary ∂P . Since vol(P ) = vol(Q), the corresponding volume form ω1 =
(f−1)∗(ω◦) on Q satisfies the conditions of Lemma 2.3. The lemma now gives a smooth map g :
Q → Q such that ω1 = g∗(ω◦) on P . Therefore, the composition g ◦ f : P → Q is the desired
piecewise-smooth volume-preserving map. �

3. Smooth triangulations

In this section we refine the smooth triangulation obtained as the image of the piecewise-
smooth map and construct a PL-map which is ‘nearly volume preserving’ (see Lemma 3.1
below).

A smooth simplex T ⊂ Rd is defined as the image of a simplex ∆ = (u0, u1, . . . , ud) ⊂ Rd

under a smooth embedding σ. Usually, we will take σ to be part of the data of a smooth
simplex. We shall speak of i-dimensional faces of T , defined as images of the i-dimensional
faces in ∆. As in the case of simplices, faces correspond to subsets of the vertices of T .

By analogy with simplicial subdivisions, we define a smooth triangulation of a polytope P
to be a subdivision P = ∪rTr, where Tr are smooth simplices, and Tr ∩ Tj are faces of Tr, Tj .

We also require that σrσ
−1
j be linear on the face of ∆ on which it’s defined. We say that a

triangulation P = ∪N
j=1T ′

j refines a triangulation P = ∪rTr if every smooth simplex Tr has a
triangulation Tr = ∪j∈S(r)T

′
j , for some subset S(r) ⊂ {1, . . . , N} of the set of smooth simplices.

We say that a smooth triangulation P = ∪n
r=1Tr and a simplicial subdivision P = ∪n

r=1Pr

are aligned if the vertices of Tr coincide with the vertices of Pr, for all 1 ≤ r ≤ n. An example
is given in Figure 2.

Now consider a homotopy h : P × [0, 1] → P such that h(·, 0) is the identity map and h(·, 1)
maps the faces of Pr into the corresponding faces of Tr, for all r. One can think of h as of a
homotopy between the above simplicial subdivision and the smooth triangulation. Of course,
the homotopy h is not uniquely defined; to avoid this ambiguity we will use the following
construction. By definition, for every r, 1 ≤ r ≤ n, we have a smooth map σr : ∆ → Tr, where
∆ = (u0, . . . , ud) is a d-dimensional simplex. We let τr : ∆ → Pr be the unique linear map that
sends ui to σ(ui). The maps γr = σr ◦ τ−1

r assemble to a map γ : P → P that maps Pr into Tr.
Now set h to be the straight line homotopy :

h(x, t) := (1 − t)x + t γ(x), for all x ∈ P, t ∈ [0, 1].

Fix an orientation on all (d − 1)-dimensional faces F in the subdivision P = ∪rPr. Given
our homotopy h : P × [0, 1] → P as above, we let AF := h

(
F, [0, 1]

)
be the segment between

the face F and the corresponding face of the smooth triangulation.
Denote by aF := vol(AF ) the algebraic volume of the segment, i.e. the volume taken with

sign depending on the orientation. Note that the volume aF becomes −aF if one changes the
orientation of F . For example, if F = (v1, v3) as in Figure 3, then aF is the area of the shaded
segment between v1 and v3. Similarly, if F = (v3, v5), then aF is the sum of the areas of the
first and third shaded segments between v3 and v5, minus the middle segment. Clearly,

vol(Tr) = vol(Pr) +
∑

F⊂Pr

ε(F, Pr) aF ,

where ε(F, Pr) = 1 if the orientation of F ⊂ Pr is induced by that of Pr, and ε(F, Pr) = −1
otherwise.
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Figure 2. Aligned smooth triangulation and simplicial subdivision of a hexagon.PSfrag replacements
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Figure 3. The straight line homotopy between a smooth triangulation and
the corresponding aligned simplicial subdivision in two and three dimensions.

Lemma 3.1. Let P = ∪m
r=1Tr be a smooth triangulation of a convex polytope P . Then there

exists a smooth triangulation P = ∪N
j=1Rj and a simplicial subdivision P = ∪N

j=1Pj such that:

i) the triangulation P = ∪jRj is aligned with the subdivision P = ∪jPj,

ii) the triangulation P = ∪jRj refines the triangulation P = ∪rTr,

iii) |aF | < 1
d+1 vol(Pr), for all F ⊂ Pr and 1 ≤ r ≤ N .

Before proving Lemma 3.1, we will need the following technical result which will enable us
to bound the volume |aF |.

Let P = (u0, . . . , ud) ⊂ Rd be a simplex and let f : P → Rn be a continuous map. Denote by
‖f‖∞ = maxx∈P |f(x)| the sup norm of f . Define the aligned linear map g to be the unique
linear map g : Rd → Rd satisfying g(ui) = f(ui), for all 0 ≤ i ≤ d.

Lemma 3.2. Let P = (u0, . . . , ud) ⊂ Rd be a simplex, let f : P → Rn be a smooth map, and

let g be the corresponding aligned linear map. Then there exists a constant C = C(d, n) such

that the distance |f(x)− g(x)| in Rn is smaller than C · ‖f ′′‖∞ · δ(P )2, where δ(P ) denotes the

diameter of P .

Proof. We show that C = dn satisfies conditions of the lemma. If d = n = 1, then P = [a, b],
and after replacing of f by f − g and g by 0, we may assume that f(a) = f(b) = 0. We
need to show that |f(x)| ≤ ‖f ′′‖∞ · (b − a)2. Let x◦ ∈ [a, b] be such that |f(x◦)| is maximal.
Clearly, f ′(x◦) = 0. Given another point x ∈ [a, b], we can bound

|f ′(x)| ≤ ‖f ′′‖∞ · |x − x◦| ≤ ‖f ′′‖∞ · (b − a).

Therefore, ‖f ′‖∞ ≤ ‖f ′′‖∞ · (b − a). Repeating this a second time we have:

|f(x)| ≤ ‖f ′‖∞ · (x − a) ≤ ‖f ′′‖∞ · (b − a)2,

exactly what we wanted to show.
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If d = 1 and n is arbitrary, then

|f(x) − g(x)|Rn ≤
n∑

i=1

|fi(x) − gi(x)|R ≤ n · ‖f ′′‖∞ · (b − a)2.

Therefore, C = n is as desired.
Finally, if d is arbitrary, we proceed by induction. Let x be a point in P , and let y be the

point of intersection of the line (x, ud) with the facet F = (u0, . . . , ud−1). Denote by ` the
segment (u0, y) and by g̃ the linear map g̃ : ` → Rn defined by g̃(u0) = f(u0) and g̃(y) = f(y).
By the triangle inequality, we have

|f(x) − g(x)| ≤ |f(x) − g̃(x)| + |g̃(x) − g(x)|.

Applying the d = 1 case to `, the first term is bounded as |f(x)− g̃(x)| ≤ n · ‖f ′′‖∞ · δ(`). Now,
applying the induction hypothesis to F , we get

|g̃(y) − g(y)| = |f(y) − g(y)| ≤ (d − 1)n · ‖f ′′‖∞ · δ(F ).

But clearly |g̃(x) − g(x)| ≤ |g̃(y) − g(y)| since both g̃ and g are linear maps, and they agree on
one of the endpoints of the interval `. Putting all these inequalities together, we conclude:

|f(x) − g(x)| ≤ n · ‖f ′′‖∞ · δ(`) + (d − 1)n · ‖f ′′‖∞ · δ(F ) ≤ dn · ‖f ′′‖∞ · δ(P ).

This completes the proof of the lemma. �

An illustration of Lemma 3.1 when d = 2 is given in Figure 4. The second picture in the
figure shows a special case of Lemma 3.2 when d = 1, n = 2, and the image f(P ) is an arc of a
circle of radius R. Here we can compute ε = R

(
1−cos(θ)

)
< R θ2 and δ(P ) = 2R sin(θ) > R θ.

Now we check that

ε < R θ2 =
1

R
(R θ2) < 1 ·

1

R
· δ(P )2.

Therefore, we can take the constant C = 1 in this case.

PSfrag replacements
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Figure 4. The distance between a smooth simplex and the corresponding
aligned simplex.

Proof of Lemma 3.1. Note first that given the smooth triangulation P = ∪N
j=1Rj , there exists a

unique aligned simplicial subdivision P = ∪N
j=1Pj simply because they share the same vertices.

Similarly, the smooth triangulation determines the straight line homotopy h, which determine

the values aF as above. Below we construct a family of smooth triangulations P = ∪jR
(n)
j , for

all n ≥ 1, and let P = ∪jP
(n)
j and hn be the corresponding simplicial subdivisions and straight

line homotopies. We then show that for for n large enough the resulting smooth triangulations

P = ∪jR
(n)
j and simplicial subdivision P = ∪jP

(n)
j satisfy the conditions of the lemma.
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We need a preliminary construction. Start with the family of hyperplanes in Rd+1 given by
the equations xi = a

n
, for all a ∈ Z and 0 ≤ i ≤ d. They define a polyhedral subdivision of the

standard simplex ∆d (see above), where each polyhedron is a 1
n

scaled copy of a hypersimplex :

∆d
k =

{
x ∈ Rd+1 | 0 ≤ x0, . . . , xd ≤ 1, x0 + . . . + xd = k

}
, where 1 ≤ k ≤ d.

When k = 1 and k = d we obtain the (usual) simplices. Denote by Σn the simplicial subdivision
of ∆d given by the barycentric subdivision of these hypersimplices. From above, these simplicial
subdivisions comprise of copies of a finite number B = B(d) different types of simplices, each
of them scaled by 1

n
.

PSfrag replacements
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Figure 5. The step-by-step construction of the subdivision Σ3 for d = 2, and
its image under σr.

Now, take each simplex σr : ∆d → Tr in the given smooth triangulation and subdivide the
standard simplex ∆d according to Σn. The image of Σn by σr gives a smooth triangulation
of Tr; the union of these triangulations over all r is the desired smooth triangulation P =

∪
N(n)
j=1 R

(n)
j . The conditions i) and ii) follow from our construction, and we only need to check

the inequalities iii) which hold for n large enough. Denote αj,F := |aF |/vol(P
(n)
j ), and let us

show that
(>) max

(j,F )
αj,F → 0 as n → ∞.

Since the dimension d is fixed, for n large enough this maximum is < 1
d+1 , as desired.

Recall that there exists only a finite number of types of d-dimensional simplices in Σn.
Since P is compact and the maps σr are smooth, we conclude that there exists a constant C > 0
independent on n, such that

vol(P
(n)
j ) > C

(
1

n

)d

, for all 1 ≤ j ≤ N(n).

In a different direction, there exists a constant c > 0 independent on n, such that

vol(F ) < c

(
1

n

)d−1

, for all facets F ⊂ P
(n)
j and 1 ≤ j ≤ N(n).

Since h is the straight line homotopy, observe that for every such F we have:

|aF | ≤ vol(F ) · max
x∈F

∣∣γ(x) − x
∣∣,

where γ(x) = h(x, 1) is as above. Since the curvature of R
(n)
j is bounded and independent on n,

by Lemma 3.2, we can bound the distance on the r.h.s. by D/n2, for some constant D > 0
independent on n. We conclude:

max
(j,F )

αj,F ≤ max
(j,F )

vol(F ) · maxx∈F

∣∣γ(x) − x
∣∣

vol(P
(n)
j )

<
c
(

1
n

)d−1
· D
(

1
n2

)

C
(

1
n

)d = O

(
1

n

)
.

This implies (>) and completes the proof. �



VOLUME-PRESERVING PL-MAPS BETWEEN POLYHEDRA 9

Remark 3.3. The reasoning behind the technical conditions in Lemma 3.1, especially prop-
erty iii) will be clear in the next section. Of course, one can sharpen iii) to any fraction
independent on n, but the bound in the lemma suffices for our arguments.

Let us note also that the subdivisions Σn cannot be replaced with the more natural choice of
the iterated barycentric subdivision since the latter contains a number of of different simplices
which grows with n. In the case d = 2, all hypersimplices are in fact simplices and we could
have spared the barycentric subdivision, but it will definitely be needed for d ≥ 3.

4. Construction of the map

We start with two lemmas which are ingredients in the construction of the desired map. The
map itself is explicitly constructed in Lemma 4.3 out of the smooth triangulation produced in
Lemma 3.1.

Lemma 4.1. Let ∆ = (v0, . . . , vd) ⊂ Rd be a d-dimensional simplex, and let α0, . . . , αd > 0
satisfy α0 + . . . + αd = vol(∆). Then there exists a point z ∈ ∆ such that the volumes of

simplices

vol(v0, . . . , vi−1, z, vi+1, . . . , vd) = αi , for all 0 ≤ i ≤ d.

Proof. In vector notation, let z := (α0v0 + . . . + αdvd)/vol(∆) be the weighted barycenter of ∆.
It is straightforward to check that z is as desired. �

A d-dimensional bipyramid is a union of two d-dimensional simplices joined by a facet. A
vertex is called simple if it has exactly d edges leaving it. Clearly, a bipyramid has exactly two
simple vertices. Note also that a bipyramid is not necessarily convex.

Lemma 4.2. Let P,Q ⊂ Rd be two d-dimensional bipyramids of equal volume: vol(P ) = vol(Q).
Let u1, u2, x1, . . . , xd and v1, v2, y1, . . . , yd be the vertices of P and Q respectively, where u1, u2

and v1, v2 are the simple vertices. Then there exists a continuous piecewise-linear volume-

reserving map f : P → Q which is linear on the facets and which sends ui to vi and xi to

yi.

Proof. Use a volume-preserving linear transformation of Rd to map the vertices x1, . . . , xd into
the vertices x′

1, . . . , x
′
d of a regular (d − 1)-dimensional simplex S. Denote by z the barycenter

of S, and by ` the line going through z and orthogonal to S. Let u′
1 and u′

2 be the orthog-
onal projections of u1 and u2 onto `. Apply the volume-preserving linear map (u1, x

′
1, . . . , x

′
d) →

(u′
1, x

′
1, . . . , x

′
d) which fixes S and sends u1 to u′

1. Similarly, map (u2, x
′
1, . . . , x

′
d) to (u′

2, x
′
1, . . . , x

′
d).

The resulting bipyramid is now symmetric with respect to the diagonal ` = (u′
1, u

′
2). Therefore,

the simplices A1 = (u1, u2, x2, . . . , xd), A2 = (u1, u2, x1, x3 . . . , xd), . . . , Ad = (u1, u2, x1, . . . , xd−1)
are all of equal volumes. They each contain the edge `, and form a simplicial subdivision
P ′ = ∪d

i=1Ai.
Now, apply the analogue piecewise-linear transformations to Q, to obtain a simplicial subdivi-

sion Q′ = ∪d
i=1Bi, where all simplices Bi contain an edge `′ = (v′

1, v
′
2). There is a natural linear

transformation fi : Ai → Bi which maps ` → `′ by sending u′
1 to v′

1 and u′
2 to v′

2, and maps
the boundary of P ′ into the boundary of Q′. Since vol(Ai) = vol(Bi), these maps are volume-
preserving and combine into a continuous piecewise-linear volume-preserving map f : P ′ → Q′

(see Figure 6). Composing f with the maps P → P ′ and Q′ → Q gives the desired map. �

We are now ready to present the final construction of our map. Roughly speaking, we take the
‘nearly volume-preserving’ map obtained from Lemma 3.1 and ‘correct’ it using the ‘bipyramid
maps’ of Lemma 4.2 to obtain an ‘honest’ volume-preserving, piecewise-linear map.
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Figure 6. The map f : P ′ → Q′, where P = A1 ∪ A2 ∪ A3 and Q′ = B1 ∪ B2 ∪ B3.

Lemma 4.3. Let P,Q ⊂ Rd be two convex polytopes, and let P = ∪n
r=1Pr, Q = ∪n

r=1Qr be

simplicial subdivisions. Suppose f : P → Q is a PL-homeomorphism, which is linear on the

simplices: f : Pr → Qr, for all 1 ≤ r ≤ n. In addition, assume there exist numbers aF ∈ R, for

all oriented (d − 1)-dimensional faces F ⊂ Pr, which satisfy:

i) aF = −aF , where F is obtained from F by changing the orientation,

ii) aF = 0 for all F ⊂ ∂P ,

iii) vol(Qr) = vol(Pr) +
∑

F⊂Pr
aF , where the orientation of F is induced by the orientation

of Pr,

iv) |aF | < 1
d+1 vol(Pr), for all F ⊂ Pr and 1 ≤ r ≤ n.

Then there exists a volume-preserving PL-homeomorphism g : P → Q.

Proof. Let zr denote the barycenter of Pr. Let P = ∪r,F Pr,F be a simplicial subdivision
obtained by letting Pr,F be the convex hull of zr and F , where F is a facet in Pr. For each
Pr, we have a decomposition Pr = ∪F Pr,F in d + 1 simplices of equal volume. Similarly, let
Q = ∪r,G Qr,G be a simplicial subdivision obtained by using some point z ′

r ∈ Qr and letting
Qr,G be the convex hull of z′r and G, where G is a facet in Qr. We again have Qr = ∪GQr,G

but this time the Qr,G are not of equal volume. Instead we ask that

(#) vol(Qr,G) =
1

d + 1
vol(Pr) + aF ,

where G is a facet in Qr, and F = f−1(G) is its preimage under f . The existence of a point z′
r

that guarantees (#) is given by Lemma 4.1. Indeed, condition iv) implies that this volume is
nonnegative, and condition iii) gives

∑

G⊂Qr

vol
(
Qr,G

)
= vol(Qr).

For every facet F ⊂ Pr ∩ ∂P and G = f(F ) ⊂ Qr ∩ ∂Q, condition ii) implies that vol(Pr,F ) =
vol(Qr,G). There is a natural linear volume-preserving map g : Pr,F → Qr,G, such that G =
f(F ), and the map g maps facets R ⊂ Pr,F into the corresponding facets f(R) ⊂ Qr,G.

Now, for every (d − 1)-dimensional face F which is a facet of two simplices Pr, Ps, i.e.

F = Pr ∩ Ps, consider the bipyramid P̂F := Pr,F ∪ Ps,F . Similarly, for a facet G = f(F )

consider the bipyramid Q̂G := Qr,G ∪ Qs,G. Condition i) implies that the volumes of these



VOLUME-PRESERVING PL-MAPS BETWEEN POLYHEDRA 11

bipyramids are equal:

vol
(
Q̂G

)
= vol

(
Qr,G

)
+ vol

(
Qs,G

)
=
(
vol
(
Pr,F

)
+ aF

)
+
(
vol
(
Ps,F

)
− aF

)

= vol
(
Pr,F

)
+ vol

(
Ps,F

)
= vol

(
P̂F

)
.

Therefore, by Lemma 4.2, there exists a continuous piecewise-linear volume-reserving map g :

P̂F → Q̂G which is linear on the corresponding facets. Taking all these maps g together,
we obtain the desired construction of a continuous piecewise-linear volume-preserving map
g : P → Q. �

Example 4.4. Consider the two pentagons P,Q shown in Figure 7. Here vol(P1) = 5, vol(P2) =
8, vol(P3) = 7, and vol(Q1) = 6, vol(Q2) = 8, vol(Q3) = 6. Thus the pentagons have equal
area: vol(P ) = vol(Q) = 20. Fix orientations of the facets F, F ′ ⊂ P2 according to P2. We have
aF = −1, while aF ′ = 1, and all conditions of Lemma 4.3 are satisfied. We first construct the
subdivisions of the Pi using their barycenter, and the subdivisions of the Qi using a weighted
barycenter (see Figure 7). Following the proof of Lemma 4.2, construct separately the piecewise-

linear maps between bipyramids g : P̂F → Q̂F and g : P̂F ′ → Q̂F ′ . The final map g : P → Q
constructed in the proof above is shown in the Figure 7. Here the corresponding bipyramids
(which are 4-gons on a plane) and boundary simplices are shaded similarly.

PSfrag replacements P1

P2

P3

Q1 Q2

Q3

g

F F ′ G
G′

P̂F P̂F ′ Q̂F

Q̂F ′

Figure 7. A continuous piecewise-linear volume-preserving map g : P → Q,

where P = P1∪P2∪P3, Q = Q1∪Q2∪Q3, which maps the bipyramids P̂F , P̂F ′

into the bipyramids Q̂F , Q̂F ′ , respectively.
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5. Proof of Theorems

Proof of Theorem 2. The first part of the theorem can be deduced from the lemmas as
follows. Given two polytopes P,Q ⊂ Rd, use Lemma 2.4 to construct a piecewise-smooth
volume-preserving map g : P → Q. The map produces a smooth triangulation Q = ∪iTi

of the polytope Q. Use Lemma 3.1 to obtain a refinement Q = ∪jRj such that the aligned
polyhedral subdivision Q = ∪jQj satisfies inequalities iii) in the lemma. Now consider the
simplicial subdivision P = ∪jPj by taking preimages: Pj = g−1(Rj). Define a continuous
piecewise-linear map f : P → Q by letting f(Pj) = Qj , for all j. By Lemma 3.1, the map f
satisfies conditions in the Lemma 4.3, which implies the result.

For the second part, observe that the construction in Lemma 4.3 gives a rational map g,
if the simplicial subdivisions and the map f are rational. One the other hand, the simplicial
subdivision produced by Lemma 3.1 is not necessarily rational. To correct this, simply move
all its vertices within a small neighborhood to make them rational; whenever they lie on faces
of the polytope, use the fact that the polytope is rational to make sure these new vertices are
rational and still lie in these faces. We can always do this so that the inequalities iii) remain
valid. Putting everything together as above, implies the second part of the theorem. �

Proof of Theorem 1. Much of the proof follows verbatim the proof of of Theorem 2, by
substituting PL-manifolds (or pseudomanifolds) M1,M2 in place of convex polytopes P,Q.

Let us first mention that we no longer need Lemma 1.1 since we already assume that the PL-
manifolds M1,M2 are PL-homeomorphic. Also, importantly, before applying Moser’s Theorem,
we need to pick a smooth structure on the complement of the (d−2)-skeleton of our PL-manifold.
The rest of the proof of the theorem follows verbatim and the changes are straightforward. �

6. Proof of Lemma 2.1

We deduce the lemma from the following stronger result, which in turn is proved by induction
on the dimension d. Let B◦ = B − ∂B denote the interior of B.

Lemma 6.1. Let B ⊂ Rn be a convex polytope, and let λ : B → R>0 be a smooth function which

is equal to 1 near the boundary ∂B. Let π : Rd+n → Rn be the projection, and let E ⊂ Rd+n

be a convex polytope such that π restricts to a surjective map, π : E � B mapping faces onto

faces. Assume that the fibers π−1(b) over interior points b ∈ B◦ are d-dimensional simplices

and that d ≥ 1. Then there exists a continuous piecewise-smooth homeomorphism f : E → E
such that:

1) f preserves the fibers of π,

2) f fixes the boundary ∂E,

3) f = Id near the fibers π−1(∂B),
4) f∗(ω◦) = λ(b) · ω◦ near ∂E,

5) f∗(ω◦) is smooth and everywhere non-zero.

The conditions of the lemma are illustrated in Figure 8 below.

Let us first deduce Lemma 2.1 from Lemma 6.1, and then prove Lemma 6.1.

Proof of Lemma 2.1. In Lemma 6.1, let n = 0, and the polytope B consist of a single
point p. Note that ∂B = ∅. Let E = P , and λ(p) = vol(P )/vol(Q). The lemma now gives a
map g : P → P such that

g∗(ω◦) =
vol(P )

vol(Q)
· ω◦ near ∂P.
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Figure 8. The projection π : E → B.

Composing g with a natural linear map h : P → Q gives the desired map f = h ◦ g : P → Q,
which from above is volume-preserving near the boundary ∂P . The smoothness of f ∗(ω◦)
follows immediately from the corresponding property of g. �

A careful analysis of the proof of Lemma 6.1 shows that the map f is smooth on the simplices
of the barycentric subdivision of P .

Proof of Lemma 6.1. We use induction on d. First, let us reduce the problem to the case
when E is a product P × B and P ⊂ Rd is a simplex containing the origin O in its interior.

Let ϕ : P × B → E be a continuous surjective maps such that the restriction to the fiber
ϕ|{b}×P → π(b) is linear, for every b ∈ B. It is smooth and admits an inverse, defined over the

interior of B, namely ϕ−1 : π−1(B◦) → P ×B. Assume that we have built a map f1 : P ×B →
P × B satisfying 1) to 5). Then it is easy to see that the unique continuous extension f of the
composition ϕ ◦ f1 ◦ ϕ−1 will also satisfy them.

We now assume that E = P × B, and O ∈ P . Let ρ : Sd−1 → R+ be the function whose
graph (in spherical coordinates) is the boundary of P . Formally, let ρ(θ) := |xθ| be the distance
from O to the point xθ ∈ ∂P whose projection on Sd−1 is θ.

Pick a diffeomorphism g : [0, 1] × B → [0, 1] × B satisfying:
i) g(r, b) = (r, b) near b ∈ ∂B,

ii) g(r, b) =
(

d

√
λ(b) r, b

)
near r = 0,

iii) g(r, b) =
(

d

√
λ(b) · (rd − 1) + 1, b

)
near r = 1.

We also assume that g preserves the fibers of [0, 1]×B → B and write g(r, b) = (gb(r), b). We
then let hb : P → P be defined by hb(r, θ) = ρ(θ) gb

(
r/ρ(θ)

)
, where θ ∈ Sd−1 and r ∈ [0, ρ(θ)]

are the spherical coordinates as above.

Define a map f̃ : E → E by f̃(r, θ, b) :=
(
hb(r, θ), θ, b

)
. It is straightforward to check that

f̃∗(ω◦) = λ(b) · ω◦ near the boundary ∂E. If the dimension d is 1, then the form f̃∗(ω◦) is
smooth and everywhere non-zero; this proves the base of our induction.

For the induction step, assume that d ≥ 2. We have

f̃∗(ω◦) =

[
hb(r, θ)

r

]d−1

·
∂

∂r
hb(r, θ) · ω◦ ,

but hb(r, θ) is not smooth in θ. The following argument shows how to ‘correct’ this problem.
Let {Fi} be set of facets of P , and let P = ∪iPi be the simplicial subdivision of the poly-

tope P , where each Pi is obtained as the convex hull of O and Fi (cf. proof of Lemma 4.3).
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Similarly, consider a polyhedral decomposition E = ∪iEi, where Ei = Pi × B. Observe that
the map qi : Ei → [0, 1] × B defined by qi(r, θ, b) =

(
r/ρ(θ), b

)
is linear and its fibers are

(d − 1)-simplices. Indeed, restricted to P , the map (r, θ) 7→ r/ρ(θ) is just the linear functional
defining Fi. The fibers of qi are the same as the fibers of (r, θ) 7→ r/ρ(θ) : Pi → [0, 1], they are
the various homotetic images of Fi.

We can now apply our induction hypothesis to the case B̂ = [0, 1] × B, Ê = Ei, π̂ = qi and

λ̂(b, t) =
λ(b) td−1

gb(t)d−1 g′b(t)
,

to obtain a map f̂i : Ei → Ei. By induction assumption, the map f̂ is piecewise-smooth and

commutes with the projection to B and with the the function r/ρ(θ). Namely π ◦ f̂ = π and

f̂∗(r/ρ(θ)) = r/ρ(θ). It fixes the boundary of Ei and satisfies

(
f̂i

)∗
(ω◦) =

λ(b)
(
r/ρ(θ)

)d−1

gb

(
r/ρ(θ)

)d−1
g′b
(
r/ρ(θ)

) · ω◦

near the boundary ∂Ei. Putting together all maps f̂i we obtain a continuous piecewise-smooth

homeomorphism f̂ : E → E. Clearly, the boundary ∂E consists of points (x, b) ∈ P ×B, x ∈ P ,
b ∈ B, such that either b ∈ ∂B or (in the spherical coordinates of x) r/ρ(θ) = 1. Therefore, the

inductive assumption implies f̂ =Id near the boundary ∂E.

Define f := f̃ ◦ f̂ . The map f preserves the fibers of π and fixes the boundary ∂E, since both

maps f̃ and f̂ do. Similarly, f∗(ω◦) = λ(b)·ω◦ near the boundary ∂E, since f̃∗(ω◦) = λ(b)·ω◦ and

f̂ =Id near ∂E. The fact that f∗(ω◦) is everywhere non-zero also follows form the corresponding

properties of f̃ and f̂ . It remains to check that f∗(ω◦) is smooth; we show this in the following
argument.

Let Σ ⊂ P be the cone over (d − 2)-skeleton of P (see Figure 9). The subset Σ × B ⊂ E is

exactly the locus where f̃∗(ω◦) is not smooth. It is also the locus where the different maps f̂i

were glued together. This implies that f ∗(ω◦) is smooth outside of Σ×B. For points in Σ×B
we compute:

f∗(ω◦) =(1) f̂∗
(
f̃∗(ω◦)

)
=(2) f̂∗

([
hb(r, θ)

r

]d−1

·
∂

∂r
hb(r, θ) · ω◦

)

=(3) f̂∗

(
gb

(
r/ρ(θ)

)d−1
g′b
(
r/ρ(θ)

)
(
r/ρ(θ)

)d−1
· ω◦

)

=(4)

gb

(
r/ρ(θ)

)d−1
g′b
(
r/ρ(θ)

)
(
r/ρ(θ)

)d−1
· f̂∗(ω◦)

=(5)

gb

(
r/ρ(θ)

)d−1
g′b
(
r/ρ(θ)

)
(
r/ρ(θ)

)d−1
·

λ(b) ·
(
r/ρ(θ)

)d−1

gb

(
r/ρ(θ)

)d−1
g′b
(
r/ρ(θ)

) · ω◦

=(6) λ(b) · ω◦ ,

where the fourth equality holds because f̂∗
(
r/ρ(θ)

)
= r/ρ(θ), and the fifth equality holds for

points near Σ × B. By assumption of the lemma, λ(b) is smooth, which implies that f ∗(ω◦) is
smooth and completes the proof. �

7. Two-dimensional case

It is instructive to consider what happens when d = 2 and obtain an explicit construction in
this case.
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Figure 9. Examples of cone Σ in two and three dimensions. In the second
case, only one of the six simplices is shaded.

For convex polygons P , Q the construction is easy. Given an n-gon P start with any vertex v
and consider a triangle formed by v and its neighbors u and w. Let z be the second neighboring
vertex of w (other than v). Now transform the triangle (uvw) into (uv′w) by shifting v along
the line parallel to (uw), such that v′ now lies on a line containing (wz). Keep the rest of the
polygon unchanged. We obtain a convex (n − 1)-gon P ′ (see Figure 10).

Proceed in this manner until P is mapped into a triangle: f1 : P → ∆1. Proceed similarly
with the polygon Q to obtain f2 : Q → ∆2. Since the resulting triangles ∆1,∆2 have the
same area, there exist a volume-preserving linear map g : ∆1 → ∆2. Now, the composition
h := f−1

2 ◦ g ◦ f1 gives the desired continuous piecewise-linear map h : P → Q.

PSfrag replacements v

u uw w

z z

v′

ζ

Figure 10. The map ζ : P → P ′.

Interestingly, already for nonconvex and not simply connected polygons Theorem 2 becomes
quite challenging. In fact, we do not know any easier solutions in these cases.

8. Final remarks and open problems

8.1. Variations on Hilbert’s Third Problem with modified sets of linear maps have been studied
before. See e.g. [Bo] for scissor equivalence under parallel translation (in two dimensions).
However, the continuity condition is somewhat contrary to the spirit of ‘scissor equivalence’
and has never been considered in this context.

Similarly, a large part of PL-topology deals with continuous PL-maps between polyhedra,
but it seems that the ‘differential geometry style’ idea of looking at volume-preserving maps
has never been studied in this context (see [Br]).
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8.2. In case of general convex bodies, continuous volume-preserving maps appear in connec-
tion with Monge’s mass transportation (optimal transportation) problems and Monge-Ampère
equations (see e.g. [Caf, FM]). The uniqueness of solutions in this case is especially intriguing
but seems to have no analogue in our (polyhedral) situation. In fact, the proof has a large
flexibility in the construction of the desired piecewise-linear map, which is not surprising in the
absence of a minimization functional.

Let us also mention the important Knothe map which is volume-preserving and upper trian-
gular [Kn]. It is used widely in convex analysis.

8.3. Symplectomorphisms have often been found to behave in a matter similar to volume-
preserving diffeomorphisms (see for example [Mo]). It would be interesting to know if two PL-
manifolds, equipped with piecewise constant symplectic forms, and which are symplectomorphic
via a piecewise smooth map, are also symplectomorphic via a PL map.

Let us emphasize the distinction between manifolds with and without boundary, as in the
former case Gromov showed the result to be negative [Gr]. In the language of polytopes, one
should require additional conditions on their geometry.

8.4. The results in this paper were motivated by combinatorial applications. In recent years it
was realized that many combinatorial bijections between Young tableaux, such as RSK corre-
spondence, Hillman-Grassl and jeu-de-taquin bijection, etc., can in fact be extended to contin-
uous piecewise-linear maps between convex polytopes. We refer to [KB, P, PV] for references
and details.

Following the previous notation, let us denote such polytopes by P and Q, and by f : P → Q
the map as above. The set of integral points E(X), E(Q) in polytopes P,Q are in natural
bijection with the corresponding sets of Young tableaux, and f maps E(X) to E(Q). In other
words, the map f preserves the integral lattice, and thus satisfies the conditions of Theorem 2.

It is natural to ask how special are these ‘combinatorial maps’, i.e. whether their existence
is in fact a delicate property of Young tableau bijections, or a general property of polytopes.
The results of this paper suggest the latter.

On the other hand, let us point out the fundamental differences between the constructions of
combinatorial maps and the maps produced in the proof of Theorem 2. The combinatorial maps
are obtained as a small number of explicit and relatively simple ‘large scale’ piecewise-linear
maps, each continuous and volume-preserving. This is in sharp contrast with the maps in this
paper which are inexplicit and ‘local’, but are defined directly (no compositions are needed). In
many ways, the combinatorial maps are closer in spirit to the maps defined in two-dimensional
case (Section 7). It would be interesting to formalize these differences.

Let us mention also that the above mentioned ‘combinatorial’ maps preserve the Ehrhart
(quasi-) polynomials of the polytopes. Extending the second part of Theorem 2 in this direction
is an interesting question.

8.5. An important paper [S] gives an interesting example of a continuous piecewise-linear
volume-preserving map between two polytopes associated with finite posets. The map in this
case is defined explicitly and ‘in one step’, and a number of combinatorial applications are
obtained by a ‘transfer’ of properties from one polytope to another.

8.6. For a piecewise-linear map f : P → Q between convex polytopes one can define the
complexity measure to be the number of simplices in the corresponding simplicial subdivi-
sions of P and Q (where the map f is linear). For any two polytopes P,Q of equal volume
let c(P,Q) be the minimum complexity measure over all continuous piecewise-linear volume-
reserving maps f : P → Q. Computing or at least finding sharp upper and lower bounds
on c(P,Q) is an interesting and challenging problem related to the geometry of polytopes and
motivated by combinatorial and computational applications.
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8.7. Finally, the existence of a continuous piecewise-linear volume-preserving map between
polytopes of equal volume raises a natural question of explicitly constructing one. There are
several ways to approach this problem: from a traditional ‘mathematical’ point of view as well
as a question in Computational Geometry (see [GO]). We believe that the non-combinatorial
proof of the Moser Theorem (Lemma 2.3) can be perhaps modified so that our construction
becomes explicit. On the other hand, we reserve the judgement whether our proof is really the
“proof from the book”—perhaps a radically different construction can avoid the complexity of
our approach.

In the spirit of Algebraic Complexity Theory, one can also ask for the lower bounds on the
algorithm producing the map as above. We refer to [BCS] for the related idea and references.
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