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Abstract

We prove that regular graphs with large degree and
small mixing time contain long paths and some other
families of graphs as subgraphs. We present then an
efficient algorithm for finding long paths. We apply the
results to size Ramsey numbers and self-avoiding walks
in graphs.

0. Introduction

Finding Hamilton paths in simple graphs is a clas-
sical NP-complete problem, known to be difficult both
theoretically and computationally (see e.g. [D, GJ, L1].)
In spite of recent advances, the problem presents an im-
minent scientific challenge.

In the past few years the problem was modi-
fied to that of computing the length of the longest
(self-avoiding) path, and on approximation of this
length [FMS, KMR].1 To quote Feder et al. [FMS]:
“[this is] one problem that resisted all attempts at de-
vising either positive or negative results... Essentially,
there is no known algorithm which guarantees approx-
imation ratio better than n/polylog(n), and there are
no hardness of approximation results that explain this
situation.” In such a poor state of art, designing new
algorithms for finding long paths in graphs is a worthy
project, even for a restricted set of graphs.

In this paper we show that, under certain condi-
tions, if the mixing time of the nearest neighbor ran-
dom walk on graph Γ is k, then there exist a path of
length Ω(|Γ|/k) in Γ. Moreover, we present a nearly
linear algorithm for finding such paths in Γ. We also
show that Γ contains certain other graphs of large girth.
The technique involves use of a number of short random
walks and estimates on their intersection probabilities.
A similar approach was used by Frieze earlier for con-
struction of the edge-disjoint paths in expanders [Fr].
We refer to section 2 for other references.
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1One should distinguish here two separate problems: when the

graph is known to contain a Hamilton path, and when it is not.

In this paper we consider only the latter version.

1. Main results

Let Γ be a D-regular connected simple graph with
a set of vertices [n] = {1, . . . , n} and a set of edges E.
A path of length ` is a sequence of distinct vertices
(i1, . . . , i`), such that (ir, ir+1) ∈ E, for all 1 ≤ r < `.
A Hamilton path is a path of length n.

By Qt
i we denote the probability distribution of

the nearest neighbor random walk W = W(Γ) after t
steps, starting at i ∈ [n]. If Γ is not bipartite, then
Qt

i(j)→ 1
n as t→∞, for all i, j ∈ [n]. Consider the

total variation distance:∥∥Qt
i−U

∥∥ = max
A⊂[n]

∣∣∣∣Qt
i(A)− |A|

n

∣∣∣∣ =
1
2

∑
j∈[n]

∣∣∣∣Qt
i(j)− 1

n

∣∣∣∣ ,
where U(j) = 1

n , for all j ∈ [n], is a uniform distribution,
and Q(A) =

∑
v∈A Q(A). We say that the random

walk W(Γ) mixes after k steps, if for all i ∈ [n], we
have ‖Qk

i − U‖ < 1
4 . Define the mixing time mix(Γ)

to be the smallest such k.

Theorem 1. Let Γ be a D-regular simple graph
with n vertices, mix(Γ) = k and D > 8k2. Then Γ
contains a path of length ` > n

16k .

The proof of Theorem 1 is based on a probabilistic
construction of long paths. Roughly, we start at any
vertex and consider a trajectory of the random walk for
` steps. We prove that with a positive probability this
random walk is self-avoiding (does not intersect itself.)

There are several ways to extend and generalize
Theorem 1. We start by weakening the mixing time
condition to a constant proportion (1 − ν) of points
v ∈ [n].

Theorem 1′. Let Γ be a D-regular simple graph
with D > 8k2. Suppose ‖Qt

v − U‖ < ε for at least
(1 − ν) n points v ∈ [n], where 0 < ε + ν < 1

4 . Then
Γ contains a path of length ` > n

16k .

When ν = 0, we obtain the result of Theorem 1.
One can further weaken the mixing time condition
by requiring that the hitting time of all set of size
> (1−µ) n be bounded by k. For µ = 1/2 we obtain one
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of the equivalent definitions of the mixing time [LW].
We omit the details (cf. section 2.)

We assume that a graph Γ is given by an oracle (of
unit cost), which inputs a vertex and outputs a random
neighbor of this vertex.

Theorem 2. Let Γ be a D-regular simple graph
with n vertices, mix(Γ) = k and D > (8 + ε)k2,
for some ε > 0. There exists an randomized algorithm,
which finds a path of length ` > n

16k , in every graph Γ
as above, at a cost

O
(n

k
log

n

k2

)
.

In a different direction, we prove that Γ contains
not only long paths, but also various other subgraphs.
We need to introduce several definitions.

Let Γ = (V,E), Γ′ = (V ′, E′). We say that Γ
contains a copy of Γ′ if there exists an injective map
ϕ : V ′ → V , such that ϕ(E′) ⊂ E. For example,
a complete graph Kn contains a copy of every simple
graph with at most n vertices.

Let H be a graph with a set of vertices S and the
set of edges i. Denote by deg = deg(H) the maximal
degree of H = (S, i). Let f : i → N be an integer
function on the edges. Denote by Hf a graph obtained
from H as follows: substitute every edge (s, s′) ∈ i
by a path of length f(s, s′). We call graph Hf an edge
extension of H by f . Define:

|f | =
∑

(s,s′)∈i

f(s, s′), min(f) = min
(s,s′)∈i

f(s, s′).

Clearly, if |f | = 0, we have f(s, s′) = 0 for all
(s, s′) ∈ i, min(f) = 0, and Hf = H. The number of
vertices in Hf is equal to |Hf | = |S|+ |f |.

Theorem 3. Let Hf be an edge extension of
H = (S, i) by f : i → N, such that min(f) ≥ 2k,
deg(H) = d, and the number of vertices in Hf :
|Hf | = N . Let Γ be a D-regular simple graph with n
vertices, mix(Γ) < k/(2 + log2 d) and D > 12 d3k2.
Suppose N < n/(16 d2k). Then Γ contains a copy of
Hf .

The rest of the paper is constructed as follows.
In section 2 we present a number of related results,
well know and new ones, that place Theorems 1–3
into the context of modern discrete mathematics. This
section is split into six related subsections, each covering
a separate topic. In sections 3 and 4 we present

proofs of the theorems, mostly based on probabilistic
method [ASE]. We start with definitions and results
common to all proofs, and then present the separate
proof for each theorem.

We should mention here that no attempt was
made to optimize the numerical constants in the re-
sults. Everywhere in the paper we use notation N =
{0, 1, 2, . . . }, [n] = {1, 2, . . . , n}. Also, we try to avoid
use of floor and ceiling notation whenever possible, and
hope this does not lead to a confusion.

2. Applications, remarks, examples, related
results and further problems

2.1 Expansion of graphs vs. mixing time.

Let us start by noting that there are many definitions of
the mixing time, with known relationship between them
(see [AF, LW].) We chose here the most convenient
definition for our purposes. In general, one can bound
the mixing time in term of the edge expansion of graphs
as follows. Let Γ = (V,E) be a D-regular graph, and
|V | = n. Define conductance φ = φ(Γ):

φ = min
A⊂V,|A|6=0,n

n · |E(A, V −A)|
D · |A| · (n− |A|)

,

where E(A,B) is the set of edges in Γ between A and
B, A,B ⊂ V . Then

(∗) 1
φ

< mix(Γ) <
16 log2 n

φ2

(see e.g. [AF, L2].) Thus, “large” conductance is
equivalent to “small” mixing time, and one can ask
whether the theorems can be proved in terms of edge
expansion. In fact, such results are well known, in terms
of a related concept of vertex expansion:

∂A = {v ∈ V −A : (v, w) ∈ E for some w ∈ V }.

Theorem 4. [P, L1] Suppose graph Γ satisfies
|∂A| ≥ 2 |A| − 1 for all |A| ≤ m, A ⊂ V . Then Γ
contains a path of length ≥ 3m− 2.

This theorem, often attributed to Pósa, is implicit
in [P], and is presented in [L1]. It was used in [P] to
show that random graphs with O(n log n) edges have
a Hamilton cycle. In a different direction, it was used
in [AC] to derandomize a result of Beck [Be] on size
Ramsey numbers (see below.)

Let us now elaborate on a comparison of Theorem 1
and Theorem 4. Using inequalities (∗) and elementary
calculations one can obtain a version of Theorem 1
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from Theorem 4. The proof of Theorem 1 (as well as
of Theorem 4) is elementary (see below and [L1]) and
doesp not contain an nontrivial upper bound in (∗). It
may seem that Theorem 4 is stronger, due to condition
that “large” expansion must hold for only “small” sets,
compared to the mixing time which is bounded by
one over edge expansion of all sets. In fact, this is
an unimportant distinction. Indeed, in the proof of
Theorem 1 we only need the mixing time to be at least
the hitting time of complements to such “small” sets. A
generalization of (∗) to such sets is known and is implicit
in [LK]. The proof is nontrivial and we omit the details.

Similarly, the condition that the graph must be
D-regular is inessential and can be substituted by a
weaker condition (involving bounds on the degree) with
minor changes in the statement of the theorem. The
regularity is used in the proof of Theorem 1 to ensure
that the stationary distribution of the random walk in
uniform. On the other hand, let us note that Theorem 4
is indeed stronger, since it is applicable to expanders (of
bounded degree), while the important degree condition
in Theorem 1 excludes such graphs. Thus, Theorem 1
cannot be used to obtain the results in [AC].

Let us mention here that to the best of our knowl-
edge, Theorem 1′ cannot be reduced to a similar result
on graph expansion. The graphs with small mixing time
of “most” vertices are easy to construct (e.g. a clique
with an attached path, or a disconnected graph with
one “large” connected component.) We should point
out that the definition of the mixing time matters here
since a priori one cannot amplify the error probability
otherwise.

2.2 Graphs with large expansion contain copies
of large trees
In a celebrated paper [FP], Friedman and Pippenger
showed that expanders contain not only copies of “long”
paths, but also “large” trees with bounded maximal
degree. Formally, they proves the following extension
of Theorem 4:

Theorem 5. [FP] Suppose graph Γ satisfies
|∂A| ≥ (d + 1) |A| for all |A| ≤ 2(m − 1), A ⊂
V . Then Γ contains every tree with m vertices and
maximum degree at most d.

Let us now compare the results of Theorems 3
and 5. First, as in the case of Theorem 1, the result
of Theorem 3 is inapplicable to expanders (of bounded
degree), the main application of [FP]. On the other
hand, Theorems 3 and 5 deal with different sets of
graphs: edge extensions Hf with f(s, s′) ≥ k
vs. all trees with a similar maximal degree condition.
Unfortunately there is no obvious way to extend the

proof of Theorem 3 to all trees. We challenge the reader
to modify the idea of the proof in this direction.

2.3 Size Ramsey numbers

This is a rather unexpected application of the results
above. Let H be a graph with m vertices and maximal
degree d. Define a q-size Ramsey number Rq(H) to
be the smallest number of edges in a graph Γ so that
for every q-coloring of edges of Γ, graph Γ contains a
monochromatic copy of H. Let R(H) = R2(H) be the
(usual) size Ramsey numbers. These were introduced
in [EFRS] and actively studied since then (see e.g.
[Be, HK, HKL, Ke, RS].)

In [Be], Beck used probabilistic method to prove a
linear bound R(Pm) = O(m) for the size Ramsey
number of a path Pm. The paper [AC] uses explicit
constructions of expanders to derandomize the proof,
and proved the following result: for every ε > 0, there
exists an explicitly constructed graph Γ with n = O(m/ε)
vertices and maximal degree D = O(1/ε2), such that
even after deleting all but ε-portion of vertices and
edges, the remaining graph contains Pm. Among other
things, this implies that Rq(Pn) = O(q3m).

Note an interesting phenomenon, roughly similar to
that in Szemerédi’s theorem on arithmetic progressions
in sets of positive density: there exist a graph (in fact,
any “good” expander), such that any 1/q fraction of
edges in it contains a “long” path.

In the same paper [Be], Beck also obtained
sharp bounds on size Ramsey numbers for cycles (see
also [HKL]) and all trees with m vertices and maximal
degree d: R(Tm) = O(d m log12 m). The latter bound
was later improved and extended in [FP, HK, Ke]. The
authors in [FP] then follow the idea in [AC] to sharpen
bounds in [Be] on the Ramsey size numbers of trees and
obtain an explicit construction of a graph with O(d2m/ε)
vertices and maximal degree D = O(d2/ε2) which con-
tains every tree Tm of degree at most d. In particular,
this implies that Rq(Tm) = O(q3d4 m).

Note that above results show that the Ramsey size
numbers of trees with bounded degree are linear in the
size of the tree. Same holds for the cycles [HKL]. On
the other hand, for general graphs H of bounded
degree the problem of finding sharp bounds for the
Ramsey size numbers remains wide open. It was asked
by Beck [Be] whether R(H) is always linear in m.
This was disproved in a recent paper [RS], where a lower
bound R(H) = Ω(m logα m), α > 0, was shown for
a certain cubic graph H. The authors in [RS] suggest
that the bound they obtain is far from the truth.

Using an approach of [AC, FP], we easily obtain new
bounds on size Ramsey numbers for the edge extensions
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of graphs:

Theorem 6. Let Hf be an edge extension of
H = (S, i), where deg(H) = d, |S| + |f | = m, and
min(f) ≥ k(2 + log2 d). For every ε > 0, there exists
a graph Γ, with O(m log m/ε) vertices and maximal
degree = O(log2 m/ε2), such that even after deleting all
but ε proportion of vertices and edges, the remaining
graph contains a copy of Hf .

In fact, the graph in Theorem 6 can be explicitly
constructed as an expander of large degree (cf. [AR].)
We omit the details.

Corollary 1. For Hf as in Theorem 6, we have:
Rq(Hf ) = O(q3 m log3 m).

We conjecture that in fact the Ramsey size numbers
of edge extensions are always linear for sufficiently large
min |f |. For the (usual) Ramsey numbers this follows
from [A].

2.4 Algorithmic results.
There is a number of important results on the

average case complexity of this problem: finding a
Hamilton path in random D-regular graphs, for various
values of D/n (see e.g. [BFF, BFS, P].) Let us mention
also a recent sufficient condition on the eigenvalue gap
for a graph to contain a Hamilton path [KS].

Let us note that Theorem 2 cannot be used for ap-
proximation of the length of the longest path. First
and foremost, it works only in one direction: a graph
may have a very long path but a very large mixing time
(an n-cycle is the simplest example.) It was suggested
in [KMR] that approximating length of the longest path
is as hard problem as approximating a cluque or a chro-
matic number: no O(n1−ε) approximation ratio can be
obtained. On the other hand, approximating the mixing
time is much easier. Indeed, mix(Γ) can be approxi-
mated by conductance via (∗), while conductance itself
can be approximated by a multicommodity flow con-
stant [LR], up to a O(log n) factor. Thus, working
with mixing time has a certain algorithmic advantage.

Now, one can consider a general problem of finding
certain subgraphs of given graphs. Usually, one first
need to find an appropriate proof of the existence of the
desired subgraph, and then modify it appropriate for
algorithmic purposes. One can consider papers [BFSU,
Fr, S] as special cases of the problem. Few words
about [Fr], which finds edge-disjoint path in polynomial
time. The author uses the random walks of length
θ(log n) in expanders. In fact the mixing time in
expanders is always θ(log n), so his technique is roughly

similar to ours. On the other hand our results do not
cover expanders, while [Fr] does not extend the results
to graphs with larger mixing time. Had Theorem 3 had
algorithmic proof, it would have given an even more
general extension.

2.5 Self-avoiding walks and birthday paradox.
Let Γ be a D-regular simple graph on n vertices.
Consider a nearest neighbor random walk W(Γ) =
{Xt}, starting at v. Denote by τ = τ (v) the first
time the walk intersects itself. Let

T = min
v

E τ (v)

be the self-avoiding time - the minimum over all
vertices of the average time until the walk intersects
itself. When Γ = Kn is a complete graph, we have
T = θ(

√
n), since the self-avoiding time in this case is

related to the classical birthday paradox (see e.g. [F]:
the smallest number of people, with birthdays in [n],
and probability of coinciding birthdays < 1

2 .) Note also
that T ≤ D, so for graphs of bounded degree the self-
avoiding time is a constant.

Now, for general graphs the quantity T(Γ) seem
to be unexplored. We show, roughly, that for graphs
of large degree and small mixing time the self-avoiding
time is Ω(n D)

1
4 , the result generalizing the birthday

paradox.

Theorem 7. Let Γ be a D-regular graph with n
vertices and the mixing time mix(Γ) = m. Suppose

D > n
1
3 (m log n)

4
3 .

Then for the self-avoiding time T = T(Γ) we have:

T > C (n D)
1
4 ,

where C is a universal constant.

2.6 Cayley graphs.
Let G be a finite group and let S = S−1 be a symmetric
generating set; let n = |G|, and D = |S|. Denote
by Γ = Γ(G, S) the corresponding Cayley graph. It
was conjectured by Lovász2 that Γ always contains a
Hamilton path [L1]. While the theorem doesn’t prove
existence of Hamilton paths in any special case, it seems
to favor the conjecture. Indeed, it is well known that
mix(Γ) = O(∆2D log n), where ∆ = diam(Γ). Thus

2Babai in [Ba] sharply disagrees with this conjecture and in
fact conjectures that in a certain sense “most” Cayley graphs do
not contain Hamilton paths.
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whenever D = o(∆2 log n), the theorem proves existence
of the long cycles. Roughly, this implies that there are
no “local obstacles” forbidding Hamilton cycles.

Now consider Cayley graphs with mix(Γ) = O(1).
Theorem 1 implies that the Cayley graph Γ(G, S) con-
tains paths of length θ(n) in this case. The examples
with mix(Γ) = O(1) are rare due to the technical diffi-
culty of these results. Known special cases include ran-
dom walks on SN and AN with the following generating
sets: long cycles [S], conjugacy classes [rN/r] (see [Lu]),
the set of all cycles, and cycles of length (N − Nε),
1 > ε > 0 [LP]. Other special cases include finite sim-
ple groups of Lie type with generating sets certain large
conjugacy classes they contain [LS].

Note that if mix(Γ) = m, we must have D = nε,
for some ε > 1

m . When ε > 1/3 and m = O(1)
we obtain examples of graphs which satisfy conditions
of Theorem 8. Incidentally, this observation inspired
present investigation.

3. Proof of Theorem 1.

Denote by Wi = {X(v)
t } the nearest neighbor

random walk on Γ starting at X0 = v ∈ [n]. Consider
any subset A ⊂ [n] and an integer k > 0. Define

αv(A) = P
(
X

(v)
t /∈ A, 1 ≤ t ≤ k

)
,

and βv(A) = 1− αv(A). We have:

βv(A) ≤
k∑

t=1

P
(
X

(v)
t ∈ A

)
=

k∑
t=1

Qt
v(A).

From here, and reversibility of Wv, we obtain:

∑
v∈[n]

βv(A) ≤
∑

v∈[n]

k∑
t=1

Qt
v(A) =

k∑
t=1

∑
z∈A

∑
v∈[n]

Qt
v(z)

≤ k |A|.

Fix a constant β > 0. Let m be the number of integers
v ∈ [n] such that βv(A) ≥ β. Since mβ ≤ k|A|, we
conclude that βv < β for at least

n−m ≥ n− k |A|
β

integers v ∈ [n].

In a different direction, consider Wv = {Xi}, and
δ = 1− ρ, where

ρ = min
v∈[n]

min
B⊂[n], |B|=k

P(X1, . . . ,Xk /∈ B; Xi 6= Xj ,

0 ≤ i < j ≤ k).

By definition,

ρ ≥
(

1− |B|+ 1
D

)
· · ·
(

1− |B|+ k

D

)
>

(
1− 2k

D

)k

> 1− 2k2

D
.

Therefore δ < 2k2

D . Finally, consider

ζv(A) = min
B⊂[n], |B|=k

αv(A ∪B) ≥ 1− βv(A)− δ.

Combining the previous two bounds we obtain the
following result:

Proposition 1. Let A ⊂ [n] and let Z be the set
of points v ∈ [n] such that ζv(A) > 1 − β − 2k2/D.
Then |Z| > n− k|A|/β.

Now, suppose ‖Qk
v −U‖ < ε. Then∣∣∣∣Qk

v(Z)− |Z|
n

∣∣∣∣ ≤ ‖Qk
v −U‖ < ε

and Qk
v(Z) > |Z|/n− ε.

Consider a failure probability γ, and success
probability (1 − γ): the probability that the first k
steps of the random walk Wv = {Xt} are all distinct
and do not lie in the set A ⊂ [n]. Clearly, γ ≤ β + δ.
Let us compute the probability P = PA that the point
v′ = Xk will satisfy the same property with respect
to A′ = A ∪ {X0, . . . , Xk−1}. Taking β = γ − δ in
Proposition 1, we obtain:

P ≥ P(Xk ∈ Z) − γ = Qk
v(Z)− γ >

|Z|
n
− ε− γ

>

(
1− k |A|

(γ − δ) n

)
− ε− γ

>

(
1− ε− γ − k |A|(

γ − 2k2

D

)
n

)
.

Proof of Theorem 1. We proceed by induction.
Fix the starting point v0 and construct point vi+1 from
vi as k-the step of the random walk {Xt} starting at
vi. By A = Ai denote the set of points on random
walks between v0 and vi. Suppose with probability > γ
the random walk {Xt} avoids Ai. We show that with
positive probability the random walk {X ′

t} starting at
vi+1 avoids itself, avoids Ai and all points {Xt} between
vi and vi+1, for the first k steps.

Let ε = 1/4, γ = 1/2. Then (1−ε−γ) = 1/4. By
definition, mix(Wv) ≤ k for all v ∈ [n], so ‖Qk

v − U| <
1
4 = ε. Since k2 < D/8, we have δ < 2k2/D < 1/4,
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and β = γ − δ > 1/4. Therefore for the probability
P = PA above, we have PA > 0 whenever

k |A|
n

< (1− ε− γ) · β =
1
16

.

Now, the probability that the random walk of length `
is self-avoiding is bounded from below by the product of
probabilities PA, |A| = 1, k + 1, . . . , 1 + kb`/kc. When
` < n/16k this product is strictly positive, which
completes the proof. �

4. Proof of remaining results

Proof of Theorem 1′. Follow verbatim proof of
Theorem 1 with the following changes. In the definition
of Z we must restrict to the set of all points v ∈ [n],
such that ‖Qk

v − U‖ < ε. Now the term (1 − ε − γ)
need to be substituted by (1− ν− ε−γ), and the result
follows. �

Proof of Theorem 2. We use notation and results
from the proof of Theorem 1. Consider the following al-
gorithm, based on a procedure for determining whether
a vertex w is good with respect to A ⊂ [n]. The “good-
ness” determines whether w is in the set Z = Z(A) de-
fined as in Proposition 1. This procedure will be defined
later.

Algorithm
Start at any vertex v ∈ [n]; Set A = {v}; N = 0.
Repeat until |A| > n/16 k or N > C1 n/k2 :

Take a random walk W(Γ) = {Xt} for k steps,
starting at X0 = v;

If X0, . . . , Xk are distinct points, and w = Xk is
good:

A← A ∪ {X1, . . . , Xk}; v ← w;
End If; N ← N + 1;

End Repeat;
If |A| > n/16 k : Output path A;
Otherwise: Go To Start.

Assume for a moment that testing whether w is
good can be done efficiently, at cost C, with probability
of error ϑ > 0. Then, at each of the O(n/k2)
iterations the algorithm will find a vertex that is good
indeed with a total probability of failure O(n/k2ε).
Now take ϑ < c k2/n for c > 0 small enough. Then
the algorithm will find a long path in one round with
constant probability which proves the result.

Now, about testing whether w is good with respect
to A ⊂ [n], |A| < n/16k. The problem with such
testing is that there is no witness to certify that w /∈ Z
(without computing the whole set Z which has cost

Ω(k n).) Let us consider C random walks of length k
starting at w. Consider the probability

P > 1− 1
4
− 1

2
−

1
16

( 1
2 −

2
8+ε )

> χ > 0,

for some χ = χ(ε) > 0. On average, of the C
random walks, at least χC are avoiding A and itself.
We say that w is good if this holds for at least χC/2
such walks. Note that this does not test whether w
is in Z, but rather being outside of a larger set. By
Chernoff bound [ASE], the probability that the test
accepts vertex as good, while it is not good in fact
is at most exp(−C). Since the starting vertex v of
the random walks (in the algorithm) is itself good by
inductive assumption, the probability that the vertex w
is good is at least χ/2. Thus we can ignore the other
type of error. Taking C = log n

k2 and the choosing
the constant C1 appropriately, we obtain the constant
probability of error in the algorithm. This completes
the proof. �

Proof of Theorem 3. The proof is an extension
of the Proof of Theorem 1, with a number of minor
modifications and few more estimates. The complete
proof is available in the full version of the paper from
author’s web page.

Proof of Theorem 6. (sketch) The proof follows
along the lines of [AC, FP], so we only point to
differences in reduction to Theorem 3.

Let d and ε > 0 be constants, as in the theorem.
Fix k = θ(log n), D = O(d3k), n = O(d2k m).
Consider a random D-regular graph Γ on n vertices. Use
Lemma 2.3 in [AC] to show that after removal all but ε-
proportion of vertices and edges, the remaining graph Γ′

is an expander, of maximal degree > cε2D = θ(log2 n).
The mixing time mix(Γ′) = O(log n), so the mixing
time condition in Theorem 3 is satisfied. Condition
min(f) ≥ 2k is also satisfied, by assumption. Applying
Theorem 3 now we obtain a copy of Hf and prove the
result. �

Proof of Theorem 7. In notation of the proof of
Theorem 1, let

k =
D

3
4

√
8 n

1
4
, ε ≤ γ =

√
D

4 n
,

r =

√
4 n

D
, |A| ≤

√
n D

4
,
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where r = `/k is the number of random walks of
length k taken. We have:

ε ≤ γ =
1
r
, γ = 2

(
2 k2

D

)
> 2 δ,

k |A|
(γ − δ) n

<
2
r
.

Recall that ε = maxv ‖Qk
v −U‖ is the total variation

distance after k steps. By submultiplicativity (see
above) we have: ε < 2−k/m. Since D > n

1
3 (m log n)

4
3 ,

and
√

8 < 3, we obtain:

1
3

m log2 n <
D

3
4

n
1
4
√

8
= k.

Thus
k

m
≥ log2

√
4 n

D
> log2

1
r
,

and taking ε as above is justified. Therefore the
probability Q ≥ P r that the random walk is self-
avoiding for the first ` steps satisfies

Q ≥ Pn >

(
1− ε− γ − k |A|

(γ − δ) n

)r

>

(
1− 1

r
− 1

r
− 2

r

)r

=
(

1− 4
r

)r

>
1
e4

.

This shows that with probability > 1/e4 the first
time the random walk W = W(Γ) intersects itself is
at least ` = r k =

√
n D/2. Now Markov inequality

implies the result. �
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