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Abstract

The automorphism group of a free group Aut(Fk) acts on the set of
generating k-tuples (g1, . . . , gk) of a group G. Higman showed that when
k = 2, the union of conjugacy classes of the commutators [g1, g2] and
[g2, g1] is an orbit invariant. We give a negative answer to a question of
B.H. Neumann, as to whether there is a generalization of Higman’s result
for k ≥ 3.

1 Introduction

Let G be a finite group, and let d(G) be the minimum number of generators in
G. For every k ≥ d(G), let Nk(G) = { (g1, . . . , gk) ∈ Gk : 〈g1, . . . , gk〉 = G}
be the set of generating k-tuples in G. One can identify Nk(G) with the set of
epimorphisms Epi(Fk → G). The gives a natural action of Aut(Fk) on Nk(G)
defined by α : φ → φ ◦ α, where α ∈ Aut(Fk) and φ ∈ Epi(Fk → G). Consider
also the diagonal action of Aut(G) on Nk(G). The orbits of Aut(Fk)×Aut(G)
acting on Nk(G) are called T-systems (short for “systems of transitivity”), and
were introduced by B.H. and H. Neumann in [NN] (see also [G, E2, N, NN, P].)

Let w be a nontrivial word in the free group Fk, and let ϕw : Nk → G be the
associated map ϕw(g1, . . . , gk) = w(g1, . . . , gk). We say that w is invariant on T-
systems in G, if the set of Aut(G)-conjugates of {ϕw(g1, . . . , gk)±1} is invariant
on all generating k-tuples in a T-system. Higman’s result (which we refer to as
Higman’s Lemma in this paper) states that for k = 2, the commutator [g1, g2]
is invariant on T-systems of every group G (see [N, P]). In [N], B.H. Neumann
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asks whether there exists a generalization of Higman’s Lemma for k ≥ 3. We
give a negative answer to this question:

Theorem 1.1 For every nontrivial word w ∈ Fk, where k ≥ 3, there exist
a finite group G, such that w is not invariant on T-systems in G.

The proof is based on a result by R. Gilman [G], that for each k ≥ 3 group
PSL(2, p) has a unique T-system. In fact, we prove that the map ϕw takes
unboundedly many values on this T-system, when p →∞. The proof idea was
motivated by a recent paper [LS].

We say a few words about the history of the problem. Let τk(G) be the
number of T-systems. When k = d(G), it was shown in [NN], that τk(G) > 1
in several special cases (e.g. G = A5.) In fact, τk(G) is unbounded, as shown
in [D1]. An example of a solvable G with τk(G) > 1 and k = d(G), was found
in [N], answering a question of Gaschütz. In the opposite direction, it was
shown in [D2] that τk(G) = 1 when k > d(G), and G is a finite solvable group.
It is conjectured that τk(G) = 1 for all finite G and k > d(G) [P]. When
G is a finite simple group this is known as Wiegold’s Conjecture, confirmed
in several special cases, in particular for PSL(2, p) (see [CP, E2, G, P]). One
implication of the conjecture is a positive answer to Waldhausen’s question: If
G = 〈x1, . . . , xk | r1, . . . , rn〉, and k > d(G), is it true that the normal closure of
〈r1, . . . , rm〉 in Fn contains a primitive element of Fn? (see [D2].)

Now, given a word w such that the map ϕw : Nk(G) → G is invariant on
T-systems, we obtain τk(G) ≥ |Im(ϕw)|/2, where Im(ϕw) ⊂ G is an image
of the map ϕw. This is exactly the strategy used by B.H. Neumann in [N],
when w = [x1, x2] and k = 2. Theorem 1.1 implies that this strategy fails when
k = 3, by using Neumann’s idea in the reverse direction. Interestingly, our proof
of Theorem 1.1 can be adapted for the case k = 2, when it implies the following
result:

Theorem 1.2 The number of T-systems in PSL(2, p) is unbounded, when
k = 2, and as p →∞.

This result is due to Evans [E1], who proved it by an explicit construction.
A similar result for alternating groups An was recently obtained in [P] by using
Higman’s Lemma and a simple combinatorial construction (see also [E1]).

Remark 1.3 One can ask to characterize all words w that can be used
in Higman’s Lemma for k = 2. We conjecture that w must be a conjugate of
[g1, g2]m, where m ∈ Z.

Remark 1.4 It would be interesting to quantify the lower bound on the
number of T -systems of PSL(2, p), when k = 2, which we obtain implicitly in the
proof of Theorem 1.2. The result should be compared with that of Theorem 3.17
in [E1]. With more effort, the methods used in this paper can be adapted to
prove the same result for any fixed type of Chevalley group X – i.e. the number
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of T-systems in X(q) goes to infinity as q → ∞. Different methods would be
needed to prove the same result for all simple groups as the order tends to
infinity.

Remark 1.5 In the recent years, much attention has been brought to the
subject by the “practical” product replacement algorithm. In fact, this was
our motivation for study of the number of T-systems. We refer to [P] for an
extensive review of the subject, applications and references.

Acknowledgments We would like to thank Martin Evans for the refer-
ence [E1], and an anonymous referee for helpful remarks. This paper was written
when the second author was a Fellow at MSRI in Berkeley, California. The first
author was partially supported by an NSF grant.

2 Preliminary results

Let w be a nontrivial word in the free group of rank k, and let G be any group.
The word w defines a map ϕw : Gk → G, by ϕw(g1, . . . , gk) → w(g1, . . . , gk).

We now consider subgroups of G := SL(2, C) – there are obvious analogs
for other Lie groups. Since G contains a free group [H], we see that ϕw is not
identically 1 (or even central).

Since Gc := SU(2, C) and Γ := SL(2, Z) are both Zariski dense in G, it follows
that w does not induce the trivial map on Hk for H = Gc or Γ. Consider a map
χw = tr ◦ ϕw : Gk

c → C, defined by χw(g1, . . . , gk) = tr(w(g1, . . . , gk)), where
(g1, . . . , gk) ∈ Gk.

Since Gc is compact, it contains only semisimple elements. Therefore, the
map χw : Gk

c → C takes on some value other than 2 (if χw(g1, . . . , gk) = 2, it
follows that w(g1, . . . , gk) is unipotent). Since the image of ϕw contains 1, the
integer 2 is in the image of χw = tr ◦ ϕw.

Since Gk
c is connected, this implies that the image of χw is infinite. Thus,

Lemma 2.1 The image of w intersects infinitely many semisimple conjugacy
classes of G.

We need to record some simple facts about subgroups of G and SL(2, p) with
respect to representations (see [C]).

Lemma 2.2 Let H be a proper closed subgroup of G. Then H acts reducibly in
any rational representation of G of dimension d > 5.

Proof. Let V be any rational G-module of dimension d > 5. The subgroups
of G are well known. If H has positive dimension, then either H is contained
in a Borel subgroup of G (and so has a 1-dimensional invariant subspace) or
normalizes a torus. The normalizer of a torus has no irreducible representations
of dimension more than 2.
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So it suffice to assume that H is finite. Let N be a minimal normal noncen-
tral (in G) subgroup of H. If N is cyclic, then H is contained in the normalizer
of a torus, a contradiction as above. If N is an extraspecial 2-group, then H/N
embeds in S3 and any irreducible representation is at most 4-dimensional. The
only other possibility is that N = SL(2, 5). The largest irreducible representa-
tion of SL(2, 5) is 5-dimensional. �

The same proof (considering finite subgroups only) yields the following:

Lemma 2.3 Let H be a proper subgroup of SL(2, p). If V is a d-dimensional
SL(2, p)-module in characteristic p with d > 5, then H acts reducibly.

We next turn to generating k-tuples. We need to assume k ≥ 2 for this (to
ensure that there exist generating k-tuples.) Let πp denote the natural map
from Γ = SL(2, Z) to SL(2, p). Consider

X =
{
(g1, . . . , gk) ∈ Γk : πp(〈g1, . . . , gk〉) = SL(2, p) for almost all prime p

}
.

Lemma 2.4 Suppose k ≥ 2. Then X is dense in Gk.

Proof. Let V be the six dimensional irreducible rational module for G.
As we have seen above, every proper closed subgroup acts reducibly on V . Let
L be an integral sublattice of V . Let ρ : G → GL(V ) be the corresponding
representation.

Note that 〈g1, . . . , gk〉 acts irreducibly on V if and only if End(V ) is generated
by the ρ(gi). This condition is equivalent to the condition that some collection
of determinants of d2 × d2 matrices do not identically vanish. Note that G can
be generated (topologically) by 2 elements (eg., a pair of unipotent elements).
Thus the set Y of k-tuples which generate irreducible subgroups on V form an
open non-empty subvariety of Gk (in the Zariski topology). By the choice of V ,
Y is precisely the collection of k-tuples which generate a dense subgroup of G.

If (g1, . . . , gk) ∈ Y ∩Γk, let A be the subring of End(L) generated by the ρ(gi)
and H the subgroup generated by the ρ(gi). Since A generates End(V ) as an
algebra, A has finite index in End(L). In particular, for almost all primes
p, H acts irreducibly on L/pL. If p > d, L/pL is an irreducible SL(2, p)-
module (because the high weight for V is (d − 1)λ). We have seen that no
proper subgroup of SL(2, p) acts irreducibly on this module. Thus, H maps
onto SL(2, p) for all but finitely many p.

The same argument shows that (g1, . . . , gk) ∈ X ⊆ Y (a fact which we don’t
need). Therefore, X := Y ∩ Γk is the intersection of a nontrivial open subset
and a dense subset of an irreducible variety. Thus, X is dense in Gk. �

Since χw is not constant on Gk, it cannot be constant on the dense subset
X, whence:

Corollary 2.5 If w is a nontrivial word in r ≥ 2 variables, then χw takes on
infinitely many values on X.
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Recall that the full automorphism group of PSL(2, p) is PGL(2, p) [C]. We
have:

Corollary 2.6 Let w be a nontrivial word in k ≥ 2 variables. For any suffi-
ciently large prime p (depending upon w), there exist g1, . . . , gk and h1, . . . , hk ∈
PSL(2, p) such that PSL(2, p) = 〈g1, . . . , gk〉 = 〈h1, . . . , hk〉 and w±1(g1, . . . , gk),
w±1(h1, . . . , hk) ∈ PSL(2, p) are not conjugate under PGL(2, p).

Proof. By the previous result, we may choose g1, . . . , gk and h1, . . . , hk ∈
(Y ∩ Γ) such that tr(w(g1, . . . , gk)) 6= ±tr(w(h1, . . . , hk)) and PSL(2, p) =
〈g1, . . . , gk〉 = 〈h1, . . . , hk〉 for all sufficiently large p. From here, it follows
that tr(w(g1, . . . , gk)) 6= tr(w(h1, . . . , hk)) modulo p for sufficiently large p,
whence the elements w(g1, . . . , gk) and w(h1, . . . , hk) are not conjugate under
the automorphism group PGL(2, p). The restriction that w−1(g1, . . . , gk) and
w(h1, . . . , hk) are not conjugate under PGL(2, p) follows similarly. �

Corollary 2.7 Let n be any positive integer. For any sufficiently large prime
p, there exist g1, . . . , gn and h1, . . . , hn ∈ PSL(2, p) such that PSL(2, p) =
〈g1, h1〉 = · · · = 〈gn, hn〉, and the commutators [gi, hi] are not conjugate un-
der PGL(2, p).

Proof. Follows verbatim the proof of of the previous corollary. In this
case we need n pairs of generators, and the word w = [x1, x2] ∈ F2. From
Corollary 2.3, for every fixed n and sufficiently large p we can find 〈g1, h1〉 =
. . . = 〈gn, hn〉 = PSL(2, p), with the commutators [gi, hi], as desired. �

Remark 2.8 Different versions of Lemma 2.4 are known in much greater
generality. We refer to [PR] for references and details.

3 Proof of Theorems

Proof of Theorem 1.1.
Let w be a nontrivial word in Fk, k ≥ 3, which is invariant on all T-systems

of Gp = PSL(2, p). Recall the result of Gilman [G], that τk(PSL(2, p)) = 1 for
all k ≥ 3 and p ≥ 5. Thus, all pairs of values {ϕ±1

w } on Nk(Gp) are conjugate
in PGL(2, p). This contradicts Corollary 2.6, when p is sufficiently large. �

Proof of Theorem 1.2.
Fix any integer n. By Higman’s Lemma [N] (see the introduction), the union

of commutators [g1, g2] and [g2, g1] is invariant on T-systems. By Corollary 2.7,
for sufficiently large primes p, the commutator [g1, g2] takes on values in at least
n different classes conjugates in PSL(2, p). Therefore, the number of T-systems
τ2(PSL(2, p)) is unbounded, as p →∞. �
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[H] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914

[LS] M. W. Liebeck, A. Shalev, Diameters of finite simple groups: sharp bounds
and applications, preprint, 1999

[N] B. H. Neumann, On a question of Gaschütz, Archiv der Math. 7 (1956),
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