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Abstract. In this paper we define and analyze convergence of the geometric random
walks. We show that the behavior of such walks is given by certain random matroid
processes. In particular, the mixing time is given by the expected stopping time, and
the cutoff is equivalent to a threshold phenomenon.

In this extended abstract most proofs are omitted. A full version of the paper is
available here: http://www.math.yale.edu/users/paki/grw6.ps

Introduction

In the past decades there has been an explosion in the number of applications
of combinatorics to discrete probability and vice versa. In this paper we explore
this connection which enables us to analyze a special case of Markov chains we call
geometric random walks.

Here is a general setup of the problem. Let G be a finite group, and let S be a set
of generators of G. Consider a Markov chain Xt on G which starts at the identity
X0 = e and moves by the rule Xt+1 = Xt · s, where s ∈ S is a random generator.
It is easy to see that (under mild conditions) after a while the walk will be at an
approximately uniform group element. The problem, however, is to quantify and
compute how long is ”after a while”. This time is usually called mixing time. It
depends in a complicated way on the the walk and is normally very hard to estimate
even in nice examples. There is a large literature dedicated to finding bounds on
mixing time as well to comparison of different definitions of mixing time (see [AF,
D1, D2, P1] and references there.)

Suppose now we have a sequence of groups {Gi} and their generating sets {Si},
where i ∈ N. One can try to quantify how rapidly the walks moves from the state
of being ”far from mixing” to the state of being ”well mixed”. Aldous and Dia-
conis observed (see [AD, D1]) that in many natural cases this transition happens
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in a period of time small compared to the mixing time. This is called cutoff phe-
nomenon and is somewhat analogous to the phase transition in statistical physics
and various 0–1 laws in discrete probability. While proven in many examples using
asymptotically sharp estimates on the mixing time, the cutoff phenomenon remains
a mystery yet to be solved (see [D2]).

In this paper we introduce a notion of a geometric random walk. Let V = Fn
q

be an abelian group of vectors in a finite vector space. A subset S ⊂ V is called
geometric if with each s ∈ S we have a · s ∈ S for all a ∈ Fq. In other words, S
must be a union of lines in V . Now let Xt be a random walk on V generated by S.
We call it a geometric random walk.

Consider now a vector matroid M corresponding to S. Define a random matroid
process as follows. Start with an empty set and add random matroid elements one
by one until we get a base. In this paper we show:

1) The mixing time of a geometric random walk is equal to the expectation of
the corresponding random matroid process (see Theorem 3.1).

2) The cutoff for a geometric random walk exist if and only if the random
matroid process has a threshold phenomenon (see §5).

3) The cutoff exists if S is chosen randomly in a certain precise sense (see §6).
4) The cutoff can be proved in several cases (see §5, 7).
5) The expectation can be computed exactly in several natural cases (see §2, 4).

Our technique is based on the strong uniform time approach introduced by Al-
dous and Diaconis (see [AD, D1]) and developed by the first author ([P1,P2,P3]).
We omit most proofs due to the space constrains.

We are grateful to Persi Diaconis for the introduction to the subject. We would
also like to thank Martin Hildebrand, László Lovász, Gregory Margulis, and Richard
Stanley for helpful remarks.

Part of the research was done when the first author was an NSF Postdoctoral
Fellow at MIT.

1. Basic definitions

Let V be a d-dimensional space over the finite field Fq, and let O ∈ V be the
origin. Denote [k] = {1, . . . , k}. Also, if u1, . . . , uk are vectors in V , denote by
⟨u1, . . . , uk⟩ ⊂ V their linear span.

Let A = {v1, . . . , vm} ⊂ V be a set of vectors in V such that ⟨v1, . . . , vm⟩ = V .
Define a geometric random walk W(A) to be a Markov chain Xt on vectors in V ,
such that X0 = O and

Xt = Xt−1 + a(t) · vi(t)
where a(t) ∈ Fq and i(t) ∈ [m] are uniform and independent random variables. One
can think of Xt as a symmetric random walk on an abelian group Fn

q generated by
elements a · vi, i ∈ [m].

Consider an example. Suppose q = 2, m = d and A = {v1, . . . , vm}. Then W(A)
is equivalent to a lazy random walk on a cube Zm

2 which is defined by the following
rule:
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• Choose a coordinate direction i ∈ [m] uniformly. Flip a fair coin. If heads,
move along that direction and if tails stay.

This walk was analyzed in a number of papers (see e.g. [D1, DGM, P1]).
Roughly, the walks mixes after O(n log n) steps. The problem is in many ways
similar to the coupon collector’s problem (see [F, D1]). We will give a careful
analysis of this walk in section 3 where the connection is made precise.

Denote by Qk the probability distribution of the walk after k steps:

Qk(v) = P (Xk = v) , v ∈ V

Observe that the Markov chain Xt is irreducible, aperiodic and reversible (see
e.g. [F, AF]). Thus it is ergodic and the Qk converges to a uniform stationary
distribution U ≡ 1/qn as k → ∞.

There are several ways to quantify how fast Qk converges to U . The most
commonly used are the variation distance

tv(k) = max
B⊂V

∣∣Q∗k(B)− U(B)
∣∣ = 1

2

∑
v∈V

∣∣∣∣Qk(v)− 1

N

∣∣∣∣
and the separation distance

s(k) = N ·max
v∈V

(
1

N
−Qk(v)

)
where N = |V | = qn is the total number of vectors in V .

For random walks on groups both distances have a similar asymptotic behavior,
but the latter will suit better for our purposes. The separation distance has nice
submultiplicativity property

s(m+ k) ≤ s(m) · s(k) , m, k > 0

Note also that s(0) = 1 and tv(k) ≤ s(k) for all k > 0 (see [AD, AF, D1]).
Often it is useful to define a mixing time which is a single measure of the con-

vergence. Again, there are several different measures which include (but do not
exhaust) the following two:

n1/2 = min{i : s(i) ≤ 1

2
} = min{i : P i(v) ≥ 1

2N
for all v ∈ V }

and
ξ = 1 + s(1) + s(2) + . . .

The latter is called the total separation and the submultiplicativity property implies
that ξ < ∞. It has same order of magnitude as n1/2:

ξ ≤ n1/2 ≤ 2ξ

(see [P1]) and will be the main object of our study.
It is convenient to consider a generation function for the separation distances

ξ(z) = 1 + s(1) · z + s(2) · z2 + . . .

which is called separation series. Clearly, ξ = ξ(1). The function ξ(z) is known to
be rational in z and has no poles inside a disc |z| ≤ 1 (see [P1]).

We show that in case of the geometric random walks one can give an explicit
combinatorial formula for the separation series and the total separation. This is
done in the next section.
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2. Explicit formulas

Let A = {v1, . . . , vm}, and let [m] = {1, 2, . . . ,m}. For every subset I =
{i1, . . . , il} ⊂ [m] define a subspace LI = ⟨vi1 , . . . , vil⟩. Denote L = L(A) the
lattice of subspaces LI for all I ⊂ [m]. We say that A is proper if there exist a
vector v ∈ V such that v /∈ LI for all LI ̸= V .

Theorem 2.1 Let A ∈ V be a proper set of m vectors, let W(A) be the cor-
responding geometric random walk, and let L = L(A) be the lattice of subspaces.
Then the separation series ξ(z) for the random walk W(A) is given by the formula

ξ(z) =
∑

L∈L, L̸=V

(−1)n−dim(L)+1

1− j(L) z

where n = dim(V ), j(L) = |A ∩ L|/m.

From Theorem 2.1 one can immediately deduce various properties of the random
walk W(A). In particular, one can obtain the second largest eigenvalue, which can
be interpreted as a radius of convergence ρ of the separation series ξ(z) (see [P1]).

Corollary 2.2 Let A, W(A), and L(A) be as in Theorem 2.1. Then

s(k) ∼ C · ρk

where s(k) is the separation distance for the random walk W(A), and

ρ = max
L∈L(A)

j(L) , C = |{L ∈ L(A), j(L) = ρ}| .

Before we move to particular cases, let us point out to the following straightfor-
ward generalization of the results in this section.

Let Q be any set of subspaces of the vector space V ≃ Fd
q . Assume that the

vector spaces in Q generate V . Let P be a probability distribution on Q. Consider
a Markov chain Xt on V such that X0 = O and

Xt+1 = Xt + v

where v = v(t) is a vector chosen uniformly randomly from the subspace L(t) ∈ Q,
and the subspace L(t) was sampled from Q according to the probability distribution
P. Denote this Markov chain by W(Q,P). Clearly, when Q is a set of lines and P
is uniform, W(Q,P) is a geometric random walk.

Theorem 2.3 Let Q be a proper set of vector subspaces. Then

ξ(z) =
∑

L∈L(Q), L̸=V

µ(L)

1− j(L) z

where j(L) =
∑

L′∈Q,L′⊂L P(L) .
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Clearly, this theorem generalizes Theorems 2.2− 2.4.

Example 2.4 Let q = 2, m = d, V ≃ Fm
2 , and A = { (0, . . . , 1i, . . . , 0), 1 ≤ i ≤

m}. Then a geometric random walk W(A) is equivalent to the lazy random walk
on a m-dimensional cube (see section 1).

Theorem 2.5 The separation series ξ(z) for the random walk W(A) is given by
the formula

ξ(z) =
m∑

k=1

(−1)k+1
(
m
k

)
1− m−k

m z
.

Proof. In this case L(A) is a Boolean lattice of coordinate subspaces (see e.g.
[BBR, S]). Thus the number of subspaces L ∈ L(A) of dimension k is equal to(
m
k

)
, and for each such L we have j(L) = m−k

m . Also, A is proper since the vector
(1, . . . , 1) ∈ V does not belong to any coordinate subspaces except V . Together
with Theorem 2.1 this implies the result. �

3. Random matroid process

Let S be a finite set and r : 2S → Z+ be a rank function. We say that a pair
M = (S, r) is a realizable matroid over the field Fq if there exist d and a map
ν : S → Fd

q which preserves rank function. An image A = ν(S) is called realization
of a matroid M = (S, r). Theorem 2.1 implies the following result.

Proposition 3.1 If A is a proper set of vectors, then the separation series
ξ(z) of the random walk W(A) depends only on a matroid (S, r) and not on the
realization A.

It is easy to see that if (S, r) is realizable over Fq then it is realizable over any
Fq′ , such that q′ > q (see e.g. [A]). Thus one can consider realizations over fields
with sufficiently large q.

Proposition 3.2 If M is a realizable matroid over the field Fq, and q is suffi-
ciently large, then every realization A ⊂ Fd

q is proper.

Now consider the following random process B = B(M). Fix a realizable matroid
M = (S, r), r(S) = d. Let B0 = ∅, Bt+1 = Bt ∪ s where s = s(t) ∈ S is chosen
uniformly. Clearly r(Bt) ≤ r(Bt+1). Stop the first time t such that r(Bt) = d.
We call Bt the random matroid processes. Denote by τ the stopping time of the
process B(M).

Theorem 3.3 Let M = (S, r) be a realizable matroid such that r(S) = d. Let
A ⊂ Fd

q be a realization of M , and let τ be the stopping time of the random process
B(M). Consider a geometric random walk W(A). Then

s(k) ≤ P (τ > k), for all k > 0 , and ξ ≤ E(τ)

Moreover, if A is proper, then the inequalities above become equalities.

Let us come back now to the walk on m-dimensional cube.
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Theorem 3.4 Let A be as in Example 2.4. Let ξ = ξ(1) be the total separation
for the random walk W(A). We have

ξ = m · h(m)

where h(m) = 1 + 1
2 + 1

3 + · · ·+ 1
m .

Proof. Recall that A is proper. Then by Theorem 3.3 we have ξ = E(τ). Finding
the expectation of τ is the classical coupon collector’s problem (see. Indeed, we
check random coordinates one at a time and stop when all coordinates are checked.
Adding the expected time to get the first coordinate, second coordinate, etc, we get

ξ = E(τ) =
m

m
+

m

m− 1
+ · · ·+ m

1
= m ln(m) +O(m),

which proves the result. �

We finish this section by constructing proper realizations of the graphical ma-
troids.

Let Γ be a simple connected graph (no orientation, no loops, no multiple edges)
with vertex set Y , and edge set E ⊂ Y × Y . Consider a rank function r : 2E → Z+

as follows:
r(H) = |Y | − c(Y,H)

where H ⊂ E, and c(Y,H) is the number of connected components of a subgraph
(Y,H). By definition, r(E) = |Y | − 1. We call (E, r) a graphical matroid.

Now, choose any vertex y0 ∈ Y to be a root. Fix an orientation of the edges
towards the root. For any q ≥ 2 consider the following realization A = ν(S) ⊂
F|Y |−1
q of a matroid (E, r):

ν(y, y0) = ey , ν(y, y′) = ey − ey′ , y′ ̸= y0

for all (y, y0), (y, y
′) ∈ E, and where ey, y ∈ Y − y0 is a basis in F|Y |−1

q .

Proposition 3.5 For any q ≥ 2 the set of vectors A = ν(S) ⊂ F|Y |−1
q is a

realization of a matroid (S, r). Moreover, if q ≥ |Y |, this is a proper realization.

Now consider the following random process. Let H0 = ∅, Ht+1 = Ht ∪ (y1, y2)
where (y1, y2) ∈ E is a edge of graph Γ chosen uniformly. Denote τ the first time t
such that subgraph (Y,Ht) is connected. By definition, the random graph process
Ht corresponds to a random matroid process for Bt in this case. As before, denote
by τ the stopping time of this process. Theorem 3.3 combined with Proposition 3.5
gives us the following result.

Theorem 3.6 Let Γ be a simple graph with n vertices, (S, r) be the corresponding
graphical matroid, and A = ν(S) its realization over Fq, q ≥ n. Consider a geo-
metric random walk W(A) and its total separation distance ξ. We have ξ = E(τ).

Remark 3.7 Note that the random graph process we consider is somewhat
different from the random graph process normally studied in random graph theory
(see [Bo]). In the latter, no edges are allowed to be repeated.
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4. Two examples

Example 4.1 (The case of complete graphs)
Suppose A contains vectors el, 1 ≤ l ≤ n − 1, and ei − ej , 1 ≤ i < j ≤ n − 1,

where e1, . . . , en−1 is a basis in V ≃ Fn−1
q . It is easy to see that A is a realization

of a graphical matroid which corresponds to the complete graph Γ = Kn. We have
Y = [n], |E| =

(
n
2

)
.

Theorem 4.2 Let A be as above, W(A) be the corresponding random walk, and
ξ be its total separation distance. Then

ξ =
1

2
n log n+O(n)

Example 4.3 (The case of vectors in generic position)
One of the interesting recently studied questions concerns the behavior of the

random random walks (see e.g. [DH,R,P4]). These are basically random walks on
a fixed group with a set of generators randomly chosen from a given distribution.
In this section we will study random geometric random walks which as we show
correspond to the case of lines in generic position.

Let A be a set of n vectors in V ≃ Fk
q . We say that A is generic if every k vectors

in A are linearly independent.

Theorem 4.4 Let A be a set of n vectors in V ≃ Fk
q , q >

(
n

k−1

)
. Let W(A)

be the corresponding geometric random walk, and ξ be its total separation distance.
Then

ξ ≥ n · (h(n)− h(n− k))

and the equality holds if and only if A is generic.

5. The cutoff phenomenon

Let (Gi), (Si), i = 1, 2, . . . be a sequence of groups and generating sets. Con-
sider a sequence of random walks (Wi). Denote by si(·) and ξi the corresponding
separation distance and the total separation.

We say that a sequence of random walks (Wi), i = 1, 2, . . . has a cutoff if there
exist two integer sequences (ai) and (bi) such that ai/bi → 1, si(ai) → 0 and
si(bi) → 1 as i → ∞. This definition is due to Aldous and Diaconis (see [AD, D2]).

Example 5.1 Suppose G = Zm
2 andW is a random walk on a cube (see Example

2.4). Recall that the time τ is defined as a time to collect all coordinate vectors.
We have

ξ = E(τ) = m · h(m) = m logm+ o(m)

Also, s(k) = 1 − 2nP k(v) = P (τ ≤ k). Now, a direct computation for the coupon
collector’s problem shows that

V ar(τ) = m
m−1∑
i=1

i

(m− i)2
< m2

∞∑
j=1

1

j2
=

π2

6
m2
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(see e.g. [F, §9.9]). By Chebyshev inequality we have

s(m · h(m)− x ·m) ≤ C1

x2

s(m · h(m) + x ·m) ≥ 1− C1

x2

for some absolute constant C1. This shows cutoff for the random walk on a cube
of dimension m.

Now we can generalize this observation. Let V = Fn
q , let A ∈ V be a set of

vectors, and let W = W(A) be the geometric random walk. Consider the corre-
sponding matroidM and the random matroid process B. Also, let τ be the stopping
time of B.

We say that a sequence of random matroid processes (Bi) has a threshold if
there exist two integer sequences (ai) and (bi) such that ai/bi → 1, P (τi > ai) → 0
and P (τi < bi) → 0 as i → ∞.

Theorem 5.2 Let Ai ∈ Vi, i = 1, 2, . . . be proper sets of vectors. Then the
sequence of random walks (Wi) has a cutoff if and only if (Bi) has a threshold.

Proposition 5.3 If V ar(τi)/E(τi)
2 → 0 E(τ) → ∞ as i → ∞, then (Bi) has a

threshold.

Example 5.4 (The case of complete graphs.)
Let An be a proper realization of a graphical matroid which corresponds to

complete graph Γ = Kn (see Example 4.1). Consider the corresponding random
walk Wn = W(An). Let us prove that ξ = 1

2n log n + O(n) and in fact we have a
cutoff in this case.

Indeed, consider the corresponding random graph process Bn. We take an empty
graph and keep adding random edges until the obtained subgraph of Kn is con-
nected. Let τn be the corresponding stopping time. By Theorem 5.2, we need to
show that (Bn) has a threshold. But this is a known result in the theory of random
graphs.

Consider a random graph process B′
n which works in a similar way but when we

do not allow repetition of edges. In other words, each time we choose an edge which
is a random edge which is not in our graph. The corresponding stopping time τprn

will always be bounded by
(
n
2

)
, which is the total number of edges in Kn.

Now, for the random processes (B′
n) Erdős and Rényi showed a very sharp thresh-

old. Namely, they showed that for k = (n/2)(log n+ x+ o(1))

P (τ ′ ≤ k) → e−e−x

(see [ER; Bo, §9.1]).
To apply this result in our situation, observe that the Chernoff bound implies that

the probability to get more than O(log2 n) number of repetitions is exponentially
small. From here we have E(τn) = 1/2n log n + O(n) and (Bn) has a threshold.
Therefore, (Wn) has a cutoff.
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Remark 5.5 The cutoff considered in this paper is different from the cutoff
considered in [D2] and other papers, where the variation distance tv(k) was consid-
ered instead of the separation distance. While it is similar in flavor, it is not clear to
us whether either of them will imply the other one. The preliminary computations
seem to indicate that cutoff for the total variation distance is a somewhat stronger
condition.

It is important to mention here a general result of Margulis on existence of the
weak threshold for all graphs with high connectivity (see [Bo, M]).

6. The average case.

6.1 The case of random graphs.

For a given n, q and m consider a random set of vectors A ⊂ V = Fn
q , |A| = m.

What can we say about the total separation ξ of the geometric random walk W(A).
Would there be a cutoff?

Clearly, n ≤ m or otherwise vectors in A will not generate V . Suppose l = m−n
is fixed and n grows. Then roughly, we need to use almost all the vectors to generate
the whole space V . Thus by coupon collector’s problem we need about n log n walk
steps. This can be formalized by the following result.

We call a m-tuple a set of vectors A ⊂ V , such that |A| = m.

Theorem 6.1 For any ϵ, δ > 0 there exist constants c1, c2, l1, n1 such that for
every n ≥ n1, l ≥ l1 a random n+ l-tuple A satisfies the following inequalities

s(n logn+ c1 n) ≤ ϵ

s(n log n+ c2 n) ≥ 1− ϵ

with probability > 1− δ, and where s(k) is the separation distance after k steps of
the corresponding random walk W(A).

This roughly means that as n → ∞, a sequence of random (n + l)-tuples has a
cutoff. Heuristically, this implies that for almost all sets A the mixing time is about
the fastest possible. Thus we have a cutoff.

Notice that here q is fixed. When q grows much faster than n, we are back to
sets of vectors in generic position (see Example 4.2 above)

Remark 6.2 There are various other results about the behavior of the so
called random random walks (see e.g. [DH, R, P4]) and the connection with cutoff
phenomenon (see [D2] for review and references). Notably, in papers [G, W] the
cutoff in terms of variation distance was shown for almost all sets of generators of
Zn
2 . While the latter results roughly corresponds to the case q = 2, the technique

is different from ours.

6.2 The case of random graphs.

By analogy with the previous subsection one can consider a threshold phenom-
enon of random graph process for graphs with n vertices and m edges. It turns
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out that one can prove results similar to those of the previous section. The appli-
cations to the cutoff of geometric random walks are clear, so we will deal directly
with graphs.

Let G be a graph on n vertices. We say that G is m-graph if |G| = m, i.e. G has
m edges. We say that set H is l-subgraph if H ⊂ G and |H| = l.

It is known that form = o(n log n) almost every randomm-graph is disconnected
(see e.g. [Bo]). We will show that roughly 1

2n log n edges is enough not only for a
graph to be connected but to have a threshold as well.

Theorem 6.3 For any ϵ, δ > 0 there exist constants c1, c2, l1, n1 such that for
every n ≥ n1, l ≥ l1, a random

(
1
2n log n+ l n

)
-graph G on n vertices satisfies the

following inequalities
P (τ ≤ n logn+ c1 n) ≤ ϵ

P (τ ≤ n logn+ c2 n) ≥ 1− ϵ

with probability > 1 − δ, and where τ is the stopping time of the random graph
process B(G).

7. The case of edge-transitive graphs.

In this section we show that if we have a sequence of edge-transitive graphs, it
will always have a threshold. Thus we effectively ”derandomize” the result of the
previous section.

Graph G is called edge-transitive if for every pair of edges E1 and E2 there is
an automorphism π : G → G such that π(E1) = E2. For example, both complete
graph Kn and complete bipartite graph Km,n are edge-transitive.

Let d = d(G) denote the minimum degree of G.

Theorem 7.1 Let (Gn) be a sequence of edge-transitive graphs on n vertices
such that log d/ log n → 0 as n → ∞. Then a random graph process B′(Gi) has a
threshold.

The theorem covers many nice symmetric cases such as cycle, m-dimensional
cube, and many others.

Example 7.2 Let 0 < α < 1 and

[
n
αn

]
be the set of all ⌊αn⌋-subsets of

[n]. Consider a sequence of graphs Υn with vertices in

[
n
αn

]
and edges (I, J),

I, J ∈
[

n
αn

]
, such that |I ∩J | = ⌊αn⌋−1. Clearly, Υn is edge-transitive. It is easy

to see that d(Υn) = n− ⌊αn⌋ = O(n) while

∣∣∣∣[ n
αn

]∣∣∣∣ = (
n

⌊αn⌋
)
= O(βn/

√
n), where

β = (αα(1 − α)1−α)−1 > 1. Thus log d/ log n → 0 as n → ∞ and by Theorem 7.1
the sequence of random graph processes B′(Υn) has a threshold.

Example 7.3 Let Γ = Km,n be a complete bipartite graph, m ≥ n. We have
d = m and Γ is edge-transitive with m+ n vertices. Theorem 7.1 implies that the
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sequence of the corresponding random graph processes B′(Km(n),n) has a cutoff if

log n/ logm(n) → 0 as n → ∞. For example, m(n) = nlogn will work.

Example 7.4 Let Γn be a sequence of Cayley graphs of finite groups generated
by small conjugacy classes. Then Γn are all edge-transitive graphs and the theorem
implies that we have a threshold for the corresponding random graph processes.

For example, let G = Sn be a symmetric group, and T be a set of all transposi-
tions. Let Γn be the corresponding Cayley graph. It is clearly edge-transitive. We
have

d(Γn)

|Γn|
=

|T |
|Sn|

=

(
n
2

)
n!

→ 0 as n → ∞

Now use Theorem 7.1 to establish the threshold.

Theorem 7.1 can be generalized to transitive matroids. We call matroid M =
(S, r) transitive if for any two elements s1, s2 ∈ S there exist a permutation π :
S → S such that π(s1) = s2 and r(π(X)) = r(X) for every X ⊂ S. A matroid
of the form M ′ = (S′, r|S′), S′ ⊂ S is called submatroid. A matroid (S, r) is
called connected if it is not a sum of two sumbmatroids (S′, r′) + (S′′, r′′), where
S = S′ ∪ S′′, S′ ∩ S′′ = ∅, and r(X) = r′(X ∩ S′) + r′′(X ∩ S′′) for all X ⊂ S.

The role of vertices (or rather their complements) of a matroid M play connected
submatroids M ′ such that r(M ′) = r(M) − 1. We call these generalized vertices.
Let the degree of such a generalized vertex be the number of elements s ∈ S such
that r(M ′∩{s}) = r(M). Define the degree of a matroid to be the minimum degrees
of its generalized vertices.

Theorem 7.5 Let (Mn) be a sequence of transitive matroids with n generalized
vertices and degree d = d(n) such that log d(n)/ log n → 0 as n → ∞. Then a
random matroid process B′(Mn) has a threshold.

Note that Theorems 7.1, 7.5 are false if the (crucial) transitivity assumption is
dropped. For instance, consider two copies of the hypercube graph of dimension d.
In the first copy, delete an edge uv (say), and in the second copy delete an edge u′v′.
Draw two new edges uu′ and vv′. The resulting graph G is connected, d-regular
and has 2d+1 vertices. But u(G, ϵ) ∼ ϵ/(1− ϵ) for all small ϵ.

When the degree d is large, a similar result can be proved under somewhat
different assumption. We say that two subgraphs G1 and G2 of G are equivalent
if there is an element π ∈ Aut(G) such that G1 = π(G2). For a subforest F
on s vertices, let ϱ(F ) be the number of subforests of G equivalent to F . Let
ϱ(s) = minF ϱ(F ). Assume w(n) is a function tending to infinity.

Theorem 7.6 There is a function f(C) such that for any C > 0, there is
n0 = n(C) such that if G is a connected graph on n > n0 vertices and ϱ(f(C)) >
(w(n)d(G))f(C) then u(G, ϵ) > 1/C.

This theorem covers several nice examples such as complete graphs Kn (cf. Ex-
ample 4.1) or complete bipartite graphs Kn,n. Note that Theorem 7.6 can be
generalized to matroids as well.
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[ASE] N. Alon, J. H. Spencer, P. Erdős, The Probabilistic Method, Wiley, New York, 1992.
[AP] A. Astashkevich, I. Pak, Random walks on nilpotent and supersolvable groups, preprint

(1997).
[Ba] L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Combina-

torics (R. L. Graham, M. Groetschel, and L. Lovasz, eds.) (1996), Elsevier.
[BBR] M.Barnabei, A. Brini, G-C. Rota, The theory of Möbius functions, (in Russian), Uspekhi
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