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Abstract. We give new bounds and asymptotic estimates on the largest Kronecker and
induced multiplicities of finite groups. The results apply to large simple groups of Lie type
and other groups with few conjugacy classes.

1. Introduction

Given a finite group G, what is the largest dimension b(G) of an irreducible complex
representation of G? Which representations attain it? These questions are both fundamental
and surprisingly challenging. For large simple groups of Lie type they have been intensely
studied especially in the last few years, when asymptotic tools allowed for the general picture
to emerge. For Sn and An, these questions are classical and have been the subject of intense
investigation for decades. Despite some remarkable successes the precise asymptotics is yet
to be completely determined. See Section 4 for precise statements and §9.1 for the references.

In recent years, Stanley initiated the study of the largest Kronecker and Littlewood–
Richardson coefficients for the symmetric group (see §9.2). He computed their asymptotics
and asked to determine the characters which attain these asymptotics. In our recent pa-
per [PPY] we resolve both problems. Perhaps surprisingly, we show that the answer is always
the asymptotically largest degree, suggesting connection with the earlier work.

In this paper we generalize some of our results from Sn to general finite groups with few
conjugacy classes. This is a large class which includes quasisimple groups of Lie type of rank
≥ 2, large permutation groups, and even some nilpotent groups of large class.

For a finite group G, the Kronecker multiplicity g(ρ, ϕ, ψ), where ρ, ϕ, ψ ∈ Irr(G), are
defined by the equation:

(1.1) ϕ · ψ =
∑

ρ∈Irr(G)

g(ρ, ϕ, ψ) ρ,

where ϕ · ψ is the usual product of characters: [ϕ · ψ](x) = ϕ(x)ψ(x). Similarly, for every
subgroup H < G, ρ ∈ Irr(G) and π ∈ Irr(H), we define the induced multiplicities c(ρ, π) by
the equation:

(1.2) IndGH π =
∑

ρ∈Irr(G)

c(ρ, π) ρ.

While there is a great deal of literature for determining these coefficients for classical Chevalley
groups like GLn(q) and SOn(q), very little is known about their asymptotics. Even less is
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known for other types and other families of groups. In this paper we obtain bounds on the
largest Kronecker and induced multiplicities and illustrate them in many examples.

1.1. Kronecker multiplicities. Let G be a finite group and let k(G) = |Irr(G)| denotes the
number of conjugacy classes of G. Define the largest Kronecker multiplicity of G:

K(G) := max
ρ,ϕ,ψ∈Irr(G)

g(ρ, ϕ, ψ).

Theorem 1.1. We have:

b(G)2

k(G)1/2 |G|1/2
≤ K(G) ≤ b(G).

Since
√
|G|/k(G) ≤ b(G) ≤

√
|G|, see (3.2), this implies that for k(G) small the bound

in the theorem is quite sharp. The next result shows that K(G) is attained on characters of
large degree in that case.

Theorem 1.2. Let ϕ, ψ ∈ Irr(G). Suppose ϕ(1), ψ(1) ≥ b(G)/a for some a ≥ 1. Then there
exists ρ ∈ Irr(G), such that:

ρ(1) ≥ b(G)

a · k(G)1/2
and g(ρ, ϕ, ψ) ≥ b(G)

a2 · k(G)
.

1.2. Induced multiplicities. Let H < G. For all ρ ∈ Irr(G) and π ∈ Irr(H), define the
largest induced multiplicity :

C(G,H) := max
ρ∈Irr(G)

max
π∈Irr(H)

c(ρ, π).

Theorem 1.3. Let H < G. Then:
1

k(H)1/2k(G)1/2
[G : H]1/2 ≤ C(G,H) ≤ [G : H]1/2 .

In other words, when k(H), k(G) are small, the largest induced multiplicities are close

to
√

[G : H]. The following result again shows that large induced multiplicities are attained
at characters of large degree.

Theorem 1.4. Let H < G and ρ ∈ Irr(G). Suppose ρ(1) ≥ |G|1/2/a, for some a ≥ 1. Then
there exists π ∈ Irr(H), such that:

π(1) ≥ |H|1/2

a · k(H)
and c(ρ, π) ≥ [G : H]1/2

a · k(H)
.

Remark 1.5. Note that Kronecker multiplicities are a special case of induced multiplicities.
To see this, take G = H ×H and a diagonal subgroup H < G, and we have C(H ×H,H) =
K(H). Observe that the bounds for K(H) which follow from Theorem 1.3 in this case are
weaker than the bounds in Theorem 1.1 (see Remark 7.5). This follows from the dependence of
C(G,H) on the embedding H ↪→ G. For example, for G = H×H as above and (H×1) ↪→ G,
we have C(H ×H,H) = b(H), which can be much larger than K(H) (see §6).

Remark 1.6. As we mentioned earlier, for the symmetric groups G = Sn and H = Sk ×
Sn−k the Kronecker and induced multiplicities are called the Kronecker and the Littlewood–
Richardson coefficients, respectively. They play a crucial role in Algebraic Combinatorics and
its applications, and have been intensely studied from both enumerative, algebraic, geometric,
probabilistic and computational point of view (see §9.2 and [PPY] for the references).
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Structure of the paper. In sections 2 and 3, we review known bounds on k(G) and b(G),
respectively, for various classes of groups. In Section 4 we discuss the symmetric group case
and our state of knowledge on b(Sn). Then, in sections 5 and 6, we apply our bounds to
various examples of groups and subgroups. We prove theorems 1.1 and 1.2 in Section 7. We
then prove our theorems 1.3 and 1.4 in Section 8. We conclude with open problems and final
remarks (Section 9).

Notation. Most our notation are standard. Let Irr(G) denotes the set of irreducible char-
acters of G, let Conj(G) be the set of conjugacy classes, and k(G) = |Irr(G)| = |Conj(G)|
the number of conjugacy classes. By |CG(x)| we denote the size of the centralizer of element
x ∈ G.

2. Number of conjugacy classes

2.1. General bounds. There are many general lower and upper bounds for k(H); we will
only mention some key results but will not be able to review it. The subject was initiated
by E. Landau in 1903 with the first quantitative bound k(H) = Ω

(
log log |H|

)
by Erdős

and Turán (1968). Recently, Jaikin-Zapilrain [Jai] showed the first super-log lower bound for
nilpotent groups, but for general finite groups there is only a sub-log bound due to Pyber [Pyb],
slightly improved in [BMT, Kel]. For a nilpotent group H of bounded class r, Sherman [She]
proved:

(2.1) k(H) ≥ r |H|1/r − r + 1.

In a different direction, for a permutation group H < Sn, Kovács and Robinson [KR]

showed that k(H) ≤ 5n. This was improved to 2n−1 in [LP], and further to k(H) ≤ 5(n−1)/3

for n ≥ 4, in [GM].
Finally, there are general upper and lower bounds on the number of conjugacy classes,

notably:

(2.2)
k(H)

[G : H]
≤ k(G) ≤ k(H) · [G : H] for H < G,

see [Gal]. Sometimes these bounds are written in terms of the commuting probability. Notably,
Guralnick and Robinson [GR] prove

k(G) ≤
√
|G|k(F ) ,

where F is the Fitting subgroup of G. In particular, k(G) ≤
√
|G| when Z(G) = 1, i.e. when

the center G is trivial.

2.2. Number of conjugacy classes for groups of Lie type. It was shown by Liebeck
and Pyber [LP] that for a completely reducible subgroup G < GLn(q), we have k(G) ≤ q10n.
Further, when G is a quasisimple group of Lie type over Fq of rank r, they show k(G) ≤ (6q)r.
Fulman and Guralnick [FG] further improve these bounds to

(2.3) qr ≤ k(G) ≤ 27.2qr ,

with better constants in special cases. In fact, in many cases either sharp asymptotic bounds,
or even the exact formulas are known, see examples in Section 6.
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3. Largest degree

3.1. General bounds. Let ρ(1) denote the degree of ρ, and let

b(G) := max
ρ∈Irr(G)

ρ(1)

denote the largest degree. Recall the Burnside identity :

(3.1)
∑

ρ∈Irr(G)

ρ(1)2 = |G|.

This immediately implies that for all finite groups G, we have:

(3.2)
√
|G|/k(G) ≤ b(G) ≤

√
|G| .

There are a few lower and upper bounds for general groups. Notably, if b(G) <
√
|G| − 1

2 ,
then

b(G) ≤
√
|G| − 1

2
4
√
|G|,

and this is the best bound of this type [HLS], improving on earlier bounds by Isaacs [Isa2]
and others.

One should, of course, expect better upper bounds for large non-solvable groups. For
example, if ρ ∈ Irr(G) and ρ(1)2 ≥ |G|/2, then ρ2 contains every irreducible character,
i.e. g(ρ, ρ, χ) > 0 for all χ ∈ Irr(G). This property is known for all simple groups of Lie
type [HSTZ] except for PSUn(q), and is a subject of intense study for An and Sn, see [Ike,

LuS, PPV]. In the opposite direction, for all simple groups one has b(G) ≥ 3
√
|G|, see [KS].

3.2. Largest degree for groups of Lie type. For a natural class of reductive linear alge-
braic groups G of dimension d, rank r over Fq, Kowalski [Kow, Prop. 5.5] uses an argument
by J. Michel to prove:

b(G) ≤ |G|
(q − 1)r |G|p

≤ (q + 1)(d−r)/2,

where Np denotes the largest power of p which divides N . He also proves that the first
inequality is sharp when q = pa is large enough, and obtains explicit bounds for several series,
such as GLn(q), Sp2n(q), etc.

More general and sometimes more precise bounds were obtained later by Larsen, Malle and
Tiep [LMT]. For all G(q) over Fq, of dimension d, rank r, characteristic p, they prove:

(3.3) A(logq r)
α |G|p ≤ b(G) ≤ B (logq r)

β |G|p ,
for some universal constants A,B > 0 and α, β ≥ 0. In fact, the log terms disappear for
exceptional groups of Lie type. They also obtain sharp explicit bounds in special cases, see
Section 6. In full generality, we obtain the following result.

Theorem 3.1. Let G be a simple algebraic group of characteristic p, rank r, and a finite
group G(q) := GF over Fq, corresponding to a Frobenius map F : G → G. Then:

C

(
|G|p

)2
(logq r)

γ

qr/2
√
|G|

≤ K
(
G(q)

)
≤ D(logq r)

δ |G|p

where C,D > 0 and γ, δ ≥ 0 are universal constants independent of G and q.

Proof. In Theorem 1.1, use bounds on k(Gn) and b(Gn) in (2.3) and (3.3), respectively. �
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4. Symmetric groups

4.1. Largest degree. Recall that k(Sn) = p(n), the number of integer partitions of n. The
Hardy–Ramanujan asymptotic formula gives:

p(n) ∼ 1

4n
√

3
e
π
√

2n
3 as n→∞.

In 1985, Vershik and Kerov [VK2] proved that for all n large enough:

(4.1)
√
n! e−c1

√
n(1+o(1)) ≤ b(Sn) ≤

√
n! e−c2

√
n(1+o(1)),

where

(4.2) c1 = π

√
1

6
≈ 1.2825 and c2 =

π − 2

π2
≈ 0.1157

Note that the lower bound follows from (3.2), but the upper bound is rather remarkable. The
following result is an application.

4.2. Smaller degrees. Let W(G) = {ρ ∈ Irr(G), ρ(1) < b(G)}, and let ε(G) be defined as
follows:

ε(G) =

∑
ρ∈W(G) ρ(1)2

b(G)2
.

One can think of ε(Sn) as the ratio of probability of non-largest to largest characters of
Sn w.r.t. the Plancherel measure, see [Bia, Rom, VK1]. In [LMT], the authors show that
ε(Sn) = Ω(1). In fact, they prove that there exist a universal constant ε > 0 s.t. ε(G) > ε
for all non-abelian finite simple groups G. The former result was improved in [HHN] to
ε(Sn) = Ω(n).

Theorem 4.1. There exist universal constants a2 > a1 > 0, such that:

ea1
√
n ≤ ε(Sn) ≤ ea2

√
n

Proof. For the upper bound, we have:

ε(Sn) ≤ n!

b(Sn)
,

and the result follows from the lower bound in (4.1). For the lower bound, let M(n) denote
the number of characters of the largest degree, i.e. M(n) = |Irr(Sn) rW(Sn)|. It was proved
in [HHN, Prop. 3.5(1)] that ε(Sn) ≥ M(n)/16. On the other hand, from the upper bound
in (4.1), we have:

ε(Sn) =
n! −M(n)b(Sn)2

b(Sn)2
≥ e2c2

√
n(1+o(1)) − M(n),

and the result follows by combining these two inequalities. �

Remark 4.2. We conjecture that the sequence M(1),M(2), . . . is bounded (cf. [KP] for
some computational evidence). Curiously, for non-largest degrees this is known not to hold.
Formally, let

f (n) := max
k

∣∣{λ ` n : χλ(1) = k
}∣∣.

For example, f (13) = 6 since d(94) = d(76) = d(10 21) = d(3218) = d(261) = d(2415) = 429,
where d(λ) := χλ(1). Craven [Cra] showed that the sequence f (1), f (2), . . . is unbounded.
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In fact, Moretó showed that Craven’s result implies unbounded maximal multiplicity for all
large finite groups [Mor].

5. General linear groups

5.1. Bounds on Kronecker multiplicities. For Gn = GLn(q), there are sharp bounds on
all parameters we need. We have:(

1 − 1

q
− 1

q2

)
qn

2 ≤ |Gn| ≤ qn
2
,

where the first inequality is given in [Pak]. Similarly,

qn − qn−1 ≤ k(Gn) ≤ qn ,

where the lower bound follows from (2.3) and upper bound is given in [MR, Lemma 5.9(ii)].
Finally,

1

4

(
1 + logq(n+ 7)/2

)3/4
qn(n−1)/2 ≤ b(Gn) ≤ 13

(
1 + logq(n+ 1)

)2.54
qn(n−1)/2 ,

see [LMT, Thm. 5.1].1 Theorem 1.1 then gives the upper and lower bounds:

1

16

(
1 + logq(n+ 7)/2

)3/2
qn(n−3)/2 ≤ K(Gn) ≤ 13

(
1 + logq(n+ 1)

)2.54
qn(n−1)/2 .

5.2. Induced multiplicities from a block subgroup. Let q be fixed, n = 2m, n → ∞,
and let Gn = GLn(q) be as above. Consider a subgroup Hn := (Gm × Gm) of Gn of index

[Gn : Hn] = q
n2

2
+O(n). Clearly, k(Hn) = k(Gm)2. Theorem 1.3 then gives:

C(Gn, Hn) = q
n2

4
+O(n) .

5.3. Induced multiplicities from a parabolic subgroup. Similarly, let n = 2m, Gn =
GLn(q), and let Bn < Gn be a subgroup of matrices (xij) ∈ Gn with xij = 0 for all i > m,

j ≤ m. Thus [Gn : Bn] = q
n2

4
+O(n). We also have k(Bn) = qO(n). To prove this, take a

normal subgroup An of upper right m×m matrices, Bn/An ' Hn as above, and consider the
action of Bn on An. Then use the exact formula in [FF] and estimates in [Pak] (we omit the
details). Now Theorem 1.3 gives:

C(Gn, Bn) = q
n2

8
+O(n) .

6. Further examples

6.1. Linear groups of rank 1. Let Gp := SL2(p), where p is a prime. Then:

|Gp| = p3 − p, k(Gp) = p+ 4, b(Gp) = p+ 1.

In this case the whole character table can be computed by hand, so the lower bound in
Theorem 1.1 is neither sharp nor useful.

1There does not seem to be a closed formula for b(GLn(q)), however the Steinberg character St is asymp-
totically the largest unipotent irreducible character; see discussion in [LMT, §5] (cf. [HSTZ]).
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6.2. Suzuki groups. Let Gn := Suz(q), where q = 22n+1 and n→∞. Then:

|Gn| = q2(q2 + 1)(q − 1), k(G) = q + 3, b(Gn) = q2 +O(q3/2).

By Theorem 1.1 we have a sharp bound: K(Gn) = q2 +O(q3/2).

6.3. Unitriangular groups. Let Hn = Un(q) be the group of upper triangular matrices
with ones on the diagonal. Let q be fixed and n→∞. We have:

|Hn| = q(
n
2), q

n2

12
+O(n) ≤ k(Hn) ≤ q

7n2

44
+O(n), b(Hn) = qµ(n),

where µ(n) = b(n − 1)2/4c, see [Isa1]. Here the lower bound on k(Hn) is by Higman [Hig],
and the upper bound on k(Hn) is by Soffer [Sof]. Note that Sherman’s bound (2.1) is quite
weak in this case. Similarly, the lower bound in (3.2) is very weak in this case, while the
upper bound is quite sharp. Theorem 1.1 then gives:

q
n2

11
+O(n) ≤ K(Hn) ≤ q

7n2

44
+O(n) .

It would be interesting to see if this bound can be improved, perhaps, by using the super-
character theory, see [DI, Yan].

6.4. Unitriangular subgroup. Let q be fixed. In notation above, note that Hn = Un(q) is

a subgroup of Gn = GLn(q) of index [Gn : Hn] = q
n2

4
+O(n), as n → ∞. Theorem 1.3 then

gives:

q
15n2

88
+O(n) ≤ C(Gn, Hn) ≤ q

n2

4
+O(n) .

6.5. The Monster group. Let M be the Monster group. We have:

|M | ≈ 8.08 · 1053, k(M) = 194, b(M) ≈ 2.59 · 1026 .

In notation of §4.2, we have ε(M) ≈ 11.02, which follows from many “large but not largest”
irreducible characters. On the other hand, equation (3.2) gives:√

|M |/k(M) ≈ 6.45 · 1025 ≤ b(M) ≈ 2.59 · 1026 ≤
√
|M | ≈ 8.99 · 1026 .

The large gap in the first inequality can be explained by a large number of characters with
very small degree.

We compare the exact value of K(M) computed directly from the character table [C+],
with estimates in Theorem 1.1:

b(M)2√
k(M)|M |

≈ 5.35 · 1024 ≤ K(M) ≈ 2.15 · 1025 ≤ b(M) ≈ 2.59 · 1026 .

Again both gaps can be similarly explained by the presence of many “relatively small” irre-
ducible characters which allow the isotypical components to be relatively evenly distributed
(cf. the proof of Theorem 1.1 in §7.2). In fact, K(M) is much larger than the average Kro-
necker multiplicity :

1

k(M)3

∑
ρ,ϕ,ψ∈Irr(M)

g(ρ, ϕ, ψ) ≈ 3.38 · 1022 ,

which can be explained by the fact that if even one of the three characters has small degree,
then so does g(ρ, ϕ, ψ), see (7.2).
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In fact, the bound A(G) ≥ |G| (see next section) is unusually tight in this case:2

A(M) = 808017424794512875894769468067441075690144312450960558

|M | = 808017424794512875886459904961710757005754368000000000

There is a simple explanation, of course: the centralizer sizes zα rapidly decrease as we go
down the list. Here are the first three of them other than z1 = |M |, corresponding to the
three largest maximal subgroups of M :

2|B| ≈ 8.31 · 1033, 225 |Co1| ≈ 1.40 · 1026, 3|Fi24| ≈ 3.77 · 1024.

When these are subtracted from A(M) we obtain a relatively small remainder:

A(M) − |M | − 2|B| − 225 |Co1| − 3|Fi24| ≈ 1.00 · 1019 .

7. Kronecker multiplicities

7.1. General inequalities. First, note:

g(ρ, ϕ, ψ) =
〈
ρ, ϕ · ψ

〉
=
〈
ρ · ϕ · ψ, 1

〉
.

This implies the symmetries

(7.1) g(ρ, ϕ, ψ) = g(ϕ, ρ, ψ) = g(ϕ,ψ, ρ) = . . .

In particular, we have a general upper bound:

(7.2) g(ρ, ϕ, ψ) ≤ ρ(1) ·min
{
ϕ(1)/ψ(1), ψ(1)/ϕ(1)

}
≤ ρ(1).

Proposition 7.1. Let ρ, ϕ, ψ ∈ Irr(G). Suppose g(ρ, ϕ, ψ) ≥ b(G)/a, for some a ≥ 1. Then:
ρ(1), ϕ(1), ψ(1) ≥ b(G)/a.

Proof. This follows immediately from (7.2) and the symmetries (7.1). �

7.2. Largest Kronecker multiplicity. Recall the definition of K(G) given in the introduc-
tion. Let

(7.3) A(G) :=
∑

ρ,ϕ,ψ∈Irr(G)

g(ρ, ϕ, ψ)2.

Lemma 7.2. We have:

(7.4) A(G) =
∑

α∈Conj(G)

zα ,

where zα = |C(α)| is the size of the centralizer of an element x ∈ α.

Proof of Lemma 7.2. By definition, we have:

g(ρ, ϕ, ψ) =
1

|G|
∑
x∈G

ρ(w)ϕ(x)ψ(x) =
1

|G|
∑
x∈G

ρ(w)ϕ(x)ψ(x),

2See A. Hulpke’s answer in https://math.stackexchange.com/questions/2668042

https://math.stackexchange.com/questions/2668042
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noting that χ(g−1) = χ(g) for finite groups. Hence, we can write the sum of squares as

A(G) =
∑

ρ,ϕ,ψ∈Irr(G)

g(ρ, ϕ, ψ)2 =
1

|G|2
∑
x,y∈G

∑
ρ

ρ(x)ρ(y)
∑
ϕ

ϕ(x)ϕ(y)
∑
ψ

ψ(x)ψ(y)

=
1

|G|2
∑
x,y∈G

(∑
ρ

ρ(x)ρ(y)

)3

=
1

|G|2
∑

α∈Conj(G)

(
|G|
zα

)2

(zα)3 =
∑

α∈Conj(G)

zα .

Here the last equality follows from orthogonality of the columns in the character table. �

Proposition 7.3. We have:

|G|1/2

k(G)3/2
≤ K(G) ≤ b(G).

Proof. In (7.4), we have A(G) ≥ z1 = |G|. This gives the lower bound. The upper bound
follows from (7.2). �

Theorem 1.2 can be viewed as a converse of Proposition 7.1.

Proof of Theorem 1.2. Let ρ be the character in the largest term in the RHS of

b(G)2

a2
≤ ϕ(1) · ψ(1) =

∑
ρ∈Irr(G)

g(ρ, ϕ, ψ) ρ(1).

On the one hand,

g(ρ, ϕ, ψ) ≥ 1

k(G) · b(G)
· b(G)2

a2
=

b(G)

a2k(G)
.

On the other hand,

ρ(1)2 ≥ g(ρ, ϕ, ψ) ρ(1) ≥ 1

k(G)
· b(G)2

a2
,

which implies the result. �

7.3. Refined Kronecker multiplicities. Fix ρ, ϕ ∈ Irr(G). Define the largest refined Kro-
necker multiplicity

K(G; ρ, ϕ) := max
ψ∈Irr(G)

g(ρ, ϕ, ψ)

Clearly, K(G; ρ, ϕ) ≤ K(G).

Proposition 7.4. For all ρ, ϕ ∈ Irr(G), we have:

ρ(1)ϕ(1)

k(G)1/2 |G|1/2
≤ K(G; ρ, ϕ) ≤ min

{
ρ(1), ϕ(1)

}
.

Proof. Let

A(ρ, ϕ) :=
∑
ψ

g(ρ, ϕ, ψ)2 .

Recall Burnside’s identity (3.1) and∑
ψ

g(ρ, ϕ, ψ)ψ(1) = ϕ(1)ρ(1).
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Now apply the Cauchy–Schwarz inequality to vectors
(
ψ(1)

)
,
(
g(ρ, ϕ, ψ)

)
∈ Rk(G), both in-

dexed by ψ ∈ Irr(G). We obtain:

A(ρ, ϕ) ≥ ρ(1)2ϕ(1)2

|G|
.

Therefore, for the maximal term in the summation A(ρ, ϕ), we have:

max
ψ

g(ρ, ϕ, ψ) ≥ ρ(1)ϕ(1)

k(G)1/2 |G|1/2
.

This implies the lower bound. The upper bound follows from (7.2). �

Proof of Theorem 1.1. In Proposition 7.4, take ρ, ϕ ∈ Irr(G) s.t. ρ(1) = ϕ(1) = b(G). �

Remark 7.5. Note that Theorem 1.1 and equation (3.2) imply the lower bound in Propo-
sition 7.3. In fact, the latter lower bound is same bound mentioned in Remark 1.5 for the
diagonal subgroup K(H) = C(H ×H,H).

8. Induced multiplicities

8.1. General inequalities. Let H < G be a subgroup of a finite group G of index [G :
H] = |G|/|H|. For all ρ ∈ Irr(G) and π ∈ Irr(H), define the induced multiplicities c(ρ, π) as
follows:

c(ρ, π) :=
〈
ρ, π↑GH

〉
=
〈
ρ ↓GH , π

〉
.

We have:

(8.1)
∑

ρ∈Irr(G)

c(ρ, π) ρ(1) = [G : H] · π(1) and
∑

π∈Irr(H)

c(ρ, π)π(1) = ρ(1).

Lemma 8.1. For every H < G, we have:

(8.2)
∑

ρ∈Irr(G)

∑
π∈Irr(H)

c(ρ, π)2 =
∑

α∈Conj(H)

zα(G)

zα(H)
,

where zα(H) = |CH(x)| denotes the size of the centralizer of x ∈ α within H, and zα(G) =
|CG(x)| is the size of the centralizer within G.

Proof. Denote by ξ = ρ|H the restriction of the character ρ to H. We have:

c(ρ, π) =
∑

α∈Conj(H)

z−1
α ξ(α)π(α),

Then: ∑
ρ∈Irr(G)

∑
π∈Irr(H)

c(ρ, π)2 =
∑

α,γ∈Conj(H)

z−1
α z−1

γ

∑
ρ∈Irr(G)

∑
π∈Irr(H)

ξ(α)ξ(γ)π(α)π(γ)

=
∑

α∈Conj(H)

zα(H)−2
(
zα(H) · zα(G)

)
=

∑
α∈Conj(H)

zα(G)

zα(H)
,

as desired. �

Corollary 8.2. For every H < G, we have:∑
ρ∈Irr(G)

∑
π∈Irr(H)

c(ρ, π)2 ≥ [G : H].
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Proof. Since in (8.2) the RHS ≥ z1(G)/z1(H) = [G : H], we obtain the inequality. �

Remark 8.3. Note that Lemma 7.2 easily follows from Lemma 8.1 by taking the diagonal
subgroup in G×G as in Remark 1.5. The details are straightforward. We chose to keep both
proofs for clarity of exposition.

Lemma 8.4. For every H < G, we have:∑
ρ∈Irr(G)

c(ρ, π)2 ≤ [G : H] and
∑

π∈Irr(H)

c(ρ, π)2 ≤ [G : H].

Proof. We have:∑
ρ∈Irr(G)

c(ρ, π)2 ≤
∑

ρ∈Irr(G)

c(ρ, π)
ρ(1)

π(1)
=

1

π(1)
· π(1)[G : H] = [G : H],

∑
π∈Irr(H)

c(ρ, π)2 ≤
∑

π∈Irr(G)

c(ρ, π)
π(1) · [G : H]

ρ(1)
=

1

ρ(1)
· ρ(1)[G : H] = [G : H],

where we repeatedly use both equations in (8.1). �

Corollary 8.5. For every H < G, we have:

[G : H] ≤
∑

ρ∈Irr(G)

∑
π∈Irr(H)

c(ρ, π)2 ≤ [G : H] min
{
k(G), k(H)

}
.

Note that k(H) can be much larger that k(G). For example, take H = Zn/22 and G = Sn.

Then k(H) = 2n/2, while k(Sn) = eΘ(
√
n).

8.2. Largest induced multiplicity. Recall the definition of C(G,H) from the introduction.
We have:

Proof of Theorem 1.3. The lower bound follows immediately from Corollary 8.2, while the
upper bound follows from Lemma 8.4. �

Proof of Theorem 1.4. Let π be the character in the largest term in the RHS of

|G|1/2/a ≤ ρ(1) =
∑

π∈Irr(H)

c(ρ, π)π(1).

On the one hand, by the upper bound in Theorem 1.3 we have:

π(1) ≥ ρ(1)

k(H) ·C(G,H)
≥ |G|1/2/a

k(H) · [G : H]1/2
=
|H|1/2

ak(H)
.

On the other hand,

c(ρ, π) ≥ ρ(1)

k(H) · b(H)
≥ |G|1/2/a

k(H) · |H|1/2
=

[G : H]1/2

ak(H)
,

as desired. �

Remark 8.6. Theorem 1.4 above is patterned after Theorem 1.2. Note, however, that we do
not have an analogue of a much simpler Proposition 7.1.
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9. Final remarks

9.1. The study of b(Sn) was initiated back in 1954, in one of the earliest uses of computer
calculations in combinatorics and algebra [BMSW]. The study continued in a long series
of papers [BDJ, Mc, LoS, VK1, VK2, VP], in part due to connections to random unitary
matrices and longest increasing subsequences in random permutations. Let us single out
papers [LoS, VK1] which determined the limit shape of the partition λ corresponding to
the largest character χλ, and [BDJ] which determined the exact distribution of shapes λ.
Stanley’s questions are best viewed as part of this research direction. We refer to [Rom] for
a comprehensive overview of the area.

For general groups, parameter Snyder in [Sny] introduced parameter e(G) defined by
b(G)

(
b(G) + e(G)

)
= |G|. Parameter e(G) is closely related to ε(G), and was the moti-

vation for a series of recent papers improving bound on both [HLS, HHN, Isa2, LMT].

9.2. The literature on Kronecker and Littlewood–Richardson coefficients is so vast, there is
no single source that would give it justice. We refer to [Sta2] for a comprehensive introduction
to the subject and to [Ful, vL] for connections to Algebra and Geometry, and to [PPY] for
further references.

We should mention that from the point of view of Schur duality, one can describe the clas-
sical Littlewood–Richardson coefficients cλµν of Sn as a special case of Kronecker multiplicities
for GLN (q). Indeed, by taking N ≥ 2`(λ) where `(λ) is the number of parts in λ, and taking
q large enough, the Kronecker multiplicities g(χλ, χµ, χν) of the corresponding GLN (q)-reps
become polynomial in q. Letting q → 1 in these polynomials recovers cλµν . Thus, estimating
the Kronecker multiplicities for GLN (q) is likely to be difficult.

9.3. It was shown by Bufetov [Buf] that w.r.t. the Plancherel measure there is a concentration
of

1√
n

log
χλ(1)2

n!
as n→∞

at some h ∈ [−2c1,−2c2], where c1, c2 are given in (4.2). If such h was determined, this
would further improve the asymptotic bounds on ε(Sn) given in the proof of Theorem 4.1.
Numerical experiments in [VP] suggest that there is a limit

η = lim
n→∞

1√
n

log
b(Sn)2

n!

and that h < η.

9.4. It was noted by McKay [Mc] and Kowalski [Kow, p. 80] that for some families of groups
a nice interpretation for the sum of degrees are known:

f(G) =
∑

χ∈Irr(G)

χ(1).

Namely, f(Sn) is the number of involutions, f
(
GLn(q)

)
is the number of symmetric matrices,

etc. We refer to [Vin] for the unified view of these results and review of prior work by Gow,
Klyachko, and others. We should mention that for our applications, these formulas give
weaker bounds compared to (3.2). For Sn, this was pointed out in [VK2], who improved upon
McKay’s lower bound.
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9.5. It was pointed out to us by the referee that the lower bound in Theorem 1.1 can be
strengthened to

b(G)2

f(G)
≤ K(G),

since f(G) ≤ k(G)1/2 |G|1/2 by the Cauchy–Schwarz inequality.
Similarly, by analogy with f(G) and A(G), one can also bound the average Kronecker

multiplicity via:

k(G)2 ≤
∑

ρ,ϕ,ψ∈Irr(G)

g(ρ, ϕ, ψ) ≤ k(G) |G|.

(cf. §6.5). Both sides are tight for abelian groups. Thus, abelian groups have the smallest
average Kronecker multiplicity among groups of the same order.

9.6. It would be interesting to see if we always have C(G,H) ≤
√
b(G)/b(H), which would

be sharper in some cases and match the upper bound K(G) ≤ b(G) in the diagonal embedding
case, see Remark 1.5. We have not checked this speculation on a computer.
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