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THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE
BOLLOBÁS-RIORDAN POLYNOMIAL

SERGEI CHMUTOV AND IGOR PAK

Abstract. We show that the Kauffman bracket [L] of a checkerboard colorable virtual
link L is an evaluation of the Bollobás-Riordan polynomial RGL of a ribbon graph
associated with L. This result generalizes the celebrated relation between the Kauffman
bracket and the Tutte polynomial of planar graphs.

Introduction

The theory of virtual links was discovered independently by L. Kauffman [K3] and
M. Goussarov, M. Polyak, and O. Viro [GPV]. Virtual links are represented by their di-
agrams which differ from ordinary knot diagrams by presence of virtual crossings, which
should be understood not as crossings but rather as defects of our two-dimensional pic-
ture. They should be treated in the same way as the extra crossings appearing in planar
pictures of non-planar graphs. Virtual link diagrams are considered modulo the classical
Reidemeister moves

and the virtual Reidemeister moves

Here the virtual crossings are encircled for the emphasis.
N. Kamada introduced [Ka1, Ka2] the notion of a checkerboard coloring of a virtual

link diagram. This is a coloring of one side of the diagram in its small neighborhood,
such that near a classical crossing it alternates like on a checkerboard, and near a virtual
crossing the colorings go through without noticing the crossing strand and its coloring.
Not every virtual link is checkerboard colorable. Here are two examples.

checkerboard colorable not checkerboard colorable

A similar notion was introduced and explored by V. Manturov (see [M] and the references
therein), who called them atoms.

Key words and phrases. Knot invariants, Jones polynomial, Kauffman bracket, Tutte polynomial,
Bollobás-Riordan polynomial, ribbon graph, virtual knots and links.
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Note that the left virtual knot diagram above is alternating in a sense that classical
overcrossings and undercrossing alternate, while the right virtual diagram is not alter-
nating. It was proved in [Ka1] that a virtual link diagram is checkerboard colorable if
and only if it can be made alternating by a number of classical crossing changes. In
particular, every classical link diagram is checkerboard colorable.

In [Ka1, Ka2] N. Kamada showed that many classical results on knots and links can be
extended to checkerboard colorable virtual links. This paper is devoted to a new result
in this direction. Namely, we generalize the celebrated theorem of M. Thistlethwaite [Th]
(see also [K1, K2]), which established a connection between the Jones polynomial for links
and knots and the Tutte polynomial for graphs. Formally, Thistlethwaite showed that, up
to a sign and a power of t, the Jones polynomial VL(t) of an alternating link L is equal to
the specialization of the Tutte polynomial TΓL

(−t,−t−1) of the corresponding graph ΓL.
For virtual links, the graph ΓL is naturally embedded into a surface rather than into
the plane, i.e. it becomes a ribbon graph. In this case, instead of the Tutte polynomial
we should consider its generalization, the Bollobás-Riordan polynomial. Interestingly,
the Bollobás-Riordan polynomial was introduced with (very different) knot theoretic
applications in mind [BR2, BR3].

The paper is structured as follows. In the first two sections we recall definitions of
the Kauffman bracket of virtual links and the Bollobás-Riordan polynomial of ribbon
graphs. In section 3 we construct a ribbon graph from a checkerboard colorable virtual
link diagram and state the Main Theorem for alternating virtual links. As often appears
in these cases, the proofs of the results about (generalizations of) the Tutte polynomial
are quite straightforward. The proof of the Main Theorem is postponed until section 5. In
section 4 we extend our results to signed ribbon graphs and derive the Jones polynomial
of an arbitrary checkerboard colorable virtual link as an appropriate evaluation. We
conclude with final remarks and an overview of the literature.

1. The Kauffman bracket of virtual links.

Let L be a virtual link diagram. Consider two ways of resolving a classical crossing.
The A-splitting, ; , is obtained by uniting the two regions swept out by the
overcrossing arc under the counterclockwise rotation until the undercrossing arc. Simi-
larly, the B-splitting, ; , is obtained by uniting the other two regions. A state S
of a link diagram L is a way of resolving each classical crossing of the diagram. Denote
by S(L) the set of the states of L. Clearly, a diagram L with n crossings has |S(L)| = 2n

different states.
Denote by α(S) and β(S) the number of A-splittings and B-splittings in a state S,

respectively. Also, denote by δ(S) the number of components of the curve obtained from
the link diagram L by all splittings according to the state S ∈ S(L).

Definition 1.1. The Kauffman bracket of a diagram L is a polynomial in three variables
A, B, d defined by the formula:

(1) [L](A,B, d) :=
∑

S∈S(L)

Aα(S) Bβ(S) dδ(S)−1 .

Note that [L] is not a topological invariant of the link and in fact depends on the
link diagram. However, it defines the Jones polynomial JL(t) by a simple substitution
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A = t−1/4, B = t1/4, d = −t1/2 − t−1/2:

JL(t) := (−1)w(L)t3w(L)/4[L](t−1/4, t1/4,−t1/2 − t−1/2) .

Here w(L) denotes the writhe, determined by the orientation of L as the sum over the
classical crossings of L of the following signs :

+ −

The Jones polynomial is a classical topological invariant (see e.g. [B, M]).

Example 1.2. Consider the virtual knot diagram L from the example above and shown
on the left of the table below. It has two virtual and three classical crossings, so there are
eight states for it, |S(L)| = 8. The curves obtained by the splittings and the corresponding
parameters α(S), β(S), and δ(S) are shown in the remaining columns of the table.

(α, β, δ) (3, 0, 1) (2, 1, 2) (2, 1, 2) (1, 2, 1)

(2, 1, 2) (1, 2, 1) (1, 2, 3) (0, 3, 2)

In this case the Kauffman bracket of L is given by

[L] = A3 + 3A2Bd + 2AB2 + AB2d2 + B3d .

It is easy to check that JL(t) = 1.

2. The Bollobás-Riordan polynomial.

Let Γ = (V, E) be a undirected graph with the set of vertices V and the set of edges E
(loops and multiple edges are allowed). Suppose in each vertex v ∈ V there is a fixed
cyclic order on edges adjacent to v (loops are counted twice). We call this combinatorial
structure a ribbon graph, and denote it by G. One can represent G by making vertices
into ‘discs’ and connecting them by ‘ribbons’ as prescribed by the cyclic orders (see
Example 2.2 below). This defines a 2-dimensional surface with boundary, which by a
slight abuse of notation we also denote by G.

Formally, G is the surface with boundary represented as the union of two sets of
closed topological disks, corresponding to vertices v ∈ V and edges e ∈ E, satisfying the
following conditions:
• these discs and ribbons intersect by disjoint line segments,
• each such line segment lies on the boundary of precisely

one vertex and precisely one edge,
• every edge contains exactly two such line segments.
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It will be clear from the context whether by G we mean the ribbon graph or its underlying
surface. In this paper we restrict ourselves to oriented surfaces G. We refer to [GT] for
other definitions and references.

For a ribbon graph G, let v(G) = |V | denote the number of vertices, e(G) = |E|
denote the number of edges, and k(G) denote the number of connected components of G.
Also, let r(G) = v(G) − k(G) be the rank of G, and n(G) = e(G) − r(G) be the nullity
of G. Finally, let bc(G) be the number of connected components of the boundary of the
surface G.

A spanning subgraph of a ribbon graph G is defined as a subgraph which contains
all the vertices, and a subset of the edges. Let F(G) denote the set of the spanning
subgraphs of G. Clearly, |F(G)| = 2e(G).

Definition 2.1. The Bollobás-Riordan polynomial RG(x, y, z) of a ribbon graph G is
defined by the formula

(2) RG(x, y, z) :=
∑

F∈F(G)

xr(G)−r(F )yn(F )zk(F )−bc(F )+n(F ) .

This version of the polynomial is obtained from the original one [BR2, BR3] by a simple
substitution. Note that for a planar ribbon graph G (i.e. when the surface G has genus
zero) the Euler’s formula gives k(F ) − bc(F ) + n(F ) = 0 for all F ⊆ G. Therefore, the
Bollobás-Riordan polynomial RG does not contain powers of z. In fact, in this case it is
essentially equal to the classical Tutte polynomial TΓ(x, y) of the (abstract) core graph Γ
of G:

RG(x− 1, y − 1, z) = TΓ(x, y) .

Similarly, a specialization z = 1 of the Bollobás-Riordan polynomial of an arbitrary
ribbon graph G, gives the Tutte polynomial once again:

RG(x− 1, y − 1, 1) = TΓ(x, y) .

We refer to [BR2, BR3] for proofs of these formulas and to [B, W] for general background
on the Tutte polynomial.

Example 2.2. Consider the ribbon graph G shown on the left in the table below. The
other columns show eight possible spanning subgraphs F and the corresponding values
of k(F ), r(F ), n(F ) and bc(F ).

(k, r, n,bc) (1, 1, 2, 1) (1, 1, 1, 2) (1, 1, 1, 2) (1, 1, 0, 1)

(1, 1, 1, 2) (1, 1, 0, 1) (2, 0, 1, 3) (2, 0, 0, 2)
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Now use the definition to compute the corresponding Bollobás-Riordan polynomial:

RG(x, y, z) = y2z2 + 3y + 2 + xy + x

3. Ribbon graphs from virtual diagrams and the Main Theorem.

In this section we construct a ribbon graph GL starting with an alternating virtual
link diagram L.

It was shown in [Ka2] that every alternating link diagram L has a canonical checker-
board coloring which can be constructed in the following way. Near every classical crossing
we color black the vertical angles swept out by the overcrossing arc under the counter-
clockwise rotation, i.e. angles that are glued together by the A-splitting. Since the
diagram is alternating, it is evident that all these local colorings near classical cross-
ings agree with each other and can be extended to a global checkerboard coloring. For
example, a checkerboard coloring of the virtual knot in the introduction is canonical.

Topologically a coloring is represented by a bunch of annuli. Each annulus has two
boundary circles, an exterior circle which goes along the link except small arcs near
classical crossings where it jumps from one strand to another one, and an interior circle.
In order to construct a ribbon graph from a (virtual) link diagram we replace every
crossing by an edge-ribbon connecting the corresponding arcs of the exterior circles:

The ribbon graph GL is obtained by gluing discs along the interior circles of the annuli
of the coloring. Here is a ribbon graph constructed from a virtual link diagram in the
introduction:

= =

Note that here we ignore the way a ribbon graph is embedded into R3 and consider it as
a 2-dimensional surface. Of course, every ribbon graph can be obtained in this way from
an appropriate virtual link diagram.

Main Theorem 3.1. Let L be an alternating virtual link diagram and GL be the corre-
sponding ribbon graph. Then

[L](A, B, d) = Ar(G)Bn(G)dk(G)−1 RGL

(
Bd

A
,
Ad

B
,
1
d

)
.

We should warn the reader that although both the Kauffman bracket and the Bollobás-
Riordan polynomial are polynomials in three variables, the former has only two free
variables since [L] is always homogeneous in A and B. This follows from the identity
α(S) + β(S) = e(S) for all S ∈ S(L). Another way to see this is to note that the values
at which the Bollobás-Riordan polynomial RG(x, y, z) is evaluated in the theorem satisfy
the equation xyz2 = 1. Thus, the situation here is different from the planar case where
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the Kauffman bracket [LG](A,B, d) and the Tutte polynomial TΓ(x, y) determine each
other.

4. Extensions and applications.

Define a signed ribbon graph Ĝ to be a ribbon graph G given by (V, E), and a sign
function ε : E → {±1}. For a spanning subgraph F ⊂ Ĝ denote by e−(F ) the number
of edges e ∈ E with ε(e) = −1. Denote by F = Ĝ − F a complement to F in Ĝ, i.e. a
spanning subgraph of Ĝ with only those (signed) edges of G that do not belong to F .
Finally, let

s(F ) =
e−(F )− e−(F )

2
We define the signed Bollobás-Riordan polynomial R bG(x, y, z) as follows:

(3) R bG(x, y, z) :=
∑

F∈F( bG)

xr(G)−r(F )+s(F )yn(F )−s(F )zk(F )−bc(F )+n(F ) .

Any checkerboard colorable virtual link diagram L can be made alternating L̃ by
switching some classical overcrossings to undercrossings [Ka1]. We can label the edges
of GeL corresponding to the crossings where the switching was performed by −1, and the
other edges by +1. The result is a signed ribbon graph denoted by ĜL

Theorem 4.1. Let L be a checkerboard colorable virtual link diagram, and ĜL be the
corresponding signed ribbon graph. Then

[L](A,B, d) = Ar(G)Bn(G)dk(G)−1 R bGL

(
Bd

A
,
Ad

B
,
1
d

)
.

The proof follows verbatim the proof of the Main Theorem (see the next section). We
leave the details to the reader.

The following result is an immediate consequence of Theorem 4.1.

Corollary 4.2. Let Ĝ be a signed ribbon graph corresponding to a checkerboard colorable
virtual link diagram L endowed with an orientation. Then

JL(t) = (−1)w(L) t
3w(eL)−r( bG)+n( bG)

4
(−t1/2−t−1/2

)k( bG)−1
R bG(

−t−1,−t−1−1,
1

−t1/2− t−1/2

)
.

In particular, if Ĝ is a planar ribbon graph with only positive edges and Γ is its core
graph, we have the following well-known relation:

JL(t) = (−1)w(L)t
3w(eL)−r( bG)+n( bG)

4
(−t1/2 − t−1/2

)k( bG)−1
TΓ(−t,−t−1).
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5. Proof of the Main Theorem.

The notation used in the definitions of the Kauffman bracket (Definition 1.1) and the
Bollobás-Riordan polynomial (Definition 2.1) hints on how to prove the Main Theorem.
Since the crossings of the diagram L correspond to the edges of G = GL, there is a natural
one-to-one correspondence ϕ : S(L) → F(G) between the states S ∈ S(L) and spanning
subgraphs F ⊆ G. Namely, let an A-splitting of a crossing in S mean that we keep the
corresponding edge in the spanning subgraph F = ϕ(S). Similarly, let a B-splitting in S
mean that we remove the edge from the subgraph F = ϕ(S).

By definition, we have δ(S) = bc(F ), for all F = ϕ(S). Furthermore, we easily obtain
the following relation between the parameters:

e(F ) = α(S), e(G)− e(F ) = β(S) ,

for all S ∈ S(L), and F = ϕ(S). Now, for a spanning subgraph F ∈ F(G), consider the
term xr(G)−r(F )yn(F )zk(F )−bc(F )+n(F ) of RG(x, y, z). After a substitution

x =
Bd

A
, y =

Ad

B
, z =

1
d

and multiplication of this term by Ar(G)Bn(G)dk(G)−1 as in the Main Theorem, we get

Ar(G)Bn(G)dk(G)−1(A−1Bd)r(G)−r(F )(AB−1d)n(F )d−k(F )+bc(F )−n(F )

= Ar(G)−r(G)+r(F )+n(F )Bn(G)+r(G)−r(F )−n(F )dk(G)−1+r(G)−r(F )+n(F )−k(F )+bc(F )−n(F )

= Ar(F )+n(F )Bn(G)+r(G)−r(F )−n(F )dk(G)−1+r(G)−r(F )−k(F )+bc(F ) .

It is easy to see that r(F )+n(F ) = e(F ), and k(F )+ r(F ) = v(F ) = v(G). Therefore,
k(G)− k(F ) + r(G)− r(F ) = 0, and we can rewrite our term as

Ae(F )Be(G)−e(F )dbc(F )−1 .

In terms of the state S = ϕ−1(F ) ∈ S(L) this term is equal to

Aα(S) Bβ(S) dδ(S)−1 ,

which is precisely the term of [L] corresponding to the state S ∈ S(L). This completes
the proof. ¤

6. Final remarks and open problems.

1. Trivalent ribbon graphs are the main objects in the finite type invariant theory
of knots, links and 3-manifolds, while general ribbon graphs appeared in the literature
under a variety of different names (see e.g. [DKC, BR2, K1]). Embeddings of ribbon
graphs into 3-space are studied in [RT].

2. The Bollobás-Riordan polynomial can be defined by recurrent contraction-deletion
relations or by spanning tree expansion similar to those of the Tutte polynomial, except
that deletion of a loop is not allowed. We refer to [BR2, BR3] for the details. We should
note that [BR3] gives an extension to unorientable surfaces as well. One can also find the
contraction-deletion relations and the spanning tree expansion for the signed Bollobás-
Riordan polynomial defined by (3). For a planar signed ribbon graph Ĝ, the signed
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Bollobás-Riordan polynomial R bG is related to Kauffman’s signed Tutte polynomial Q[Ĝ]
from [K2] by the formula

R bG(x, y, z) = x
v( bG)+1

2
−k( bG) y

−v( bG)+1
2 Q[Ĝ]

(
(y/x)1/2, 1, (xy)1/2

)
.

So, our version of R bG may be considered as a generalization of the polynomial Q[Ĝ] to
signed ribbon graphs. If, besides planarity, all edges of Ĝ are positive, then R bG is related
to the dichromatic polynomial Z[Γ](q, v) (see [K2]) of the underlying graph Γ:

R bG(x, y, z) = x−k( bG) y−v( bG) Z[Γ](xy, y) .

3. It would be interesting to generalize the Bollobás-Riordan polynomial for colored
ribbon graphs [BR1, Tr] and prove the corresponding relation with the Kauffman bracket.
Let us also mention that in [J] (see also [Tr]), Jaeger found a different relation between
links and graphs and proved that the whole Tutte polynomial, not just its specialization,
can be obtained from the HOMFLY polynomial of the appropriate link. Extending these
results to ribbon graphs is an important open problem.

Finally, recent results concerning combinatorial evaluations of the Tutte and Bollobás-
Riordan polynomials [KP] leave an open problem of finding such evaluations for general
values of the polynomial RG. It would be interesting to use the Main Theorem to extend
the results of [KP].
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