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Abstract

Let G be a finite group. Efficient generation okarly uniformly distributedandom elements
in G, starting from a given set of generators @f is a central problem in computational group
theory. In this paper we demonstrate a weakness in the popular “product replacement algorithm,”
widely used for this purpose. The main results are the following AgiG) be the set of generating
k-tuples of elements af. Consider the distribution of the first components ofkHeples inN; (G)
induced by the uniform distribution oveX} (G). We show that there exist infinite sequences of
groupsG such that this distribution is very far from uniform in two different senses: (1) its variation
distance from uniform is> 1 — ¢; and (2) there exists a short word (of length (log|l6g) @ *))
which separates the two distributions with probability 2. The class of groups we analyze is direct
powers of alternating groups. The methods used include statistical analysis of permutation groups,
the theory of random walks, the AKS sorting network, and a randomized simulation of monotone
Boolean operations by group operations, inspired by Barrington’s work on bounded-width branching
programs. The problem is motivated by fhreduct replacement algorithmvhich was introduced in
[Comm. Algebra 23 (1995) 4931-4948] and is widely used. Our results show that for certain groups
the probability distribution obtained by the product replacement algorithm has a bias which can be
detected by a short straight line program.
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1. Introduction

Let G be a finite group. A sequence bfjroup elementsgs, ..., gx) (gi € G) is called
ageneratingk-tuple of G if the g; generates. Let ;. (G) be the set of all generatinig
tuples of G, and letN; (G) = [Nk (G)|. Let gx(G) denote the probability that uniformly
distributed independent random group elements genérate
Ni(G)

IGIk
Let @ denote the probability distribution af of the first components df-tuples chosen
uniformly from N, (G). This distribution appears as the limiting distribution obtained
by the “product replacement algorithm,” a widely used heuristic intended to rapidly
generate nearly uniformly distributed random elements ifsee the next section). While
the question of mixing rate for this algorithm remains open for small valugs (ske
Section 3), we show that even the limiting distributioh €n bevery far from uniformin
this case.

oi(G) =

2. Themain results

The groups on which we demonstrate this anomaly are the direct powers
G=A'=A, x Ay x--- X A, (mtimes)

where A, is the alternating group of degree(the group of even permutations @f> 5
elements).

A probability distributionoverG is a function R G — R such that¥g € G) (R(g) > 0)
andzgeG R(g) =1.

For a function TG — R and a subseB € G we write T(B) = deB T(g). Thetotal
variation of T is half of its £1-norm: || T||;, = maxgc¢ |T(B)| = (1/2) dec |T(g)|. The
variation distanceof the probability distributions R and S ovéris defined agR — S|, .
This quantity is between 0 and 1.

Let U denote the uniform distribution over. The bias of the distribution R is the
variation distance between R and U. In other words, the bias of R is

1

R(g) — )
(&) Gl

1
R— = R(B) —U(B)| = =
IR—Ullr ?é"é" (B) —U(B)| 2&;

Thebias of a subseB c G under R is the quantityR(B) — U(B)|.

Theorem 2.1. Let G = A}, wherem =n!/8. Then
HQ’(—UHIU—)l asn — oo
assumingc > 4 andk = o(n).
We note that forn = n!/8, the groupG is generated by 2 elements, but a uniform

random pair of elements (or even a randoituple of elements fok = o(n)) is unlikely to
generate it. The intuition behind the proof builds on this discrepancy.
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To prove the theorem we find an explicit ¢tsuch that &(B) — 0 while U(B) — 1.
The setB can be chosen to be a union of conjugacy classés amd therefore has direct
significance to applications in computational group theory.

Let w be a word over the alphab{e:tl.il, i =1 2,...}. Substituting elements af for
the x; assignsw a value inG. Assume that the; are chosen independently from the
probability distributionP over G. We denote bywv[ P] the probability distribution of the
value ofw.

Terminology. We say that an event factorially unlikelyif its probability is O (n=<") for

some constant > 0; and it isfactorially likelyif its probability is 1— O (n="). (The letter

¢ will be used to denote different positive constants at each occurrence in this paper. The
expression “factorially (un)likely” will always refer to the parameteregardless of the
other parameters such asndm involved in the definition of the groups in question.)

Theorem 2.2. There exists a family of words, ; with the following properties. The length
of W, x is n9®, Let w(n) — oo, w(n) = o(n). Alsq let k = k(n) > 4 and k = o(n).
Setm = n*k*™_ Let G = A”. Thenw[Q¥] = 1 is factorially likely (has probability
1— 0®m™ ")), whilew[U] = 1is factorially unlikely.

Remark 2.3. Note that if we choosew(n) to be \/n, the length ofw becomes
(loglog|G|)?®. This is at most polylogarithmic compared to the bit-length of the input:
the names of most group elements requrdog|G|) bits (in any encoding of the group
elements).

Intuitively, the theorem implies that the probability distributiod @ so far from
uniform that even the evaluation of a polylog-length (compared tg|d®g) word will
show extreme bias if we use*@s a substitute for the uniform distribution. (Assuming
that the group elements are encoded by strings of uniform length, this length must be
£2(log|G|).) The proof of Theorem 2.2 is based on a probabilistic simulation of the
monotone Boolean operations AND and OR by group operations. We also employ some
known results in probabilistic group theory and the theory of random walks.

3. The*"product replacement algorithm”

It is known that nearly uniformly distributed random elements of a finite group can
be constructed using a polynomial number of group operations, starting from any given
set of generators [Bbl]. However, the number of operations proven in [Bbl] to guarantee
near-uniformity is rather larg® ((log|G|)®), not suitable in practice. Therefore, heuristic
algorithms are used.

One such heuristic, theroduct replacement algorithmis an important recent
advancement in symbolic algebra [CLMNO] (see also [Bb3,Ka,Pa2,PaB]). It was designed
by Leedham-Green and Soicher to generate efficiently nearly uniform group elements. It
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is by far the most popular practical generator of random group elerhémisiemented in
the two symbolic algebra packages most frequently used in computational group theory,
GAP [Sc] and Magma [BoC].

The product replacement algorithm works as follows [CLMNO]. We construct a Markov
chainM =M (G, k) = {X,} on N (G). Let X, = (g1, ..., gk) € Nx(G). Define

Xl‘+l:(gls"'shj7"'7gk)s

whereh; = g;¢! or h; = g*'g;, where the paili, j), 1<i,j <k, i # j is chosen
uniformly; the order of multiplication and the exponeirit are determined by independent
flips of a fair coin.

The algorithm runs the Markov chaidl for T steps, starting from a given set of
generators. Then it outputs a random compogestg; of the generating-tuple Xr.

The Markov chainM is reversible and aperiodic, and the uniform distribution is
stationaryM is irreducible, and therefore ergodic, if and only if it is connected. Therefore,
if the chainM is connected, it can be used for approximate sampling fkQiG).

Let x(G) andx(G) denote the smallest and the largest size, respectively, of a minimal
generating set. It is conjectured that for> »(G) + 1, the chainM (G, k) is always
connected. However, this problem remains wide open.

It was shown in [CLMNO] (cf. [DsS2]) that > x + x suffices for connectivity of
M (G, k). This, however, is a rather weak result becak@&) tends to be close to ldgr|.

It was shown in [Pa2] that i& is simple then fok > 3, the chainrM (G, k) has a “giant
component,” comprising a2 o(1) fraction of the configuration space.

Empirical tests seem to indicate that for> »(G) + 1, the chainM mixes rapidly
[CLMNO,Le], but no results have been proved in this direction.

Observe that there can be two types of error when we try to generate a nearly uniform
group element by this procedure. First, we may stop too soon (the distributdon isfnot
close to the stationary distribution dvi (G)); second, even the stationary distribution on
N (G) may not yield (nearly) uniformly distributed elements@f

The former problem (a problem of mixing rate) has been studied by several sets of
authors (see [ChG,DsSI,DsS2,Pa2,PaB]). The breakthrough came in [Pa3], where the
second named author showed a polynomial mixing time in the kas€*(log|G|). We
shall note the absence of the second type of error in this case (see [PaZ2]).

While the presence of the second type of error was observed in [CLMNOY], the present
paper seems to be the first one to address the magnitude of this problem.

Let G be a finite group and let‘Qbe the probability distribution of the product of all
elements in a uniformly chosen generatinguple (g1. ..., gx) € Ni(G). Let @ denote
the probability distribution of the random component in a uniformly chosen element
of Nx(G). This is the limit distribution of the algorithm output whéh— oo if M is
ergodic.

Note that(gz, g2, ..., gx) e Nk (G) ifandonly if (g1g2- - - gk, g2, - . ., gx) € Nx(G). The
following is now immediate and does not depend on the ergodiciky of

1 Partly in reaction to the present work, Charles Leedham-Green has proposed new variants of the algorithm
which avoid the nonuniform asymptotic behavior discussed in this paper [Le].
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Proposition 3.1. Let G be a finite group and > 1. Thenfor all g € G,
Qi) = Q) =Q"(®).

Now Theorem 2.1 shows that the product replacement algorithm will not produce
(nearly) uniform group elements for small valuesca#ven ifM (G, k) is ergodic. Indeed,

takeG = A"/® 1 > 5. Fork = o(n) we obtain
HQk—UHIU—) 1 asn— oc.

It is known thatG can be generated by two elements (see [Ha,Kal]). Thus, taking
k = max10, x(G)} as suggested in [CLMNO] will not give (nearly) uniform elements
of G. Note also that it is not even clear whether the underlying graph of the Markov chain
M is connected in this case (cf. [DsG,Paz2]).

Furthermore, Theorem 2.2 implies that the bias can be detected by a very short word
(length (loglog|G|)?®). Thus, at least in theory, Monte Carlo algorithms which call a
product replacement subroutine may be unreliable. Independent computer experiments by
Leedham-Green and Niemeyer [Le] tend to confirm this point.

4, Statisticsof element orders

A particularly important question in computational group theory is to sample the
orders of elements faithfully. The authors of [CLMNO] performegtest on the order
distribution (and other characteristics) of the group elements for certain important classes
of matrix groups and found no significant bias in the output of the product replacement
algorithm for rather small values @f (T < 100 in all their examples).

Such bias, in fact, does exist. As pointed out in [CLMNO], it is obvious that the identity
element is always underrepresented in generatingples, and therefore’Qan never be
exactly uniform and it cannot even faithfully represent the element orders. In fact, if both
|G| andk are bounded, then this observation gives a constant bias against the identity, the
only element of order 1. For instance, f6r= Z, = {0, 1} (0 is the “identity”) it is clear
that F(0) = 1/2 — &, and @ (1) = 1/2 + 8§, wheres, = 1/2(2¢ — 1), hence the bias in
this case i/ Q% — U||;, = .

This bias is then inherited by groups of arbitrarily large size. Indeed, letGiewZ,,
the cyclic group of order 2 wherep is a large prime. The has a (unique) subgroup
of index 2. An easy calculation shows that the biagiofinder @ is |Q*(H) — U(H)| =
8k + 0(1/p*—1) and therefore the bias of the distributiof

|Q° =Vl =8+ 0(1/p" )

for this class of group§'.

All elements ofH have odd orders and all elements®f, H have even orders. So the
bias described is a bias in the parity of the orders of elements sampled.

We note that this bias is not due to the extreme simplicity of the structure of the groups
chosen (cyclic groups); a large class of groups with an odd-order subgroup of index 2 will
behave similarly. More generally, groups with a small quotient group often inherit the bias
of the quotient.
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While this means a constant bias for every fixefbr large classes of arbitrarily large
groups, this bias is exponentially small as a functiort 0dnd even fok = 2, it is only
a bias ofs; = 1/6.

In contrast, we shall show that for the groups= A}, the bias approaches 1 even when
k — oo not too fast(k = o(n)). We believe, however, that for these groups, this large bias
cannot be detected by sampling element orders alone. This suggests that other statistics on
groups should be tested as well.

It remains anopen problento decide whether or not the distributiort @roduces
a similarly overwhelming bias in the statistics of element orders for some class of groups
(see [Pa2]). Let us note here that the sequence of powet§ aie consider in this paper
cannot be used for this purpose. Indeed, a random eleGiend’”, with m = 2@n?), is
exponentially likely to have an orde&¥ = N (m, n). Thus, almost all elements i@ have
the same ordeW in this case (see [Pa2, Proposition 1.4.1].

5. Direct product of groups

Let H be a simple nonabelian group, anddet= H™. Denote byd,(H) the maximal
powerm such thatd™ is generated by elements. In [Ha] Hall showed that

Ni(H)
|Aut(H)|

(see also [KaL]). The right-hand side can be interpreted as the number of orbits of the
diagonal action of AutH) on N (H). For As, Hall found thatd,(As) = 19.

Now let us take a close look at the structure gf(G), where G = H". Denote
by (g1,...,gr) the elements of\;(G), and letg; = (h(ll),...,h,(j,)), wherehﬁ.’) € A,,
1<i <k,1<j <m.Observe thatin order for the elemegis.. ., gx to generates, the
elements:Y, ...,h(,.k) must generaté/ for all j. Note, however, that these generating
k-tuples cannot be fully independent. Indeed, thedaples correspond to a generating
set if and only if they lie in different orbits of the diagonal action of &) on N (H)
(see [Ha,KaL]). If the number of orbits is very large, the probability that two generating
k-tuples lie in the same orbit becomes negligible and we can treat them as independent.
Below we give a formal meaning to this observation.

Observe that a birthday paradox type of argument gives us the following formula for the
proportion of generating-tuples ofG (see [KaL]):

m—1 i
#1(G) = (o (D))" [ (1‘ dkéH>>'

i=1
For simple group$ it is known that

di(H) =

p2(H)— 1 as|H|— oo.

For the family of alternating groupg,, this is a celebrated result of Dixon [Dx], for
classical simple groups of Lie type this is due to Kantor and Lubotzky [KaL], and in full
generality it was recently proved by Liebeck and Shalev [LiSlI].
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WhenH = A, we conclude thap, > 1/2 whenn is large enough. Therefore,
Ni(A 1/2)k /2 1/2)k-1
Ay = N @22 2/t
[Sn] n! 4

wherek > 2. In particulardz(A,) > n!/8.
Now letm < n!/8,G = A)'. Then

ni_[l<1_ i )><1_ m >m_1+0(;>
i1 di(An)) ~ dv(A)) (n!/2)k=3 )

We conclude:

Lemmab5.1. If k > 4 andm < n!/8then

o1 (G) = (o (An)™ - (1+ 0(1/n). (1)

Equation (1) says that the relative size of the difference of these two s2t4/%!) and

therefore it can be ignored in most calculations. The following is immediate:
Corollary 5.2. LetE C (N (An))™, andG = A Then

|P(£,Nk(G)) — P(E)| = 0(1/n)).
(The probabilities refer to uniform choice frogV; (A,))™.)
Remark 5.3. Let o) = (crl(j),...,a,fj)) denote elements alVi(4,) (1< j < m).
Corollary 5.2 means that for most calculations, we can treat the compom&htsf

a uniform random elementc @, ..., 0™) e Ni(G) as independent; fok > 4 and
m < n!/8, the error will beO (1/n!).

We remark that our work on the alternating gratip can be extended to other classes
of finite simple groups, see Section 11 (cf. [KaL,LiS2,Sh1,Sh2]).
6. Distribution of generating k-tuplesin A,

In this section we obtain rather accurate asymptotic estimates on the probability that
generating-tuples inA,, satisfy certain conditions.

First, we obtain bounds on the asymptotic behaviaVpfA,) asn — oo.

Denote byx = (o1, ..., 0x) a uniformly distributed element irA’,‘,. Let A denote the

event thatt € Ny (A,).

Proposition 6.1. For k > 2 we have

1 1
PA)=1-—5+ 0<—n2k2).
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Proof. As above, letr = (01, ..., 0x) € A} be chosen uniformly. The idea is to show that
the most frequent reason fei, ..., o not to generatel,, is that allo; share a common
fixed point.

The probability that eacls; lies in a maximal subgroup which is not of the form
(S; x S,_r) N A, is at most” wherec = 2-14 + 0(1) (soc < 0.841 for largen) ([Bb2,
Dx], cf. [Sh1,Sh2]). Thus, fok > 2 we have

PA)=1-n-(Plc())= 1))" + (”

z) (Pe=10@=2) -

- <'2’) (Pl =202 =1))"+---

_1 1 n 1 n 1
ot () o ()

1 1
T k1 +0 n2k=2 | .

Let B denote the event that. (1) = 1. Clearly,P(B) = 1/n.

=1

Proposition 6.2. For k > 2 we have

1 1 1
P(BlA):;—n—k+0<m).

Proof. For an illustration, we include the proof in some detail. We have
P(AIBP®B) 1 PA|B)
PA  n P
We estimate the conditional probabiliB(A | B) similarly to the estimation oP(A).
Again, we only need to worry about maximal subgroups of the f&fnx S,_, N A,.
We obtain
PAIB=1- (Pl =1)""-xn-1
k

x (P(6(2=2)"tPlo@=2]c)=1)+---
1 1 1
=1- pva D- (n — Dnk-1 + 0(n2k—2>

2 1
:1_nk71+0 nk—2 )

We conclude that
1 1-2/n*t+0/m?*2? 1 1 Lo 1
n 1—1/nk-140@1/n%-2) n nk n2k-=1J"

This completes the proof.O0

P(B|A) =

PBlA) =

Let C denote the event that, (i) i for all i (o is a “derangement”). It is well known
thatP(C) = 1/e + o(1/n!).
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Proposition 6.3. For k > 2 we have

101 1
PCIA ==+~ +0( ).

Proof. By analogy with the proof of Proposition 6.2, it suffices to prove that

P(A|C) = 0(n%"2),
where A is the complement of the event. Observe that in this case the smallest index
maximal subgroup which might include is (S2 x S,—2) N A,,. Therefore,

P(A|C) <P(AAC) < (’;) (Ple=20@=1)) +---= 0(,1?12) 0

Let D denote the event that; is a long cycle i.e., a cycle of length:. Clearly,
P(D)=1/n.

Proposition 6.4. For k > 2 we have

1 1 1

Proof. The proof is analogous to the preceding one except that in this case the probability
P(A| D) =1- 0(c") by the observations above. We omit the details.

7. Proof of Theorem 2.1

Let us recall some standard probability estimates for large deviationgzlet, ¢,
be independent rando, 1)-variables (Bernoulli trials) withP(z; = 1) = p, P(¢; =0) =
l1-p. Leté=¢1+---+&n. We haveE (§) = p-m. For p < 1/2 anda > 0, the Chernoff
bounds, as stated by Alon and Spencer [AS, Theorems A.11 and A.13, pp. 237-238],
give us

P( > pm +a) < exp(—2a%/ pm +4a°/ (pm)?), (2)
and
PE < pm—a) < exd—Zaz/pm). 3
Let B C A} be the set of all elemengs= (o1, ..., 0,») such that
#{j|oj(1>=1,1<j<m}>m~(3—ik>. 4
n 2n

Lemma 7.1. Under the conditions of Theorebnl,
Qk(B) —-0 and U(B)—1 asn— oo,

assumingc = o(n).
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Proof. For the proof we note that the quantity on the right-hand side of inequality (4)
is halfway between the expected value of the left hand side under uniform distribution
(m/n) and under ®(m(1/n — 1/n%)). Now both parts of the claim follow from Chernoff’s
bounds. Indeed, using the Chernoff bound (3) wits 1/n, a = m/(2n*~1), we obtain

C mk1
—m -
>1— exp(m) =1—exp(—m/(8n%*71)).

By definitionm = n!/8. Thus, wherk = o(n) we have UB) — 1 asn — oo. This proves
the second part of the lemma.

The first part goes analogously, except that in this case by Proposition 6.2 we have
P(oc(1) =1) =1/n—1/nF 4+ 0 (1~%). By Corollary 5.2 and Remark 5.3 we may assume
that the events; (1) = 1 are independent; the error thus made is negligibl€l/n!)).

Now takea as above and use the Chernoff bound (2n

U(B)=P(#{j|o,,~(1>=1, 1<j<m}>%-(1 1 ))

Observe that Lemma 7.1 immediately implies Theorem 2.1. Indeed,
| —u|,, <|Q"B)-UMB)|—>1 asn— .

Remark 7.2. We could have used either of the evefitsr D instead of53 in the lemma. The
eventC has the advantage that it gives a smaller bouna ohe event gives the group
theoretically significant additional feature th&tbecomes a union of conjugacy classes.
We shall exploit this subtle difference in the next section.

8. Biased events

Letzs,...,zs be Boolean variables. Let Th(z1, . .., z;) denote theéhreshold function
which takes value 1 ify";_;z; > and O otherwise. We use this function to separate
statistically the distributions Qand U overG.

Let n be a prime number. Consider uniform samples ef (o1, ...,0%) € Af;. Using
the notation of Section 6, 160 be the event that the permutatiope A, is a long cycle.

By D’ we denote the event that;)” = 1. We have

1 1
P(D') = — 4

On the other hand, whén= o(n), Proposition 6.4 gives us
1 1 1
P(D’ =—4+—=4+0|—=— ).
( |A) n + nk + <n2k—1)

Let us now take independent samples, ..., x; € A’;,, and letD; denote the ever®®’
with respect tor;. We view theD; as random(0, 1)-variables. Then

s
S S
E(zp,):;m,

i=1
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whereas

s
S S A
E(;Dz A) =;+n—k+0(W>

We sets = 2n* and apply Chernoff’s bounds with threshole: s/n + s/2n*. This value
of ¢ is halfway between the two expected values above for the givigfiollows that

P(Th((Dx, ..., Dy)) < exp(—n* (1 - 1/4n*)) <n™",

while
P(Th (D1, ..., D) | A) > 1—exp(—n*) + O(1/n!) > 1 —n~".

Now we express the threshold function by a monotone Boolean circuit with suitable
parameters. From the various options [Al,A2,Va], our choice is to use the Ajtai-Komlos—
Szemerédi sorting network [AKS]. It is immediate that the AKS sorting network [AKS] can
be turned into a monotone Boolean circuit with fan-in 2 gates for the threshold function
Thy +; the circuit will have depthO (logs) and width (maximum number of nodes per
level)s.

Thus, we have proved the following result.

Proposition 8.1. Given, k there exists an explicit monotone fandmBoolean circuitF, i
of size < n%® and deptho (klogn) with s = 2n* input variables such thaassuming
k=kn)=o0mn), k>4, we haveP(F) =1— O(n~ ") andP(F | A) = O(n™“"), where
F=F,x(D1,...,Ds).

9. Simulation of monotone Boolean operations

In this section we turn the Boolean circuit of the preceding section into a short word in
the groupG. The basic idea was inspired by Barrington’s simulation of Boolean operations
by group operations [Bar], although the actual details and the scope are quite different. In
particular, in our context, negation cannot be simulated; and our simulation is (necessarily)
randomized.

Let H be agroup ang € H. We consider the predicafgg) meaning g = 1.” We wish
to construct wordsv; and wy corresponding to the predicat€s(g, h) = £(g) A E(h)
and &2(g, h) = £(g) Vv E(h), respectively. Clearly, there is no word which would be 1
exactly if £1 holds, nor is there one fdf,. But the produciv; = gh and the commutator
wp = [g, h] = g~ th~1gh go part of the way£i(g, k) implies w; = 1 and &, implies
w2 = 1; and the converse holds often enough in each case. We shall formalize this last
observation.

Lemma 9.1. Givenn > 5, there exist wordsv; andws of lengthO (n2logn) in O (nlogn)
variablesg, h, u1, uz, ... such that for everg, h € A,,

(al) if g =h = 1thenwi =1 (regardless of the values);
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(a2) if g =1 or h =1thenwy =1 (regardless of the values);

(b1) if g #1orh # 1andif thex; are independent uniformly distributed random elements
of A, then the eveni; = 1is factorially unlikely

(b2) if g #1 and h # 1 and if theu; are independent uniformly distributed random
elements ofi,, then the evenb, = 1 is factorially unlikely.

First, let us consider the word

o= (ug'gu) - - - (uy'gun) ()

over a finite groupH . For a fixedg € A, and randomly chosesy one can think ot as the
Nth state of a random walk oH generated by the conjugatesgf

Lemma9.2. Fix g € Ay, g # 1. LetN = 2 (n%log?n) and define; by Eq.(5). If theu; are
independent, uniformly distributed elements fraynthen

‘P(Z=h)—

< forall h € A,,.
2|A,| "

[Anl
Proof. Let RV be the probability distribution of the element A,,. This is the result of

N steps of the random walk on a Cayley graph defined by a conjugacy class as the set of
generators. This situation was considered by Roichman [Ro]; it follows from his results
that

IR~ ]|, <1

where 1> ¢1 > 0, N = cnlogn, ¢, c1 are universal constantdNow use a standard bound
which relates mixing in relative pointwise distance {g¢ distance) to mixing in variation
distance (see, e.g., [AF,LoW]). This implies that aftér= 22 (N log|A,|) = 2 (n? log?n)
steps we obtain the inequality stated:

Now we turn to the proof of Lemma 9.1. F@re H, consider the word:(g) =
z(g,u1,...,u,). Forh € H, consider the word(h) = z(h, un+1, ..., U2y).

Let now w1(g, h) = z(g) - z(h) andwa(g, h) = [z(g), z(h)]. It is obvious that these
choices satisfy parts (al) and (a2) of Lemma 9.1.

For the proof of (b1), there are two more cases to consider. If exactly ogehois 1,
thenz(g) - z(h) is nearly uniform overA, and therefore factorially unlikely to be 1. If
neitherg, norh is 1 then

2 2
P(9) -2 =1) = ) P(z(e)=f) Pty = f ) < |An|'(|i/ |> .

feA,

We conclude thaiv; is factorially unlikely to be 1 whewg, 7 # 1.
For (b2), the only case to consider is wherk # 1. In this case,

2 This result seems to have been known before [Ro]; it follows from the character bounds in an unpublished
manuscript [CaH].
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P(e@).z]=1)= > P(e)=v)P(h) = )

v1,V2€Ap, [v1,v2]=1

2
gr(Al’l)’ <|i/2|) ’

wherer(H) is the number of solutions of the equatipm, v2] = 1 in the groupH.
Denote byn(H) the number of conjugacy classes #h. Frobenius observed [Fr] that
r(H) = |H| - n(H). The number of conjugacy classes 4f is bounded by 2 times the
number of partitions of the integerand thereforey(A,) = 0 (V™). We conclude that

P(z(9).z(]=1)=0(m""). O

10. Proof of Theorem 2.2

Now we can put together the results of the previous sections.

Let k > 4 be any large constant or any functionobuch thatk(n) = o(n). Now let
G = A}, wheren is a sufficiently large prime and let = m(n) grow faster tham* but
slower tham®” for all ¢ > 0. Thereforem(n) ~ ¢*“™ as in Theorem 2.2 will work.

Now fix n. Consider independent samples froh Qe., samples obtained by projection
of N (G) onto the first components in generating:-tuples. Consider the Boolean circuit
F given in Proposition 8.1. Substitute the expressipfior theith Boolean input variable.
Substitute the wordsi;, w» given in Section 9 for the Boolean operations to evaluate
the circuit. Letw be the resulting output word. This is the word we will use to prove
Theorem 2.2.

We claim thatPy(w = 1) = O (n~") (we substitute independent, uniformly distributed
random members o&; for the variables inw). Indeed, Lemma 9.1 implies that the
error in the Boolean operations in factorially small. The number of Boolean operations
in Fis n?® = o™ so even the total error probability is factorially small. This and
Proposition 8.1 imply that it is factorially likely that none of the components A,
of w= (o1, ..., 0,) is the identity (which is far more than what we need).

On the other hand, we claim th&tQk(w =1 =1-—0®m""). Again, letw =
(01,...,0m) (0; € A,). As before, we make only a factorially small error by assuming
that theo; are independently chosen from the distribution( @,).

Under this assumption, it is factorially likely that = 1 for any fixedi. This is
immediate from Proposition 8.1 and the observation that the error made in the group-
theoretic simulation of monotone circuits is one-way: if a gate outputs 1 then necessarily
the simulating group element is the identity. This follows from properties (al) and (a2)
listed in Lemma 9.1.

Finally, m = n°®™; therefore, it is factorially likely thaall components o#v are 1.

It is easy to see that the length of the wamdis n°®. First of all, this is obvious
if we allow the commutator to be an operation. Now the increase due to expanding the
commutators is a factor of'dAvhered is the depth of the circuit. Sineé= O (k logn), the
bound on the length of follows. O
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11. Direct products of simple groupsof Lietype

It turns out that virtually all the results (including Theorems 2.1, 2.2) have analogs for
products of large simple groups of Lie type. In this section we state the main results and
sketch the main steps of the proof, while omitting most details.

Let H,(q) be a family of simple groups of Lie type, whetgis fixed, n — oo.
Everywhere below; = p" stands for the size of the finite field, andfor the Lie rank
of the group.

Theorem 11.1. LetG,, = H," be the family of powers of simple groupserem = m(n) =
|H,|/2. Let Qf; be the probability distribution of the first component\df(G,). Then

| —U|,,—» 1 as|Ha— oo

givenk = o(n).

Itis known, on the other hand, that the grodpscan be generated by only two elements
when|H,| is large enough (see [Ha,KaL,Pal]). Therefore, we again obtain a strong bias in
the probability distribution of the output of the product replacement algorithm.

Now recall classification of finite simple nonabelian groups. There are only six series
where n grows: A,(q), 2An(‘])i Bn(q), Cu(q), Dn(q), and 2Dn (q) (see, e.g., [Go,
CCNPW]). Much is known about these series, including a number of probabilistic results
(see [Sh1,Sh2]). Nevertheless, some additional group theoretic work has to be done, in
order to obtain the analogs of the results in the previous chapters.

Rather than give a number of known technical details about the structure of maximal
subgroups in the above series, we will present a somewhat shortened proof only for a series
A, (g) = PSl(n, ¢q), while omitting details in other cases. However, we will stress the key
points in full generality, so that the interested reader can reconstruct the whole proof.

Sketch of proof. First, we need analogs for P81, ¢) (and other simple groups of Lie
type) of the results which were already established for alternating groups.

First, recall that a random pair of elements generate a simple didospH, (¢) of Lie
type with probability — 1 as|H| — oo [KaL,LiSI] (see [Sh1]). It was shown there that
n3|092(q))

q n

Further, if H, = PSL,(¢), we have

1 1
o(H)=1- <F§l> + O(_q(nl)(Zkl))’

where(n), = (¢" — 1)/(¢ — 1). By abuse of notation, here and later in the probabilistic
estimates, we assume that the constant implied@ by notation depends polynomially of
n and logg. In these cases the denominator will always grow exponentially, so this will
make no difference to the final results.

The above estimate, while stated explicitly in the literature onlyifet 2, follows
immediately from the analysis in [KaL,LiSI,LiS2]. The proof idea is as follows. From
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Aschbacher classification [As] of maximal subgroups, one knows that the subgroups of the
smallest index (equal t@),) are isomorphic to PSlz — 1, ¢), there arg(n), of them,
while the remaining maximal subgroups have a much larger index (and there are not too
many of them). Now proceed as in the proof of Proposition 6.1.

Let us note here that for other series one has to replace denon(mgtoy the smallest
index of the proper subgroup (ibid).

The following analog of Lemma 5.1 was obtained in [Pal] for any setiesf all simple
groups of Lie type.

Proposition 11.2. LetG = H,", |H,| — oo asn — oo. If k > 4 andm < |H,| then
ok (G) = (p(Hn))" - (1+ O(1/1Hyl))- (6)

Now, let H, = PSL(n, q), wheregq is a fixed prime. Letx = (h1, ..., ht) be chosen
uniformly in H,f. As in Section 6, let4d denote the event thate N, (H,). Note that there
is a natural embeddingf,,_1 < H,. Let B denote the event tha}aﬁl) € H,_1. Fork>2
we have

PN S O S NN AR S
@1 )_(n)q_<(n)q) + <q(n—1)(2k)>'

This is a direct analog of Proposition 6.2, and the proof follows verbatim. Indeed, in this
case the subspace stabilizing subgroups of RSp play a role of the point stabilizers
in A,. The rest is the same, with a substitution of(all’'s by theirg-analoggn), .

Finally, as we remarked earliel],” is 2-generated for large, given thatm < |H,|/2
(this follows from Hall's theorem and(H,) — 1 asn — o0). The bias becomes
significant then given the denomina(cm)’; = o(|H,|), which is implied byk = o(n) (for

|H,| = ¢°"). One uses Chernoff bound as in the proof of Lemma 9.2 and obtains the
result. We omit the easy detailsO

Let us finish by presenting an analog of Theorem 2.2 for all simple groups of Lie type.
Indeed, letH, (¢) be as above, a series of simple groups of Lie type with a fixesd
n — oo. Let  be as above.

Theorem 11.3. There exists a family of words, ; with the following properties. The
length ofw,, ; isg %", Letw(n) — oo, w(n) = o(n). Alsa letk = k(n) > 4andk = o(n).
Setm = gk*™. Let G = A”. Thenw[Q'] = 1 has probability1 — 0(q="*), while
w[U] = 1 has probabilityO (q*“”z).

Sketch of proof. Again we restrict ourselves to the callg = PSL(n, ¢). The remaining
series are largely similar. Latbe a prime number.

First, we need describe the analog of the evPhin Section 8. Consider elements
belong to large conjugacy class, known as Singer cycle. They have the;6rddr. While
the order does not completely characterize these elements, the presence of Zsigmondy
primes (and:, g being prime) ensures that there are many Singer cycles (nafigly;))
while only O(1/4") other elements have order dividigg — 1. This approach has been
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extensively used in the literature on recognition of black box simple groups of Lie type,
notably in [KaS,BKPS].

After this point, the analog of the rest of Section 8 follows similar steps. To obtain
an analog of Lemma 9.2 we need to bound the mixing time of random walks on Cayley
graphs generated by conjugacy classes (see [Ds]). This can be done in several ways, e.g., by
combining general bounds in [AF,Lo] with the diameter bounds in [LaL]. The best general
bounds of the orde® (n) were recently obtained in [LiS3].

Finally, we need to obtain an estimate on the probability that a random pair of elements
of G commute. This follows from Frobenius’ formula an upper bound on the number
of conjugacy classes (see, e.g., [Sh1], or [GI] whris classical). Together this gives
an analog of the results in Section 9 for simulation of Boolean operations,oThe
remainder of the proof goes exactly as in Section 10. We omit the details.
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