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This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux
of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection.
The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some
examples.
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1 Introduction
The aim of this paper is to give a bijective proof of the hook-length formula for the enumeration of standard
Young tableaux of a given shape. This formula was discovered by Frame, Robinson and Thrall in 1954 [1],
and since then it has been the object of much study. Many proofs have been published based on different
approaches, but none of them is considered satisfactory. We refer to Sagan [2] for a well written review of
the different proofs and their history, but we want to recall a few of them and some related papers which
have had a strong impact on our work (see also the references in James and Kerber [3] and Sagan [4]).

First, we should mention the remarkable paper of Sch¨utzenberger [5]. It is not directly related to the
hook-length formula, but contains the famousjeu de taquinalgorithm. Our bijection is based on this
procedure.

The first major steps in the understanding of the hook-length formula were made by Hillman and
Grassl [6] and Stanley [7]. Their two beautiful bijections combined give the result, although an algebraic
step is also needed.

One of the most amazing proofs of the hook-length formula was found by Greene, Nijenhuis and
Wilf [8]. Their probabilistic approach leads to a bijection as well [9], but some of the details are compli-
cated. A direct bijective proof was first found by Franzblau and Zeilberger [10] in their celebrated paper.
Their construction is very nice, and in some way similar to ours, but in this case it is the proof that is a
little complicated.
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We also want to point out the paper of Krattenthaler [11], which contains an involutive proof of a
q-analogue of the hook-length formula and includes an extension to the shifted case.

The bijection we present in this paper was announced by the last two authors a few years ago [12],
but this is the first complete version of the proof. All the results of this paper have been generalized to
trees and shifted tableaux, which are the other two known cases where hook-length formulas exist. These
results will appear elsewhere.

Our paper is organized as follows. In Section 2 we recall the standard definitions and notation. In
Section 3 we state the result and explain how it can be proved bijectively. In Sections 4 and 5 we define
the algorithm and its inverse. Section 6 proves that these algorithms indeed define a bijection, and Section
7 contains examples that will help in understanding how both algorithms work.

2 Definitions and Notation
Let us recall the following standard definitions (see, for example, Macdonald [13] and James and Ker-
ber [3]). Apartitionof an integern is a nonincreasing sequence of nonnegative integers� = (�1; �2; : : : ; �p)

such thatj�j = �1 + �2 + � � �+ �p = n. A Ferrers diagram is a graphic representation of a partition�.
For example, the partition(5; 2; 2; 1) is represented as follows:

Fig. 1: A Ferrers diagram.

The first row contains�1 cells, the second row�2 cells, and so on. To take a more formal definition
of these diagrams, let us consider the set of pairs(i; j) 2Z2 satisfying the conditions1 � j � �i where
(�1; �2; : : : ; �p) is a partition. The Ferrers diagram associated with this partition is then the set of1 � 1

squares with centers at the points(i; j) where the pair(i; j) runs over the set defined previously. In the rest
of this paper, we will identify the cells of a diagram with their coordinates when no confusion is possible.

A Young tableauis a Ferrers diagram filled bijectively with the integers1; 2; � � � ; j�j. A tableau is said
to be ordered up to position(i0; j0) if the numbers increase from top to bottom along the columns and
from left to right along the rows for all(i; j) such that eitherj > j0, or j = j0 andi � i0. A standard
tableauis a tableau ordered up to position(1; 1) (see Figure2).

5 3 7

2 5

6 1

1 3 7

2 4

5 6

Fig. 2: A tableau and a standard tableau.
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The hookof cell (i; j) of a Ferrers diagram is the set of cells that are either in rowi weakly right of
(i; j), or in columnj weakly below(i; j) (see Figure 3). Leth(i; j) denote the cardinality of this set.

Fig. 3: The hook of the cell(2; 3).

The conjugate of a partition� (defined as usual – see Macdonald [13], for example) is denoted by�0.
In the sequel, we will consider Young tableaux of a fixed shape� with j�j = n.

In our bijection, we will use a new object called ahook function. Geometrically, it corresponds to filling
a Ferrers diagram with integers satisfying some conditions. More precisely, each cell of the diagram is
filled with an integer between minus the number of cells strictly below in its column and plus the number
of cells strictly right of it in its row (see Figure 4). More formally, we define the hook function as a
mappingf from � toZthat satisfies the condition

8(i; j) 2 �; �(�0j � i) � f(i; j) � (�i � j):

For example, the value of the hook function on the cell(2; 3) in Figure 3 must be between�2 and+3.

�1 �1 �2

2 �2 0

1 1 0

0 0

Fig. 4: A hook function.

3 The Hook-length Formula
Our goal is to prove the next well-known theorem bijectively.

Theorem 3.1

f� =
n!Q

(i;j)2�

h(i; j)
;

wheref� is the number of standard tableaux of shape�.
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The bijection we are going to construct is between the following sets:

I The pairs of the form:

– a standard tableau of shape�,

– a hook function.

II The tableaux of shape�.

It is clear that the cardinality ofII isn! and that the cardinality ofI is

f� �
Y

(i;j)2�

(�i + �0j � i � j + 1) = f� �
Y

(i;j)2�

h(i; j):

The bijection consists of two algorithms that are inverse to each other.

4 Algorithm II 7! I

To transform an element ofII into an element ofI, we use two simple algorithms that will be useful in
the proofs and will be the building blocks of the main algorithm. The first one is AlgorithmP which is
just backwardjeu de taquinas described by Sch¨utzenberger [5] (using the terminology of Sagan [4]).

Algorithm P

INPUT: A pair (A; a) consisting of a tableauA and an integera � n.
OUTPUT: A tableau.

Step 0 Denote by(i0; j0) the coordinates of the cell ofA that containsa.

Step 1 Put
b = A(i0; j0 + 1) if j0 < �i0 ; andb = n+ 1 otherwise;

c = A(i0 + 1; j0) if i0 < �0j0 ; andc = n + 1 otherwise:

a b

c

Fig. 5: Generic positions ofb andc.

Step 2 – If a is greater thanb or c then exchangea with the smaller ofb andc. This defines a new
tableauB. Go back to Step 0, withA = B.

– If a is smaller thanb andc, the algorithm finishes and outputsA.
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5 1

2 3

4

�!

1 5

2 3

4

�!

1 3

2 5

4

Fig. 6: An example of an application of AlgorithmP .

Example 4.1 We give in Figure6 the sequence of tableaux obtained by applying AlgorithmP to the first
tableau and the integer5. The integers corresponding tob andc are underlined ineach tableau (when they
belong to it).

Definition 4.2 Totally order the cells of a tableau by reverse lexicographic order on their coordinates. In
other words, we order the cells starting from the right-most column moving to the left, and from bottom
to top inside the columns. Figure7 shows the numbering of the cells of a tableau corresponding to this
order.

19 14 9 5 1

18 13 8 4

17 12 7 3

16 11 6 2

15 10

Fig. 7: The order of the cells.

We will use thesuccessormaps which sends each cell (except the last) to the next one in this order.
We will also use thepredecessormap, denoteds�1.

Algorithm 1

INPUT: A triple
�
A; f; (i0; j0)

�
consisting of a tableauA, a hook functionf , and a cell(i0; j0) 6= (1; 1)

such that the tableau is ordered up to(i0; j0).
OUTPUT: A triple

�
B; g; s(i0; j0)

�
consisting of a tableauB, a hook functiong and the successors(i0; j0)

of the coordinates of the input.

Step 0 Set(i1; j1) = s(i0; j0) anda = A(i1; j1).

Step 1 ComputeB by applying AlgorithmP to (A; a).

Step 2 Let(i2; j2) be the position ofa in B.

– For all i1 � i < i2, putg(i; j1) = f(i + 1; j1) � 1,
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– g(i2; j1) = j2 � j1,

– g(i; j) = f(i; j) otherwise.

The output is
�
B; g; (i1; j1)

�
.

Note 4.3 By standard properties ofjeu de taquin, tableauB is ordered up to position(i1; j1). Moreover,
it follows from Step 2 thatg is a hook function. This establishes that Algorithm2 is well-defined.

We can now associate with every element ofII an element ofI.

Algorithm 2

INPUT: An elementA of II.
OUTPUT: An element(A; f) of I.

Step 0 Setf = 0 and(i0; j0) the coordinates of the smallest cell ofA in our total order.

Step 1 Iterate Algorithm1 on
�
A; f; (i0; j0)

�
until (i0; j0) = (1; 1). The algorithm then finishes and

outputs(A; f).

Note 4.3 shows, in particular, that Algorithm2 gives a standard tableau as output.

5 Algorithm I 7! II

To transform an element ofI into an element ofII, we build the main algorithm from two others as in
Section 4. The first one, AlgorithmP 0, is forwardjeu de taquin.

Algorithm P 0

INPUT: A triple
�
T; a0; (i00; j

0

0)
�

consisting of a tableauT and an integera0 � n.
OUTPUT: A tableau.

Step 0 Denote by(i01; j
0

1) the position ofa0 in T . If (i01; j
0

1) � (i00; j
0

0) then the algorithm finishes and
outputsT .

Step 1 Put
b0 = T (i01; j

0

1 � 1) if j01 > j00; andb0 = 0 otherwise;

c0 = T (i01 � 1; j01) if i01 > 0; andc0 = 0 otherwise:

� c0

b0 a0

Fig. 8: Generic positions ofb0 andc0.
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Step 2 Exchangea0 with the greatest ofb0 andc0. This defines a new tableauU . Go back to Step0 with
T = U .

The previous algorithm finishes after a finite number of steps sincea0 will stop at some cell� (1; j00)

by the rules defined above. Note also the difference between AlgorithmP and AlgorithmP 0. In Al-
gorithmP 0, we do not comparea0 with b0 or c0 to decide whether it can move. Whena0 stops moving
depends upon its current position and is independent from its value.

Definition 5.1 Let us consider the path of the integera0 when applying AlgorithmP 0. At each step of
AlgorithmP 0, we code its move byN if it exchanges withc0 (a north move) and byW if it exchanges with
b0 (a west move). We obtain a word by concatenating all the lettersW andN . Thecodingof the path of
a0 is this word read from right to left.

Example 5.2 In Figure 9 we give the sequence of tableaux obtained by applying AlgorithmP 0 to the
first tableau, the number8 and the cell(1; 2). The integers corresponding tob0 andc0 are underlined in
each tableau (when they belong to it). The word obtained isNNW so that the coding of the path of8 is
WNN .

2 1 6

4 3 7

9 5 8

�!

2 1 6

4 3 8

9 5 7

�!

2 1 8

4 3 6

9 5 7

�!

2 8 1

4 3 6

9 5 7

Fig. 9: An example of an application of AlgorithmP 0.

We will order the alphabetfN;W; ;g by settingN < ; < W and consider the associated lexicographic
order.

Definition 5.3 LetU be a tableau,g0 a hook function and(i01; j
0

1) the coordinates of a cell ofU . The set
of candidatecells associated with

�
U; g0; (i01; j

0

1)
�

is the set of all cells indexed by(i; j) such thati � i01,
g0(i; j01) � 0 and j = j01 + g0(i; j01). The set of candidate elements, or simply candidates, is the set of
the integers that are in candidate cells. The maximum candidate (element or cell) is the one with the
lexicographically largest coding.

By construction, there is at most one candidate cell in each row. Notice that there always exists a
candidate element: the hook function maps the bottom cell of any column to a nonnegative integer.

Note 5.4 Geometrically, we can define the maximum candidate as the one with the top-most and right-
most path. If one path is contained in another, the choice depends on the move done by the longer one just
before joining the shorter one. We will see further that paths cannot cross and that this property makes
everything well-defined (see Section 6.2).
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Algorithm 10

INPUT: A triple
�
T; g0; (i00; j

0

0)
�

consisting of a tableauT , a hook functiong0, and a cell(i00; j
0

0) (other
than the least one) such that the tableau is ordered up to(i00; j

0

0) .
OUTPUT: A triple

�
U; f 0; s�1(i00; j

0

0)
�

consisting of a tableauU , a hook functionf 0, and the predecessor
s�1(i00; j

0

0) of the cell of the input.

Step 0 Find the maximum candidate elementp and denote its cell inT by (i01; j
0

1).

Step 1 LetU be the output of AlgorithmP 0 applied to
�
T; p; (i00; j

0

0)
�
.

Step 2 – For all i00 < i � i01, putf 0(i; j00) = g0(i � 1; j00) + 1,

– f 0(i00; j
0

0) = 0,

– f 0(i; j) = g0(i; j) otherwise.

The output is
�
U; f 0; s�1(i00; j

0

0)
�
.

Note 5.5 Notice thatU is notalwaysordered up tos�1(i00; j
0

0). In fact, if the maximum candidate moves
to position(i00; j

0

0) in Step1 thenU is ordered up tos�1(i00; j
0

0). But if it moves to another cell this may
not be the case. Notice also that it is not clear that Algorithm20 is well-defined: we need to prove thatf 0

is a hook function, which is not obvious, and that ateach step the maximum candidate moves to position
(i00; j

0

0). Both properties will be established in Section 6.3.

We can now associate with every element ofI an element ofII.

Algorithm 20

INPUT: An element(T; g0) of I.
OUTPUT: An elementT of II.

Step 0 Set(i00; j
0

0) = (1; 1).

Step 1 Iterate Algorithm10 on
�
T; g0; (i00; j

0

0)
�

until (i00; j
0

0) is the least cell ofT . The algorithm then
finishes and outputsT .

6 Proofs
To prove that we have a bijection, we need to show that Algorithms2 and20 are inverses. Since these
procedures are successive applications of either Algorithm1 or Algorithm 10, we only have to prove
that these algorithms are inverses. Unfortunately, this is not true in general: given a triple that satisfies the
conditions of Algorithm1, and applying successively Algorithm1 and Algorithm10, we do not necessarily
obtain the input triple. But we can find a subset of all triples for which this is true. Since this subset
contains all the intermediate triples (when applying Algorithm2 or Algorithm20), this is sufficient.

In this section we first define the correct setC (Section 6.1), discuss a central property of AlgorithmsP

andP 0 (Section 6.2), then show that Algorithms1 and10 stabilizeC (Section 6.3), and finally, prove that
Algorithms1 and10 are inverses (Section 6.4).
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6.1 The Correct Set
In this subsection, we define a setC that contains the set of all triples that can be obtained as intermediate
triples, applying Algorithms2 and20. (In fact,C is exactly the set of all intermediate triples.)

Definition 6.1 LetC be the set of all triples
�
A; f; (i0; j0)

�
such that:

� (i0; j0) are the coordinates of a cell ofA,

� A is ordered up to(i0; j0),

� f is a hook function such thatf(i; j) = 0 for all (i; j) strictly greater than(i0; j0),

� All candidate elementsp0 associated with the triple
�
A; f; (i0; j0)

�
move to position(i0; j0) when

applying AlgorithmP 0 to
�
A; p0; (i0; j0)

�
.

To prove thatC contains the set of all triples that can be obtained by successive applications of Algo-
rithm 1 to a triple consisting of a tableau, a hook function equal to0 everywhere and the least cell of the
tableau, one has to establish two assertions: the first one is that the triple consisting of a tableau, a hook
function equal to zero everywhere and the smallest cell of the tableau belongs toC. The second one is
that Algorithm1 sends each element ofC to an element ofC. The first statement is clear and one can see
that the triple obtained by applying Algorithm1 to an element ofC satisfies the firstthreeconditions of
the previous definition as in Note 4.3. We will consider the fourth condition in Section 6.3.

Similarly, to prove thatC contains the set of all triples that can be obtained by successive applications
of Algorithm10 to a triple consisting of a standard tableau, a hook function, and(1; 1), one has to establish
two things: the first is that the triple consisting of a standard tableau, a hook function and(1; 1) belongs
to C. The second one is that Algorithm10 mapsC to C. The first assertion is obvious and one can see
that the triple obtained by applying Algorithm10 to an element ofC satisfies the firsttwo conditions of
the previous definition: the first one is clear and the second one is true as long as condition 4 holds. We
will look at the last two conditions in Section 6.3.

6.2 Paths and Reverse Paths

In this subsection, we define the path of an element, the reverse path of an element and establish a rela-
tionship between them. It is this property that makes everything work well in our algorithms.

Definition 6.2 Thepathof an elementa in a tableauT is the set of the cells thata passes through when
applying AlgorithmP to (T; a). Thereverse pathof an elementa0 with respect to a cell(i00; j

0

0) in tableau
T 0 is the set of the cells thata0 passes through when applying AlgorithmP 0 to (T 0; a0; (i00; j

0

0)).

In the following example, we show three successive applications of Algorithm1: the input triples
consist of a tableau, a hook function (given by its first column, the other columns being irrelevant) and
the cell (i0; j0) whose element is underlined. The elements over the arrows are those ins(i0; j0). The
boldface elements are the candidates associated with the tableau and its underlined cell. The tableaux are
labeledT1 to T4 in order of application of the algorithm.
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19 1 4 9

20 2 8 11

5 3 10 12

6 7 14 15

13 16 17 18

,

0

0

0

1

3

5
�!

19 1 4 9

20 2 8 11

3 5 10 12

6 7 14 15

13 16 17 18

,

0

0

1

1

3

20
�!

19 1 4 9

2 5 8 11

3 7 10 12

6 14 15 18

13 16 17 20

,

0

0

0

2

3

19
�!

1 4 8 9

2 5 10 11

3 7 12 18

6 14 15 19

13 16 17 20

,

�1

�1

1

3

3

In our example, the path of19 in T3 is the setf(1; 1), (1; 2), (1; 3), (2; 3), (3; 3), (3; 4), (4; 4)g. The
reverse path of20 in T3 is the setf(2; 1), (2; 2), (3; 2), (4; 2), (4; 3), (4; 4), (5; 4)g. This set is also the set
of cells of the path of20 in T2.

Definition 6.3 Let us consider the path� of an elementa in cell (i0; j0). We say that an elementa0 is to
the left of the path� if the bottom-most row that contains an element of� and an element of the reverse
path�0 of a0 with respect tos�1(i0; j0) satisfies: every cell of�0 is weakly left of every cell of�. If such
a row does not exist or if the condition is not satisfied, we say thata0 is to the rightof�. Similarly, we say
a cell is to the left or right of� if the element in it is.

For example, inT3, all the elements are to the left of the path of19 except1, 4, 9, 11 and12. In T2, 19
is to the right of the path of20 since such a row does not exist. We are now in position to prove our main
result about paths and reverse paths.

Theorem 6.4 Let
�
A; f; (i0; j0)

�
be an element ofC and� be the path ofA(s(i0; j0)) in A. If a0 � n

and�0 is the reverse path of(a0; (i0; j0)) in A, then all the elements of�0 except possiblys(i0; j0) (if it is
on�0) are on the same side of�.

Proof. First, notice that ifi0 = 1, the theorem is obvious since all elements are to the right of� except
element weakly left ofs(i0; j0). So we can assume thati0 6= 1. Let us now consider a cell(i; j) containing
element�. If it is the only element of its reverse path�0, the theorem is obvious. Otherwise,(i � 1; j) or
(i; j � 1) belongs to�0. If we prove that the cell containing the larger element is on the same side of� as
�, then the theorem holds by induction on the length of�0. If (i � 1; j � 1) does not belong to� then the
assertion holds: both cells are on the same side of� as(i; j) except in the case where(i; j�1) = s(i0; j0)

as noted in the statement of the theorem. So we assume that(i � 1; j � 1) belongs to�. If it is the last
cell of �, the assertion is also true: by definition both(i; j) and its larger neighbor are on the same side
of �. If this is not the case,(i� 1; j) or (i; j � 1) belong to�. Depending on which content of these cells
is larger, we are in one of two cases (the cell(i; j) is the bottom-right one and� < � <  < �):
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� �

 �

� 

� �

Using the exchanging rules (see Step2 in AlgorithmsP andP 0), we deduce that in the first case,� is
to the left of� and so is. In the second case,� is to the right of� and so is. So, we have proved that
in any case,� and its greatest neighbor are on the same side of�. 2

Corollary 6.5 Using the same notation as in Theorem 6.4. Assume thata0 is in a cell different from
s(i0; j0) and thati0 6= 1. Thena0 is to the left of� if and only if(i0; j0) belongs to�0.

Proof. Since(i0; j0) is to the left of� for i0 6= 1, it is clear that if(i0; j0) belongs to�0, a0 is to the left of
�. Conversely, ifa0 is to the left of�, notice thats(i0; j0) = (i0 � 1; j0) belongs to� so that(i0 � 1; j0)

is the only cell of its row that is to the left of�. Sincea0 is different from(i0 � 1; j0) and to the left of�,
(i0; j0) or (i0 � 1; j1) for j1 > j0 belong to�0. But the second cell is to the right of�. Theorem 6.4 then
implies that(i0; j0) belongs to�0. 2

For example,14 and15 are to the right of the path of20 in T2, 15 and20 are to the left of the path of
19 in T3.

Corollary 6.6 Let
�
A; f; (i0; j0)

�
be an element ofC and let� be the path ofA(s(i0; j0)) in A. Then all

the candidates are to the left of�.

Proof. This is a direct consequence of Corollary 6.5 and property 4 of the definition ofC. 2

6.3 Both Algorithms Stabilize C
In this subsection, we prove that both algorithms stabilizeC, that is, if a triple belongs toC, its image
undereach algorithm also belongs toC. We begin with Algorithm1.

Theorem 6.7 Algorithm1 stabilizesC.

Proof. Let
�
A; f; (i0; j0)

�
be an element ofC, and let

�
B; g; s(i0; j0)

�
be its image under Algorithm1.

In Section 6.1, we saw that
�
B; g; s(i0; j0)

�
satisfies the first three conditions ofC. We are going to

prove that it satisfies the fourth one. Notice first that ifi0 = 1, the theorem is obvious since there is only
one candidate:A(s(i0; j0)). So we can assume thati0 6= 1. By Step2 of Algorithm 1, we know that
A(s(i0; j0)) = a is a candidate that moves tos(i0; j0) when applying AlgorithmP 0.

The other candidates are in rows below or above the row ofa in B. Since the hook function did not
change in the rows belowa, these candidates are the same forB as they are forA. Until they reach the
row of a, their reverse path is not changed. Since they were to the left of the path ofa, they reach this
row weakly left of the position ofa in B. It is then clear that these elements are to the left of the path of
B(s(i0; j0)) since this is the case fora (see Theorem 6.4).

Consider now a candidate ofB that is in a row above the row ofa. Denote its cell by(i; j). By Step2
of Algorithm 1, we know that there is a candidate in the cell(i + 1; j + 1) of A. Since this candidate
is to the left of the path ofa in A, we deduce that(i; j) is strictly left of the rightmost element of the
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reverse path ofa in B with row j. As before, we can conclude that this element is to the left of the path
of B(s(i0 ; j0)). Thanks to Corollary 6.5, the theorem is proved. 2

We now come to Algorithm10.

Theorem 6.8 Algorithm10 stabilizesC.

Proof. Let
�
A; f; (i0; j0)

�
be an element ofC, and let

�
A0; f 0; s�1(i0; j0)

�
be its image under Algo-

rithm10. Thanks to Section 6.1, we know that
�
A0; f 0; s�1(i0; j0)

�
satisfies the first two conditions ofC.

Let us look at the third one. Consider the maximum candidatea associated withA. Any candidateb that
is strictly above it, say in cell(i; j), is also strictly to its left: consider the southeast-most cell that belongs
to both reverse paths. Note that the paths must agree from this cell to(i0; j0). Since the coding ofa is
greater than the coding ofb, and since the path ofa cannot stop on this cell, its next move is necessarily
east (W in the coding). Becausea’s path reaches a lower row thanb’s and they never intersect again
(we took the southeast-most cell),b is necessarily strictly to the left of(i; j). This shows that the cell
(i + 1; j + 1) belongs to the diagram. So, the new value of the hook function at a cell never exceeds the
number of cells to the right of the given cell.

We now consider the fourth condition. The proof is very similar to the proof of the previous theorem.
First, if (i0; j0) is at the bottom of its column, the fourth condition is obviously satisfied since the new
candidates necessarily move tos�1(i0; j0). So, we can assume that(i0; j0) is not at the bottom of its
column. Denote by� the path ofA0(i0; j0) in A0 and note that it is the same set of cells as the reverse
path ofA0(i0; j0) in A. The hook function values do not change for the candidates that are below the last
row of � so they remain to the left of�.

For the candidates above the last row of�, the idea is the same as before: sinceA0(i0; j0) has the
greatest coding, the candidates ofA that are on� are followed by an east move (W in the coding) so the
corresponding candidates inA0 are to the left of�. The idea is the same for the elements that are strictly
at the left of the reverse path ofA0(i0; j0) in A. By Corollary 6.5, we are done. 2

6.4 The Algorithms are Inverse to Each Other
In this subsection, we prove that Algorithm1 is the inverse of Algorithm10.

We first prove that Algorithm1 is the left inverse of Algorithm10.

Theorem 6.9 Let
�
A; f; (i0; j0)

�
be a triple belonging toC. Applying Algorithm10 to it, we obtain�

A0; f 0; s�1(i0; j0)
�
. Applying Algorithm1 to this triple, we obtain

�
B0; g0; (i0; j0)

�
. ThenB0 = A and

g0 = f .

Proof. First, it is clear thatB0 = A: we apply Algorithm1 to the integer that was the maximum candidate
ofA and the cells of its path are exactly the cells of its reverse path inA. SinceB0 = A, we obtain directly
thatg0 = f since the respective changes on the hook functions are the inverse ofeach other and depend
only upon the initial and final cells of the path. 2

We now prove that Algorithm1 is the right inverse of Algorithm10.

Theorem 6.10 Let
�
A; f; (i0; j0)

�
be a triple belonging toC. Applying Algorithm1 to it, we obtain�

B; g; s(i0; j0)
�
. Applying Algorithm10 to this triple, we obtain

�
B0; g0; (i0; j0)

�
. ThenB0 = A and

g0 = f .
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Proof. First, we prove thatB0 = A. Notice that we already proved (see the proof of Theorem 6.7) that
the codings of the other candidates are smaller than the coding ofA(s(i0; j0)), since their coding is either
followed by aW move in� or they differ in a cell where their coding isN . So the maximum candidate
isA(s(i0; j0)). Since the cells of its reverse path inB are the same as the cells of its path inA, we obtain
B0 = A. The same argument as before allows us to conclude thatg0 = f . 2

7 Examples

7.1 Example 1

We give an example of how Algorithm2 works. The element under consideration when applying Algo-
rithm1 is underlined.

10 11 5

7 9 6

2 1 4

8 3

,

0 0 0

0 0 0

0 0 0

0 0

6
�!

10 11 5

7 9 4

2 1 6

8 3

,

0 0 0

0 0 �1

0 0 0

0 0

5
�!

10 11 4

7 9 5

2 1 6

8 3

,

0 0 �2

0 0 0

0 0 0

0 0

3
�!

10 11 4

7 9 5

2 1 6

8 3

,

0 0 �2

0 0 0

0 0 0

0 0

1
�!

10 11 4

7 9 5

2 1 6

8 3

,

0 0 �2

0 0 0

0 0 0

0 0

9
�!

10 11 4

7 1 5

2 3 6

8 9

,

0 0 �2

0 �1 0

0 �1 0

0 0

11
�!

10 1 4

7 3 5

2 6 11

8 9

,

0 �2 �2

0 �2 0

0 1 0

0 0

8
�!

10 1 4

7 3 5

2 6 11

8 9

,

0 �2 �2

0 �2 0

0 1 0

0 0

2
�!

10 1 4

7 3 5

2 6 11

8 9

,

0 �2 �2

0 �2 0

0 1 0

0 0

7
�!

10 1 4

2 3 5

6 7 11

8 9

,

0 �2 �2

�1 �2 0

1 1 0

0 0
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10
�!

1 3 4

2 5 10

6 7 11

8 9

,

�2 �2 �2

2 �2 0

1 1 0

0 0

7.2 Example 2

We now give an example of how Algorithm20 works. The candidate elements are boldfaced and the
content of the considered cell when applying Algorithm10 is underlined.

1 2 7

3 4 8

5 9 10

6 11

,

1 1 �2

2 �1 0

�1 1 0

1 0

8
�!

8 1 2

3 4 7

5 9 10

6 11

,

0 1 �2

2 �1 0

�1 1 0

1 0

7
�!

8 1 2

7 3 4

5 9 10

6 11

,

0 1 �2

0 �1 0

�1 1 0

1 0

11
�!

8 1 2

7 3 4

11 5 10

6 9

,

0 1 �2

0 �1 0

0 1 0

0 0

6
�!

8 1 2

7 3 4

11 5 10

6 9

,

0 1 �2

0 �1 0

0 1 0

0 0

2
�!

8 2 1

7 3 4

11 5 10

6 9

,

0 0 �2

0 �1 0

0 1 0

0 0

10
�!

8 2 1

7 10 4

11 3 5

6 9

,

0 0 �2

0 0 0

0 0 0

0 0

3
�!

8 2 1

7 10 4

11 3 5

6 9

,

0 0 �2

0 0 0

0 0 0

0 0

9
�!

8 2 1

7 10 4

11 3 5

6 9

,

0 0 �2

0 0 0

0 0 0

0 0

4
�!

8 2 4

7 10 1

11 3 5

6 9

,

0 0 0

0 0 �1

0 0 0

0 0

5
�!

8 2 4

7 10 5

11 3 1

6 9

,

0 0 0

0 0 0

0 0 0

0 0
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