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Abstract. We obtain sharp bounds on mixing time of random walks on nilpotent

groups, with Hall bases as generating sets.

Introduction

In the past two decades, the study of random walks on finite groups developed
into a large field with a number of powerful techniques, advanced results and in-
teresting applications. The state of art, however, vary across different classes of
groups. It is safe to say that by now we understand the behavior of random walks
on abelian groups (see [D1,DF]). At the same time, despite several attempts, ran-
dom walks on finite simple groups remain ‘terra incognita’ [Ba,D2]. While there
is little hope of proving of making a breakthrough in full generality, the class of
nilpotent groups seem the most promising to be completely understood in the fore-
seeable future (cf. [CP,DS2,S2]) In this paper we generalize results in [P3] to obtain
sharp bounds for a class of random walks on general nilpotent groups.

From the algebraic point of view, nilpotent groups represent the next logical
step in the group hierarchy, after abelian groups. In many respects, behavior of
random walks on large finite nilpotent groups with a bounded number of generators,
resemble that on abelian group, with mixing time being roughly the square of
diameter (see [DS2]). The similarity is particularly striking for infinite nilpotent
group (see e.g. [W]), although we won’t explore this connection in the paper.

A completely different phenomena occur for all finite groups, when the number
of generators is allowed to grow with the size of the group (say, as logα |G|). In this
case it is often possible to find rapidly mixing random walks (with mixing time, say,
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O(logβ |G|)). In fact, under certain assumptions, most of the sets of generators of
size O(log |G|) mix in time O(log |G|) (see references and in [P2]). For nilpotent
group, this represents a remarkable transition from slow to fast mixing, which begs
for an explanation.

The difficulty in study of the rapidly mixing random walks is a relative lack of
techniques which give sharp upper bounds. At the same time, a variety of general
Markov chain techniques give upper bounds, which are away by a factor of logα |G|,
for some α ≥ 1 [AF]. Let us mention here a paper [S2], which gives sharp general
bounds on the eigenvalue gap, often leading to the best known upper bounds of
the mixing time. On the other hand, as was shown in several special cases, random
walks on nilpotent groups can mix faster than predicted by these general bounds,
and there seem to be no general technique for study these random walks [P1].

In this paper we propose a class of random walks on nilpotent group and prove
rapid mixing for these. Our goal is a good understanding of random walks on
particular generating sets, so that one can use a comparison technique to obtain
bounds for other generating sets of nilpotent groups. We are trying to model the use
of ‘random transpositions’ for study of random walks on Sn, championed in [DS1].
The generating sets we consider are the ‘Hall bases’, which extend the notion of the
power commutator generating sets. We show that the mixing of the random walk
on these can be reduced to the coupon collector’s problem on the generators.

Our proof uses a stopping time technique, pioneered by Aldous and Diaconis
in [AD1,AD2], and then employed by Diaconis and Fill [DF], Matthews [M], and
others. This is, perhaps, the most rarely used approach, due to the technical
difficulty of finding a desired strong uniform time (see [P1]). We are fully convinced,
however, that no other approach (such as Fourier analysis, coupling, Poincare or
isoperimetric inequalities, etc.) can give bounds as good as ours in this case. The
construction we use extends the result of the second author for the group of upper
triangular matrices [P3].

The paper is organized as follows. In section 1 we present definitions and general
results for random walks on finite groups. Section 2 contains main results, Theo-
rems 2.1 and 2.2, which prove rapid mixing of random walks on nilpotent groups,
with two versions of the Hall bases as generating sets. In section 3 we illustrate
the power of the theorems in several special cases. The key lemmas are given in
section 4, while the proof of theorems is completed in section 5. In section 6 we
present analogous results for compact nilpotent groups.

Few words about notation. Throughout the paper the random walk on G with a
generating set S denotes W(G,S), the mixing time denotes by mixW (see section 1.
for definitions). Also, we denote [n] = {1, 2, . . . , n}.

1. Random walks on groups

Let G be a finite group and let S = S−1 be a symmetric generating set. A
random walk W = W(G,S) is defined as follows:

X0 = id, Xt+1 = Xt · s,
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where s ∈ S is chosen uniformly and independently, for every t > 0. One can think
of W(G,S) as of a nearest neighbor random walk on the Cayley graph Γ = Γ(G,S).
Let Qt(g) = P(Xt = g) denotes the probability distribution of the walk after t
steps. Throughout the paper we assume that id ∈ S, so Γ is not bipartite. Then,
for all g ∈ G, we have:

Qt(g) → 1
|G|

, as t→∞.

Define a separation distance :

sep(t) = |G| max
g∈G

(
1
|G|

−Qt(g)
)
.

It is well known [AD2,D1] that sep(t) is monotone and submultiplicative:

sep(t+ 1) ≤ sep(t), sep(t+ r) ≤ sep(t) · sep(r), for all t, r ≥ 0.

Also, the separation distance is always bounded from below by the total variation
distance :

sep(t) ≥ ‖Qt −U‖ =
1
2

∑
g∈G

∣∣∣∣Qt − 1
|G|

∣∣∣∣ .
Define the mixing time mix = mix(G,S) as follows:

mix = min
{
t : sep(t) ≤ 1

2

}
= min

{
t : Qt(g) ≥ 1

2|G|
, for all g ∈ G

}
.

Let A = (ag,h) be the adjacency matrix of the Cayley graph Γ, so that P = A/|S|
is a transition matrix of the random walk W. Denote by 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥
λ|G|−1 > −1 the eigenvalues of P . Let β = 1 − λ1 and β′ = λ|G|−1 + 1 be the
first and last eigenvalue gaps of P . It is well known and easy to see that :

1
2 min{β, β′}

≤ mix ≤ 2 log2 |G|
min{β, β′}

(see e.g. [AF]). Also, sep(t) ∼ C %t as t→∞, where % = min{β, β′}.
Let τ : {Xt} → Z+ be a stopping time defined by some stopping rule: if

τ({Xt}) = k, then τ({X ′
t}) = k, given Xi = X ′

i for all 1 ≤ i ≤ k. We say that τ
is strong uniform if

P(Xτ = g | τ = k) =
1
|G|

, for all g ∈ G, k > 0, such that P(τ = k) > 0.

If τ is strong uniform, we have:

(∗) sep(t) ≤ P(τ > t), and mix ≤ 2E(τ)

(see [AD2,AF,P1]).
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Example 1.1 Let G = Zm
2 be an abelian group with a natural set of generators

S =
{
(0, . . . , 1i, . . . , 0), i ∈ [m]

}
.

The Cayley graph Γ(G,S) is bipartite so we shall consider Ŝ = S ∪ {idm}. One
can think of the random walk W(Zm

2 , Ŝ) as follows: at every t ∈ Z+ pick a random
direction i ∈ [m] and flip a fair coin. If heads, move in i-th direction. If tails, stay
put.

Let us define a stopping time τ to be the first time that all directions are chosen
at least once (the walker may have or have not moved in that direction). Define
Φm(t) = P(φ > t) be given by the coupon collectors problem with m coupons: if
at every t = 1, 2, . . . one coupon is chosen at random, what is the time φ when all
coupons are collected? In this language, (∗) implies that

sep(t) ≤ P(τ > t) = Φm(t), and mix ≤ E(τ) = E(φ).

One can show that the first inequality above becomes an equality, due to ĝ =
(1, . . . , 1) ∈ Zm

2 being a halting element of τ (see [DF,P1], and subsection 5.2.)
From above, mix ≤ 2n log n + O(n). In fact, mix ≤ 2mHm, where Hm is a

harmonic number Hm = 1 + 1
2 + 1

3 + . . . + 1
m [F]. Further, for the separation

distance one obtain:

sep
(
n log n+ c n

)
= Φm(n log n+ c n) → 1− e−e−c

as n→∞,

for all c ∈ R [ER,P1].

Example 1.2 Let G = Zn, S = {0,±1}. It is well known and easy to see that
in this case mix(G,S) ∼ C n2, for some C < 1. Moreover, sep(c n2) ≤ 2−c, for any
c > 1 (see e.g. [D1]). Among many ways to prove this, one can use the stopping
time technique, as shown in [DF].

Suppose, for simplicity, that n = 2m. Define τ as follows. Walk until group
element a1 = ±n/4 is hit. Then walk until a2 = a1 ± n/8 is hit. Then walk until
a2 ± n/16 is hit, etc. Finally walk until am−1 = am−2 ± 1 is hit. Then walk until
either 0 or 1 steps are used. Let this be am. Stop.

Observe by induction and symmetry, that ak−1 is uniformly distributed among
n/2 ± n/4 ± · · · ± n/2k. Thus am−1 is uniform among odd integers mod n, and
am is uniform in Zn. A similar construction exists for general n (see [DF,P1] for
details). Thus mix = E(τ) = O(n2) is bounded by the sum of the hitting times of
the random walk on a line [DF].

2. Main results

Recall that a group G is nilpotent if there exist a subgroup chain

(�) G = G1 ⊃ G2 ⊃ . . . ⊃ G` ⊃ G`+1 = 1,
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such that [G,Gi] ⊂ Gi+1, Gi+1 is normal in Gi, and Hi = Gi/Gi+1 are abelian,
for all i ∈ [`] (see e.g. [L]). Denote by γi : Gi → Hi the natural projections of Gi

onto Hi.
We say that {h1, . . . , hr} is a basis in an abelian group H, if 〈h1, . . . , hr〉 =

H. Fix an integer sequence r = (r1, . . . , r`). Denote by Λr the set of pairs
{(i, j) : i ∈ [`], j ∈ [ri]}, and let Nr = |Λr| = r1 + . . . + r`. We say that a set
S = {si,j , (i, j) ∈ Λr} is a Hall basis in a nilpotent group G, if si,j ∈ Gi for all
(i, j) ∈ Λr, and {γi(si,1), . . . , γi(si,ri

)} is a basis in Hi. We shall use notation hi,j

to denote projections γi(si,j) ∈ Hi. By di,j denote the order of the element hi,j .
Let us define two different bases

S◦ =
{
sα

i,j , α ∈ {−1, 0, 1}, (i, j) ∈ Λr

}
, and Ŝ =

{
sα

i,j , α ∈ [di,j ], (i, j) ∈ Λr

}
.

We call these the symmetric and extended Hall bases, respectively. The main result
of this paper is analysis of the random walk W(G,S), where S is a symmetric or
and extended Hall basis.

Theorem 2.1 Let G be a nilpotent group with a subgroup chain (�), let r =
(r1, . . . , r`) be an integer sequence, N = Nr = r1 + · · ·+ r`. Let Ŝ be an extended
Hall basis of G, defined as above. Consider a random walk W = W(G, Ŝ). Then,
for the separation distance sep(t) and the mixing time mix = mix(G, Ŝ) of the walk
W, we have:

sep(t) ≤ ΦN(t), and mix ≤ 2 NHN,

where ΦN is a probability tail in the coupon collector’s problem with N coupons.

Note here, that the random walk in Theorem 2.1, in a special case G = Zm
2 ,

` = 1 and r1 = m, is the same random walk in the Example 1.1. The proof of
Theorem 2.1 will be given in section 5, and is based on an advance generalization
of the strong uniform time in that example.

With every multiplicity sequence k = (k1, . . . , km) we associate a generalized
coupon collector’s problem, defined as follows. Suppose there arem types of different
coupons, and at every time t ∈ {1, 2, . . . }, a type i ∈ [m] of a coupon is chosen at
random, uniformly and independently. If the number of coupons of this type is ki,
no change is made. Otherwise, a fair coin is flipped. If heads, a coupon of type i
is added to a collection. If tails, a coupon of type i is removed from a collection (if
there are any). The process is stopped when there are exactly ki copies of coupons
of i-th type, for all i ∈ [m].

Denote by φ the stopping time of the process defined above. Consider also
Φk(t) = P(φ > t), the probability tail of φ.

Theorem 2.2 Let G be a nilpotent group with a subgroup chain (�), and let
r = (r1, . . . , r`) be an integer sequence. Let S = {si,j , (i, j) ∈ Λr} be a Hall
basis defined as above, and let di,j be the orders of projections. Finally, let S◦ ={
sα

i,j , α ∈ {0,±1}
}

be the symmetric Hall basis of G. Consider a random walk
W = W(G, Ŝ). Then, for the separation distance sep(t) and the mixing time
mix = mix(G,S◦) of the walk W, we have:

sep(t) ≤ Φk(t), and mix ≤ 2E(φ),
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where k = (. . . , bdi,j/2c, . . . ), is a multiplicity sequence in the generalized coupon
collector’s problem with N coupons corresponding to pairs (i, j) ∈ Λr.

Corollary 2.3 In conditions of Theorem 2.2, for the mixing time mix =
mix(G,S◦), we have mix = O

(
D2 N (log N)2

)
, where D = max{di,j , (i, j) ∈ Λr}.

Much is known about Φk, although, perhaps, most general bounds as in Corol-
lary 2.3 are much weaker than that in special cases. We will elaborate on the these
in the next section, where we consider several examples of interest.

The proof of Theorem 2.2 is based on a modification of the strong uniform
time construction we present in the proof of Theorem 2.1. A weaker version of
Theorem 2.2 can be obtained directly from Theorem 2.1 by using comparison [DS1].
In the examples, we will show that Theorem 2.2 can give much sharper bounds than
comparison bound in such cases. It is interesting to see that one can obtain sharp
lower bounds on the eigenvalue gap as well:

Corollary 2.4 In conditions of Theorem 2.1, for the eigenvalue gap β =
β(G, Ŝ), we have β = Ω

(
1
N

)
.

We prove corollaries 2.3 and 2.4 in section 7.

3. Examples and special cases

3.1 Cyclic groups.
Consider the case G = Zn, N = ` = r1 = 1, and S = {0,±1}. The generalized

coupon collectors problem in this case is a problem of collecting k1 = n coupons.
The expected time to collect k1 coupons is a hitting time of k1 of the random with
a reflected boundary at 0. Thus E(φ) = O(n2) [F]. This agrees with the mixing
time of the walk mix = O(n2) [D1]. Accordingly, our construction in the proof of
Theorem 2.2 uses that in Example 1.2 as a building block.

3.2 Abelian groups.
Let G = H1 be an abelian group, ` = 1, let S = {s1, . . . , sm} be a generating

set, and let di = order(si). We claim that the product

a = (s1)α1 · . . . · (sm)αm

is uniform in G, given αi is uniform in [di]. Indeed, this is trivial for a cyclic group,
and for a direct product of cyclic groups can be obtained by induction. Note that
we do not require the generating set to be minimal or nonredundant.

Now, consider a random walk W = W(G, Ŝ) in this case. A direct generalization
of the stopping time τ in Example 1.1, gives a construction of the stopping time,
which is strong uniform from the argument above. Thus, for the separation distance
of W, we have sep(t) ≤ P(τ > t) = Φm(t). This agrees with the bound given by
Theorem 1.2 in this case.
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3.3 p-groups.

Suppose G is a p-group and Hi ' Zri
p . Let r = (r1, . . . , r`), N = r1 + . . . + r`,

and let Λr be as in section 2. Consider a symmetric Hall basis

S◦ =
{
idN, si,j , s

−1
i,j : (i, j) ∈ Λr

}
.

In this case di,j = p for all (i, j) ∈ Λr. Suppose now p is fixed and N →∞. It was
shown in [NS,ER] that the time ψ when at least L coupons of each type is chosen
satisfies

P
(
ψ ≤ N log N + (L− 1)N log log N + cN

)
→ e−e−c

,

for every c ∈ R. Taking L = O(p2) and using [ER] one can obtain mix <
C p2 N log N log log N, where C is a universal constant. This is slightly better than
mix = O(p2N log2 N) bound that follows immediately when one combines bounds
in Example 1.1 with those in coupon collector’s problem.

3.4 Upper triangular matrices.

Let G = U(n,Fp) be a group of upper triangular matrices over the field with
p elements, with ones on diagonal. Let q be a prime. Denote by Ei,j(a) ∈ G a
matrix with ones on diagonal, a ∈ Fp at (i, j), and zeroes elsewhere. Consider a
(redundant) generating set S = {Ei,j(a), 1 ≤ i < j ≤ n, a ∈ Fp}. A random walk
W = W(G,S) was considered in [P1,P3], where

1
2
n2 log n+O(n2) ≤ mix

(
U(n,Fq), S

)
≤ 2n2 log n+O(n2)

bound was shown. Note that the upper bound easily follows from Theorem 2.1.
Indeed, since Ei,j(a) =

(
Ei,j(1)

)a, we can take N =
(
n
2

)
in the Theorem. We

conclude:

mix ≤ 2
(
n

2

)
H(n

2) = 2n2 log n+O(n).

When one takes a smaller generating set S◦ =
{
Ei,j(±1), id(n

2), 1 ≤ i < j ≤ n
}
,

one gets a random walk on a p-group, as above, with N =
(
n
2

)
.

For another set of generators S? =
{
Ei,i+1(a), 1 ≤ i < n, a ∈ Fp

}
, when

p = Ω(n2), it was shown in [CP] that

mix
(
U(n,Fp), S?

)
= O(n2).

Note the obvious lower bound mix ≥
(
n
2

)
, so the upper bound above is sharp.

Such a rapid mixing is rather surprising since S? does not contain a Hall basis.
Interestingly, for bounded p, the best known bound is mix = O(n3), given in [S1].
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4. Random elements in nilpotent groups

Let G be a nilpotent group with a subgroup chain (�) of length `; let r =
(r1, . . . , r`) be an integer sequence; let Λr and N = Nr be as in section 2. Consider
a Hall basis S = {si,j} with projections hi,j and their orders di,j = order(hi,j).

Lemma 4.1 For all i ∈ [`], consider a random element

ai =
(
si,1

)αi,1 · . . . ·
(
si,ri

)αi,ri ,

where αi,j are independent and uniform in [di,j ]. Then a product of these elements
a = a1 · · · a` is uniform in G.

The lemma is well known, although rarely stated in these form. Below present
a short proof for completeness. But first let state a generalization of the lemma.

Lemma 4.2 Let σ : Λr → Λr be a bijection. Consider a product

(~) a =
(
sσ(1,1)

)ασ(1,1) · . . . ·
(
sσ(`,r`)

)ασ(`,r`) ,

where αi,j are independent and uniform in [di,j ], for all (i, j) ∈ Λr. Then the
product a in (~) is uniform in G.

Note that Lemma 4.2 coincides with Lemma 4.1, when σ is the identity permu-
tation.

Proof of Lemma 4.1. Use induction on `. For ` = 1 the group is abelian and
the result is clear (cf. Example 3.2.) Now let us prove the inductive step. By
inductive assumption, a′ = a2 · · · a` ∈ G2 is uniform in G2. Also,

γ1(a1) =
(
γ1(s1,1)

)α1,1 · . . . ·
(
γ1(s1,r1)

)α1,r1 =
(
h1,1

)α1,1 · . . . ·
(
h1,r1

)α1,r1 ∈ H1

is uniform in H1, since H1 = 〈h1,1, . . . , h1,r1〉 is abelian. Since γ1(a) = γ1(a1) and
a′ is uniform in G2, we conclude that a = a1a

′ is uniform in G1 = G. �

Proof of Lemma 4.2. Recall that for all h ∈ Gi and h′ ∈ Gj , we have:

(�) h · h′ = h′ · h · b(h, h′), where b(h, h′) = [h, h′] ∈ Gmax{i,j}+1.

Now let us rewrite (~) in as a product of the same type, for σ = 1, with addi-
tional terms b∗, obtained as commutators of the elements. Formally, pull the term(
s1,1

)α1,1 in (~) to the left, by repeatedly using commutations (�). We obtain:

(~′) a =
(
s1,1

)α1,1 ·
(
sσ(1,1)

)ασ(1,1)b(1) · . . . ·
(
sσ(`,r`)

)ασ(`,r`)b(N),

where the term
(
s1,1

)α1,1 is omitted in the product and every term preceded(
s1,1

)α1,1 in (~), is now followed by some b(∗). Now pull to the left the term
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s1,2

)α1,2 to follow
(
s1,1

)α1,1 , etc. The last term to be pulled is
(
sr,`

)α`,r` . We
obtain a product of the following type:

(}) a = a1 a2 b3 a3 b4 · . . . · b` a` b`+1,

where ai is as in Lemma 4.1, and for the products of commutators bi of terms(
si−1,j

)αi−1,j and
(
si′,j′

)αi′,j′ , i′ ≤ i− 1, we have bi ∈ Gi.
To prove uniformity of a in (}), go backwards. Observe that b`+1 = 1 so

a` b`+1 is uniform in G`. Since a`−1 and b` ∈ G` are independent of a` b`+1,
we have b` a` b`+1 is uniform in G`, and a`−1b` a` b`+1 is uniform in G`−1. Sim-
ilarly, since a`−2 and b`−1 ∈ G` are independent of a`−1 b` a` b`+1, we obtain
a`−2 b`−1 a`−1 b` a` b`+1 is uniform in G`−2, etc. Proceeding in this manner we
obtain that a = a1 a2 b3 a3 . . . in (}) is uniform in G1 = G. �

5. Proof of Theorems 2.1, 2.2

5.1 Proof of Theorem 2.1.

The proof is based on an explicit construction of a strong uniform time with
tail probabilities ΦN(t). Namely, for a random walk W = W(G, Ŝ) consider the
following stopping rule: walk until for every (i, j) ∈ Λr, a generator sα

i,j is used,
for some α ∈ [di,j ]. Stop.

We claim that the stopping time τ defined by the rule above is strong uniform.
This would prove the theorem. Indeed, consider the usual coupon collector’s prob-
lem with N = |Λr| coupons corresponding to pairs (i, j) ∈ Λr. By construction of
τ and from the property (∗) of strong uniform time (see section 1), we immediately
have:

sep(t) ≤ P(τ > t) = ΦN (t), and mix ≤ 2 NHN,

(cf. Example 1.1), which is exactly what we needed to prove.
Now, we will show that strong uniformity follows from Lemma 3.2. Indeed, fix

a sequence of pairs
M : (i1, j1), (i2, j2), . . . , (ik, jk),

where τ = k. By definition of τ , this sequence M contains every pair (i, j) ∈ Λr.
Therefore a set of elements S′ =

{
si1,j1 , . . . , sik,jk

}
is a Hall basis (perhaps, very

redundant). Thus M is a permutation of the corresponding set of pairs Λr′ . We
have:

P
(
Xτ = g | τ = k, M

)
= P(a = g),

where
(�) a = sα1

i1,j1
· sα2

i2,j2
· . . . · sαk

ik,jk
,

and αm ∈
[
dim,jm

]
, 1 ≤ m ≤ k. By Lemma 3.2, the product a in (�) is uniform

in G. This implies that τ is strong uniform, which completes the proof. �
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5.2 Proof of Theorem 2.2.
We define a construction of the strong uniform time in this case, based on an

inexplicit construction of strong uniform time for a random walk on a cycle (see
Example 1.2, [AD2,DF,P1]).

First, assume we have any construction of the strong uniform time for each of
the cyclic groups Hi,j = 〈hi,j〉 ' Zdi,j , where (i, j) ∈ Λr. Denote this stopping
time by τi,j .

Now, while running a random walk on G by S◦, let us run N parallel random
walks on Hi,j by applying generators hα

i,j whenever sα
i,j is used by a random walk

on G, α ∈ {0,±1}. Let us define τ = max{τi,j , (i, j) ∈ Λr} to be the time
when all parallel walks on Hi,j are stopped. Conditioned on the sequence M of the
walk (but not on α again), proceed with a rewriting procedure as in the proof of
Lemma 4.2. We obtain a random element a of the form (}). By construction of
τ , the term ai here is a product

∏
j

(
si,j

)νi,j , where νi,j is uniform in [di,j ] by
definition of τi,j . Repeating the proof of Lemma 4.2 verbatim, we conclude that a
is uniform in G. Now proceed as in the proof of Theorem 2.1 to obtain that τ is
strong uniform. From here, the separation distance of the random walk W satisfies
sep(t) ≤ P(τ > t).

Let us return now to the generalized coupon collector’s problem with multiplicity
sequence k =

(
d1,1, . . . , d`,r`

)
. We claim that

P(τ > t) ≤ Φk(t) = P(φ > t),

which suffices to prove the theorem. By definition, φ is the maximum of the
stopping times φi,j for every type of a coupon (i, j) ∈ Λr. Thus it remains to
prove that

P(τi,j > t) ≤ P(φi,j > t), for all t ≥ 0.

At this point we need to recall extra properties of the strong uniform times
[AD2,P1]. We say that ĝ ∈ G is halting, if τ = k whenever Xk = ĝ and k ≤ τ .
We say that g̃ is minimal, if Qt(g̃) ≤ Qt(g) for all g ∈ G.

It is known that for every W(G,S) there exists a strong uniform time τ such
that the separation distance of W satisfies sep(t) = P(τ > t), for all t > 0 (see
[AD2]). Moreover, if W has a minimal element ĝ, then this is a halting element for
the stopping time τ [P1].

Recall that bm/2c is a minimal element of W(Zm, {0,±1}) considered in Exam-
ple 1.1. We conclude that for every m > 1, there exists a strong uniform time τ
on Zm such that ±bm/2c are halting element. Therefore, for a hitting time η of
the elements ±bm/2c, we have P(τ > t) ≤ P(η > t), for all t ≥ 0. Finally, by
the reflection principle, we have P(η = t) = P(φi,j = t), given m = di,j [F]. We
conclude:

P(τi,j > t) ≤ P(η > t) = P(φi,j > t), for all t ≥ 0, (i, j) ∈ Λr.

This implies the result. �
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6. Compact nilpotent groups

In this section we show that Theorem 2.1 has a straightforward analogue for
compact nilpotent groups.

Let G be a compact connected real Lie group, with a set of generators S. Denote
by µ the invariant measure on G, also known as Haar measure [Bu,H]. Recall that
µ is unique, given that µ(G) = 1. Since in our examples we have µ(S) = 0,
we consider a different probability measure ϑ on S, ϑ(S) = 1. We need this
measure to define a random walk (roughly: we sample element s ∈ S according to
µ and multiply the state of the walk by s.) Consider a natural product measure
on Sm ⊂ Gm, and the probability measure Qm is defined by projection ιm :
(g1, . . . , gm) → g1 · . . . · gm, where gi ∈ S are sampled independently from ϑ. By
abuse of speech, we refer to probability measure Qm as a probability distribution
of the random walk W(G,S) after m steps.

By analogy with a finite group case, we can define a separation distance:

sep(m) = sup
A⊂G, µ(A)>0

(
1− Qm(A)

µ(A)

)
.

Roughly, if the separation distance sep(m) is equal to λ, then Qm = (1−λ)·µ+λ·η,
where η is some positive measure, which can be interpreted as “noise”. As before,
we can define mix = min {t : sep(t) ≤ 1/2}.

Let G be a compact nilpotent Lie group, with a subgroup chain (�) of length `.
Define r = (r1, . . . , r`) and Λr = {(i, j) : i ∈ [`], j ∈ [ri], N = Nr = |Λr| to be as
before. Let Hi = Gi/Gi+1 be abelian quotients and let S =

{
si,j , (i, j) ∈ Λr

}
be

the generating set of G, such that si,j ∈ Gi. Again, let hi,j = γi(si,j) ∈ Hi to be
a projection of si,j onto Hi. We say that S is a Hall basis if 〈hi,1, . . . , hi,ri

〉 = Hi

for all i ∈ [`].
Let H = 〈h1, . . . , hr〉 be a compact abelian groups. Then Hi ' S1 × · · · × S1

(m times), for some integer m, and where S1 ' R/Z. Therefore, there exists real
numbers d1, . . . , dr > 0, which we call periods, such that

(�) h = hα1
1 · . . . · hαr

r is uniform in H,

given αi is uniform in [0, di] for all 1 ≤ i ≤ r. By abuse of speech, we refer to di,j

as periods of generators si,j .
Now, let di,j > 0 be periods of si,j . Let ϑi,j = U

[
0, di,j

]
be a uniform measure

of the interval, and let

ϑ =
⋃ 1

Nr
ϑi,j

be a measure on an extended Hall basis Ŝ = {si,j , (i, j) ∈ Λr}. One can think of the
random walk W = W(G, Ŝ, ϑ) as follows: choose a random pair (i, j) uniformly
and independently from Λr; choose a random point α ∈ [0, 1]; let

Xt+1 = Xt ·
(
si,j

)α di,j
.
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Theorem 6.1 Let G be a compact connected real nilpotent group Lie group
with a subgroup chain (�) of length `. Let k = (k1, . . . , k`) be an integer sequence,
let N = |Λr|, and let S = {si,j , (i, j) ∈ Λr} be a Hall basis. Suppose di,j are the
periods of elements in S. Consider a random walk W = W(G, Ŝ, ϑ) defined as
above. Then

sep(t) ≤ ΦN(t), and mix ≤ 2 NHN.

The theorem is a direct analogue of Theorem 2.1 for finite nilpotent groups.
Much of the proof goes verbatim, although one has to be careful and develop
the theory of strong uniform times for compact groups. This will be done in a
sequel paper [P4]. Without giving all the details, let us just note here that all
the properties of separation distance, its relation to strong uniform times, etc., can
be translated from finite groups to compact Lie groups employing almost identical
proofs. Here we give a sketch of the proof of Theorem 6.1.

Example 6.2 Let k be an infinite compact ring over R with identity, and let
G = U(n,k) be a group of upper triangular matrices with elements in k, and with
id on the diagonal. Let Ei,j(a) ∈ U(n,k) be a matrix with id on the diagonal,
with a ∈ k at (i, j), and zeroes elsewhere. Consider a natural uniform measure ϑ

on Ŝ = {Ei,j(a), 1 ≤ i < j ≤ n} = {(i, j), 1 ≤ i < j ≤ n}×k. Let W = W(G, Ŝ, ϑ)
be be the corresponding random walk on G.

This random walk was first considered in [P3], where the author proved that

sep(t) ≤ Φ(n
2)(t), and mix ≤ 2

(
n

2

)
H(n

2) = 2n2 log n + O(n2).

This result is a direct analogue of that in section 3.4. It follows immediately from
Theorem 6.1, for r = (n− 1, n− 2, . . . , 2, 1), N =

(
n
2

)
, and di,j = const. We refer

to [P3] for the details.

Sketch of proof of Theorem 6.1. First start with analogues of Lemmas 4.1 and
4.2. When G is abelian, the analogue of Lemma 4.1 is now a definition (�) of the
periods. For nonabelian G, the proof is elementary but requires understanding of
Haar measure µ on G [Bu]. One can show in this case that µ = µ1× . . . µ`, where
µi is a uniform measure on Hi.

The analogue of Lemma 4.2 is exactly the same. For the proof, we again rewrite
(~) by using (�) a number of times until we arrive to (}). The product a in (})
is uniform by the analogue of Lemma 4.1.

Now, define a stopping time for W as in the proof of Theorem 2.1 (see sec-
tion 5.1), by stopping when the generators of the type (si,j)α are used, for all
(i, j) ∈ Λr. Then use the analogue of Lemma 4.2 to obtain measure µ on G of the
product a in (�), even conditioned on the sequence M. We omit the details. �
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7. Proof of Corollaries

7.1 Proof of Corollary 2.2.

The probability that after t steps a simple random walk on Z is within distance
d is e−t/c d2

, where c is a universal constant [F]. For N independent random walks,
the probability P that after Cd2 log N steps at least one of the walks is within d
satisfies:

P ≤ N · e−C2 log N/c < ε,

for some C = C(ε).
Now, by coupon collector’s problem, it takes on average at most

O(D2 logN) · (N log N +O(N))

steps to collect di,j ≤ D copies of every coupon (i, j). This implies the result. �

7.2 Proof of Corollary 2.4.

For coupon collector’s problem, it is well known that ΦN(t) < e−c t/N ∼ (1 −
c′/N)t, as t → ∞. Indeed, this follows easily from Chernoff bound for geometric
distributions with exponents (n − 1)/n, (n − 2)/n, . . . , 2/n, 1/n [AS]. Now, we
have sep(t) ∼ (λ1)t, as t → ∞, t - odd. By Theorem 2.1, we have sep(t) ≤ Φ(t)
which implies that (1− λ1) = β = Ω(1/N). �
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