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Abstract. We give a new proof of Steinitz’s classical theorem in the case of plane trian-
gulations, which allows us to obtain a new general bound on the grid size of the simplicial
polytope realizing a given triangulation, subexponential in a number of special cases.

Formally, we prove that every plane triangulation G with n vertices can be embedded
in R2 in such a way that it is the vertical projection of a convex polyhedral surface. We
show that the vertices of this surface may be placed in a 4n3×8n5×ζ(n) integer grid, where

ζ(n) ≤ (500n8)τ(G) and τ(G) denotes the shedding diameter of G, a quantity defined in
the paper.

1. Introduction

Steinitz’s theorem states every 3-connected plane graph G is the graph of a 3-dimensional
convex polytope. An important corollary of the original proof is that the vertices of the
polytope can be made integers. The quantitative Steinitz problem [R] asks for the smallest
size of such integers as they depend on a graph. The best current bounds are exponential
in the number of vertices in all three dimensions, even when restricted to triangulations,
see [RRS]. A variant of these bounds, in terms of bit complexity, appears in [DG], in which
the authors demonstrate that 3-connected planar triangulations can be realized as convex
3-polyhedra whose vertices may be represented using a polynomial number of bits (see [DG],
Theorem 2.1).

In this paper we improve these bounds in two directions. While the main result of this
paper is rather technical (Theorem 4.2), the following corollary requires no background.

Corollary 1.1 Let G be a plane triangulation with n vertices. Then G is a graph of a
convex polyhedron with vertices lying in a 4n3 × 8n5 × (500n8)n integer grid.

This result improves known bounds in two directions at the expense of a somewhat
weaker bound in the third direction. We mention that an improvement in one direction, at
the expense of the other two, is already given by Schultz, who presents an embedding of
general 3-polytopes in an integer grid that is polynomial (in fact linear) in one dimension,
but superexponential in the other two (see [S], Theorem 3). We call simplicial polytopes
obtained from Corollary 1.1 “skyscraper polytopes”, as they are small (polynomial in size)
in two directions but generally have superexponential size in the third. However, for large
families of graphs we make sharp improvements in the third direction as well. Below we
give our our main application.
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A grid triangulation of [a × b] = {1, . . . , a} × {1, . . . , b} is a triangulation with all grid
points as the set of vertices. These triangulations have a curious structure, and have been
studied and enumerated in a number of papers (see [A, KZ, We] and references therein).

Corollary 1.2 Let G be a grid triangulation of [k×k], such that every edge sits in an `× `
subgrid. Then G is a graph of a convex polyhedron with vertices lying in a O(k6)×O(k10)×
kO(`k) integer grid.

Setting ` = O(1) as k → ∞, for the grid triangulations as in the corollary, we have a
subexponential grid size in the number n = k2 of vertices: O(n3)×O(n5)× expO(

√
n log n).

Figure 1. An example of a grid triangulation of [5× 5], with ` = 3.

The basic idea behind the best known bounds in the quantitative Steinitz problem is as
follows (see [R, RRS, Ro]). Start with a Tutte spring embedding of G with unit weights [T],
and lift it up to a convex surface according to the Maxwell–Cremona theorem (see [L, R]).
Since Tutte’s embedding and the lifting are given by rational equations, this embedding can
be scaled to an integer embedding. However, there is only so much room for this method
to work, and since the determinants are given by the number of spanning trees in G, the
bounds cannot be made subexponential in the case of triangulations.

There are several interesting proofs of the Steinitz theorem [Z1, Z2] and some simplified
versions of the proof for the special case of triangulations [DG, G]. However, none seem to
suggest a way to substantially decrease the size of the integer grid in the case of triangu-
lations. The proof we present follows a similar idea, based on lifting a plane graph, but in
place of the Tutte spring embedding we present an inductive construction. In essence, we
construct a strongly convex embedding of plane triangulations, based on a standard induc-
tive proof of Fáry’s theorem [F]. We make our construction quantitative, by doing this on
a O(n3) × O(n5) grid, thus proving a result reminiscent of the main result in [BR]. The
key difference is that, while our construction uses a larger grid size than that in [BR], it
produces a drawing with a convex boundary at each step of the construction.

This step by step convexity allows us to lift the resulting triangulation directly to a
convex surface. The inductive argument allows us to obtain a new type of quantitative
bound ζ(n) = nO(τ(G)) on the height of the lifting. The parameter τ(G) here may be linear
in n in the worst case. However, this parameter τ(G) is sublinear in a number of special
cases, such as the grid triangulations mentioned above, where τ(G) = Θ(

√
n) (see §6.5). In

fact, this is this lower bound. Indeed, it is easy to show that

τ(G) ≥ diam(G),diam(G′),

which implies that τ(G) = Ω(
√
n) for 3-connected plane triangulations G.
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The rest of this paper is structured as follows. In the next section we recall some defini-
tions and basic results on graph drawing. In Section 3.3 we prove Theorem 3.3, the crucial
technical result on graph embedding. Then, in Section 4, we define the shedding diameter
and prove Theorem 4.2, the main result of this paper. We discuss grid triangulations in
Section 5, and conclude with final remarks in Section 6.

2. Definitions and basic results

Let G = (V,E) denote a plane graph. By abuse of notation we will identify G with the
subset of R2 consisting of its vertices and edges. We write V (G) for the vertices of G and
E(G) for the edges of G. When G is 2-connected we let F(G) = {F1, . . . , Fm} denote the
set of (closed) bounded faces of G. We define F(G) =

⋃
i Fi, the region of R2 determined

by G. For a subgraph H of G, we write H ⊆ G.
When G is 2-connected, a vertex v ∈ V is called a boundary vertex if v is in the boundary

of F(G), and an interior vertex otherwise. Similarly, an edge e ∈ E is called a boundary
edge if e is completely contained in the boundary of F(G), and an interior edge otherwise.
A diagonal of G is an interior edge whose endpoints are boundary vertices of G. For a plane
graph G with vertex v, let G− {v} denote the plane graph obtained by removing v and all
edges adjacent to v.

We say that two plane graphs G,G′ are face isomorphic, written G ∼ G′, if there is a
graph isomorphism ψ : V (G)→ V (G′) that also induces a bijection ψF : F(G)→ F(G′) of
the bounded faces of G and G′. This last property means that v1, . . . , vk are the vertices
of a face F ∈ F(G) if and only if ψ(v1), . . . , ψ(vk) are the vertices of a face F ′ ∈ F(G′).
By definition, G ∼ G′ implies that G and G′ are isomorphic as abstract graphs, but the
converse in not always true. When G ∼ G′ and v is a vertex of G, we will write v′ for the
corresponding vertex of G′, indicating that a face isomorphism ψ is defined by v′ = ψ(v).

A geometric plane graph is a plane graph for which each edge is a straight line segment.
A geometric embedding of a plane graph G in the set S ⊆ R2 is a geometric plane graph G′

such that G ∼ G′ and every vertex of G′ is a point of S. For a point u = (a, b) ∈ R2, we
will write x(u) = a and y(u) = b for the standard projections.

For a plane graph G with n vertices and an ordering of the vertices a = (a1, . . . , an), we
define a sequence of plane graphs G0(a), . . . , Gn(a) recursively by Gn(a) = G and Gi−1(a) =
Gi(a)− {ai}. We will write Gi for Gi(a) when a is understood. If v is a vertex of Gi then
we let di(v) denote the degree of v in the graph Gi.

A plane triangulation is a 2-connected plane graph G such that each bounded face of G
has exactly 3 vertices. Note in particular that if G is a plane triangulation then F(G) is
homeomorphic to a 2-ball. A boundary vertex v of a plane triangulation G is a shedding
vertex of G if G − {v} is a plane triangulation. Let G be a plane triangulation with n
vertices. A vertex sequence a = (a1, . . . , an) is called a shedding sequence for G if ai is a
shedding vertex of Gi(a) for all i = 4, . . . , n. We have the following technical lemma given
in [FPP, §2], where it was used for an effective embedding of graphs.

Lemma 2.1 ([FPP]) Let G be a plane triangulation. Then, for every boundary edge uv of
G, there is a shedding sequence a = (a1, . . . , an) for G, such that u = a1 and v = a2.

In order to carry out the embeddings described below, we will need to strengthen the
notion of a shedding sequence, so that each region F(Gi(a)) is convex, in a certain strong
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sense. We say that a strictly convex polygon P ⊂ R2 with designated edge a1a2 is projec-
tively convex (with respect to a1a2) if P is contained in the upper half-plane, a1a2 lies on
the x-axis, and a1 and a2 are the unique leftmost and rightmost points of P , respectively.
This last condition is the most notable, as the first two conditions may be obtained for
any strictly convex polygon via an affine transformation (the last condition may then be
obtained via a projective transformation, which motivated the terminology). A shedding
sequence a = (a1, . . . , an) for a geometric plane triangulation G is a convex shedding se-
quence if the region F(Gi(a)) is a projectively convex polygon with respect to the edge a1a2
for all i = 3, . . . , n. A geometric embedding G′ of G is sequentially convex if G′ has a convex
shedding sequence.

3. Drawing the triangulation on a grid

3.1. A Rational Embedding. First we address a much easier question: How does one
obtain a sequentially convex embedding of G in Q2 (that is, with vertex coordinates ratio-
nal)? We describe a simple construction that produces such an embedding. The method
used to accomplish this easier task will provide part of the motivation and intuition behind
the more involved method we will use to obtain a polynomially sized embedding in Z2.

Theorem 3.1 Let G be a plane triangulation with n vertices and boundary edge uv, and
let a = (a1, . . . , an) be a shedding sequence for G with u = a1, v = a2. Then G has a
geometric embedding G′ in Q2, such that the corresponding sequence a′ = (a′1, . . . , a

′
n) is a

convex shedding sequence for G′.

Proof. We proceed by induction on n. If n = 3 then we may take the triangle with co-
ordinates a′1 = (0, 0), a′2 = (2, 0), a′3 = (1, 1) as a sequentially convex embedding of G in
Q2.

If n > 3, then by the inductive hypothesis there is an embedding G′n−1 of Gn−1 in Q2

such that (a′1, . . . , a
′
n−1) is a convex shedding sequence for G′n−1. Let w1, . . . , wk denote the

neighbors of an in G, and let w′1, . . . , w
′
k denote the corresponding vertices of G′n−1, ordered

from left to right. If w′1 6= a′1, then let z′1 denote the left boundary neighbor of w′1. Similarly,
if w′k 6= a′2, let z′2 denote the right boundary neighbor of w′k.

For adjacent vertices u and v, we will denote the slope of the edge uv by s(uv). Similarly,
we will denote the slope of a line ` by s(`). Consider the lines `1, `2, `3, `4 spanned by
the edges z′1w

′
1, w

′
1w
′
2, w

′
k−1w

′
k, and w′kz

′
2, respectively. If w′1 = a′1, we may take `1 to be

any non-vertical line passing through a′1, with slope satisfying s(`1) > s(`2). Similarly, if
w′k = a′2, we may take `4 to be any non-vertical line passing through v′, with slope satisfying
s(`3) > s(`4).

Let A1, A4 ⊂ R2 denote the open half-planes below the lines `1 and `4, respectively, and
let A2 and A3 denote the open half-planes above the lines `2 and `3, respectively. Since
F(G′n−1) is projectively convex with respect to a′1a

′
2, the slopes of the lines `i must satisfy

s(`1) > s(`2) > s(`3) > s(`4). Thus the region S = A1 ∩ A2 ∩ A3 ∩ A4 is non-empty (see
Figure 2). Since each set Ai is open, the set S is open, so we may choose a rational point
in S, call it a′n. For each j = 1, . . . , k add a straight line segment ej between a′n and the
vertex w′j . Since a′n lies in the region above the lines `2 and `3, each line segment ej will

intersect G′n−1 only in the vertex w′j .

Let G′ denote the plane graph obtained from G′n−1 by adding the vertex a′n and the
edges ej . Then G′ is clearly a geometric embedding of Gn = G, such that each vertex
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Figure 2. The new vertex a′n, chosen as a rational point of the set S.

ai corresponds to a′i, for i = 1, . . . , n. Furthermore, since a′n lies in the region below the
lines `1 and `4, the region F(G′) is projectively convex with respect to a′1a

′
2. From this,

together with the fact that (a′1, . . . , a
′
n−1) is a convex shedding sequence for G′n−1, we have

that a′ = (a′1, . . . , a
′
n) is a convex shedding sequence for G′. �

3.2. The Shedding Tree of a Plane Triangulation. Now we address the problem of
embedding the triangulation G on an integer grid. The idea behind our construction is
roughly as follows. We start with a triangular base whose horizontal width is very large.
We then show that, because this horizontal width is large enough, we may add each vertex
in a manner similar to that used in the proof of Theorem 3.1, and we will always have
enough room to find an acceptable integer coordinate. The crucial part of the construction
is the careful method in which we add each new vertex. In particular, there are two distinct
methods for adding the new vertex ai, depending on whether di(ai) = 2 or di(ai) > 2.
To facilitate the proper placement of the vertices ai with di(ai) = 2, we will appeal to a
certain tree structure determined by the shedding sequence a. We introduce the following
definitions.

Let G be a plane triangulation with shedding sequence a. We may assume that G is
embedded geometrically and is sequentially convex with respect to a (i.e. G is embedded
as in Theorem 3.1). Proceeding recursively, we will define a binary tree T = T (G,a), such
that the nodes of T are edges of G, and the edges of T correspond to faces of G. We will
consider all binary trees to be ordered. That is, we assume a fixed left and right designation
on each pair of nodes with a common parent. A tree isomorphism must preserve this order.

Let ν2 denote the edge of G containing vertices a1, a2, and let T2 be the tree consisting
of the single node ν2. Now let 3 ≤ i ≤ n, and let νi, ν

′
i denote the boundary edges of

Gi(a) immediately to the left and right of ai, respectively (this is well defined because G is
sequentially convex). Assume that we have already constructed Ti−1, and that all boundary
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G G∗

T T ∗

a1 a2 a1 a2

Figure 3. The triangulations G and G∗, together with corresponding trees
T and T ∗. Each node of T corresponds to an edge of G, and similarly for T ∗

and G∗. The tree T ∗ is obtained from T by contracting the blue edges. The
large nodes of T are the internal nodes of T ∗, and correspond to the vertices
of G∗ other than a1 and a2.

edges of Gi−1(a) are nodes of Ti−1. Let ξ, ξ′ be the boundary edges of Gi−1(a) such that ξ
shares a face with νi, and ξ′ shares a face with ν ′i.

Define Ti = Ti(G,a) to be the tree obtained from Ti−1 by adding νi and ν ′i as nodes, and
adding the edges (ξ, νi) and (ξ′, ν ′i), designated left and right, respectively. Then clearly
all boundary edges of Gi(a) are vertices of Ti. Thus we have a recursively defined se-
quence of trees (T2, T3, . . . , Tn), and nodes (ν2, ν3, ν

′
3, . . . , νn, ν

′
n), such that Ti has nodes

ν2, ν3, ν
′
3, . . . , νi, ν

′
i. We call the trees Ti(G,a) the shedding trees of G, and we write T = Tn

(see Figure 3). Note that for all i = 2, . . . , n, we have Ti(G,a) = T (Gi(a), (a1, . . . , ai)).
Let T ∗i = T ∗i (G,a) be the tree obtained from Ti by contracting all edges of the form

(ξ, σ), where σ = νj or σ = ν ′j and dj(aj) > 2. These edges are shown in blue in Figure 3.
From the definition of the trees Ti, it follows that the contracted edges are also exactly the
edges of Ti containing a node of degree 2. Therefore each T ∗i is a full binary tree. We call
the trees T ∗i the reduced trees of G, and we write T ∗ = T ∗n . If di(ai) = 2 for all i ≥ 3, then
T ∗ = T .

A fundamental idea behind our integer grid embedding is that the reduced tree T ∗ con-
tains all of the critical information needed for carrying out the embedding ofG. For example,
each vertex ai satisfying di(ai) = 2 corresponds to an internal node of T ∗ (shown as large
dots in Figure 3). Thus the structure of T ∗ tells us how to horizontally space these ver-
tices, and how to choose the slopes of the boundary edges adjacent to them. On the other
hand, when adding vertices ai with di(ai) > 2, our construction will have the property
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that the boundary slopes will be perturbed only slightly, and the horizontal distances be-
tween vertices will only increase. Furthermore, throughout our entire construction the total
horizontal width of the embedding will remain fixed.

Consider a subsequence of T ∗2 , T
∗
3 , . . . , T

∗
n consisting of the distinct reduced trees of G.

There is a natural construction which produces a triangulationG∗ and shedding sequence a∗,
such that these trees are (isomorphic to) the shedding trees of G∗. We may view the
relationship between G, T , T ∗ and G∗ as follows. The triangulation G, together with a
chosen shedding sequence a, determines the shedding tree T . From the shedding tree T ,
we may contract edges to obtain the reduced tree T ∗. The structure of T ∗, in turn, tells us
how to build a new triangulation G∗. That is, we may represent this entire process as

G 7→ T 7→ T ∗ 7→ G∗,

where each arrow indicates a construction that determines the object on the right uniquely
from the object on the left. We have already described the first two steps, G 7→ T and
T 7→ T ∗. The last step, namely the construction of the triangulation G∗ from T ∗, is the
content of the next lemma. This lemma can also be thought of as a special instance of
Theorem 3.3, in the case that di(ai) = 2 for all i ≥ 3. With all three steps in place, we will
define G∗ from G in Section 3.3.

Lemma 3.2 Let n ≥ 3, and let (t2, . . . , tn) be a sequence of full binary trees, such that
ti−1 is a subtree of ti, and ti has 1 + 2(i − 2) nodes, for all i = 2, . . . , n. Then there is a
sequentially convex plane triangulation H with n vertices, and a convex shedding sequence
a for H, such that ti is isomorphic to Ti(H,a) for all i = 2, . . . , n. Furthermore, H is

embedded in a 2(n− 2)×
(
n−1
2

)
integer grid, and the boundary edge slopes of H differ by at

least 1.

Proof. Let m and m′ denote the number of internal nodes of tn to the left and right of
the root node, respectively. Without loss of generality we may assume m ≤ m′. Note
that m + m′ + 3 = n. To build the triangulation H, we begin by placing n vertices along
a convex arc. While any convex arc would suffice, for simplicity of analysis we use the
following parabola.

For −m ≤ k ≤ m′ + 1, we define

xk = k, yk =

(
m′ + 2

2

)
−
(
|k|+ 1

2

)
.

Additionally, we define

x−m−1 = −xm′+1, y−m−1 = 0.

Then the n points (xk, yk) all lie on the (piecewise) parabola defined by

y = − x
2 + |x|

2
+

(m′ + 2)(m′ + 1)

2
.

These points will serve as the vertices of the triangulation H (compare with the vertices
of G∗ in Figure 3).

For all i = 3, . . . , n, since ti is full and contains two more nodes than ti−1, it follows that
ti contains exactly one more internal node than ti−1. Let (ξ3, . . . ξn) denote the sequence of
internal nodes so obtained. Note that ξ3 is the root node of all the trees ti, and t2 consists
of the single node ξ3.

As mentioned above, the tree tn is an ordered tree. Consider the linear order on the
nodes of tn given by an in-order traversal of tn (in the planar embedding of the tree T ∗
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shown in Figure 3, this is the same as ordering each node by its x-coordinate). This linear
order, when restricted to the internal nodes of tn, induces a permutation

ω : {3, . . . , n} → {3, . . . , n}.
That is, node ξi has position ω(i) in this order. For example, from the definition of ξ3 and m,
we always have ω(3) = m+ 3. We then define a sequence of points a = (a1, a2, . . . , an) by

a1 = (x−m−1, y−m−1),
a2 = (xm′+1, ym′+1),
ai = (xω(i)−m−3, yω(i)−m−3) for 3 ≤ i ≤ n.

To determine the left and right neighbors of each new vertex ai at each step of the
construction of H, we define functions f, g : {3, 4, . . . , n} → {1, 2, . . . , n} as follows. If there
is an internal node ξj of the subtree ti that immediately precedes ξi in the in-order traversal
of ti, then let f(i) = j. Otherwise let f(i) = 1. Similarly, if there is a node ξj′ of ti that
immediately succeeds ξi in the in-order traversal of ti, then let g(i) = j′. Otherwise let
g(i) = 2.

We may now define a sequence of plane triangulations H1, . . . ,Hn recursively. Let H1

consist of the single vertex a1, and let H2 consist of the vertices a1, a2 and the line seg-
ment a1a2. Now let 3 ≤ i ≤ n, and suppose we have constructed Hi−1. We obtain Hi by
adding the vertex ai and the line segments aiaf(i) and aiag(i) to Hi−1. This completes the
construction of the graphs H2, . . . ,Hn. We write H = Hn.

We now check that a = (a1, . . . , an) is a convex shedding sequence for H. By construc-
tion, we have immediately that Hi is a plane triangulation with Hi−1 = Hi − {ai} for all
i = 2, . . . , n, and furthermore di(ai) = 2 for all i ≥ 3. For k ≥ −m, the slope of the edge
between adjacent vertices (xk, yk) and (xk+1, yk+1) of H is

yk+1 − yk
xk+1 − xk

=

(
|k|+ 1

2

)
−
(
|k + 1|+ 1

2

)
=

{
−(k + 1) if k ≥ 0,

−k if k < 0.

Additionally, the slope of the edge between (x−m−1, y−m−1) and (x−m, y−m) is

y−m − y−m−1
x−m − x−m−1

=
y−m

−m+ (m′ + 1)
=

1

m′ −m+ 1

[(
m′ + 2

2

)
−
(
m+ 1

2

)]
=

(m′ + 2)(m′ + 1)− (m+ 1)m

2(m′ −m+ 1)
=

(m′ −m+ 1)(m′ +m+ 2)

2(m′ −m+ 1)

=
m′ +m+ 2

2
≥ m+m+ 2

2
= m+ 1.

Thus the boundary edge slopes of H are strictly decreasing from left to right, and differ by
at least 1. Since di(ai) = 2 for all i ≥ 3, the same is true for the boundary edge slopes of
each Hi. It follows that F(Hi) is projectively convex, for all i ≥ 3. Hence a is a convex
shedding sequence for H.

To see that ti is isomorphic to Ti(H,a) for all i = 2, . . . , n, we construct an explicit
isomorphism. We define a map ψ2 : t2 → T2(H,a) by ψ2(ξ3) = af(3)ag(3) = a1a2, which is

trivially an isomorphism. For i ≥ 3, and j = 3, . . . , i, let ξ−j and ξ+j denote the left and

right child, respectively, of the internal node ξj of ti. We define a map ψi : ti → Ti(H,a) by

ψi(ξj) = af(j)ag(j),
ψi(ξ

−
j ) = ajaf(j),

ψi(ξ
+
j ) = ajag(j) for j = 3, . . . , i.
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From the definition of the functions f and g, it follows that ψ is well-defined and bijective.
Since the triangle ajaf(j)ag(j) is a face of Hj for all j = 3, . . . , i, the pairs (af(j)ag(j), ajaf(j))
and (af(j)ag(j), ajag(j)) are edges of Ti(H,a). Thus ψi is a tree isomorphism. We may think
of ψn as providing a correspondence between the internal node ξi and the vertex ai (whose
neighbors in Hi are af(i) and ag(i)), for all i = 3, . . . , n (see Figure 3).

Finally, the width of the grid is

xm′+1 − x−m−1 = 2xm′+1 = 2(m′ + 1) ≤ 2(n− 2),

and the height of the grid is

y0 =

(
m′ + 2

2

)
≤
(
n− 1

2

)
.

Therefore H is embedded in an integer grid of size 2(n− 2)×
(
n−1
2

)
. �

3.3. The Integer Grid Embedding. Consider a plane triangulation G with n vertices
and shedding sequence a, with reduced trees T ∗i = T ∗i (G,a). For each i ∈ {2, 3, . . . , n}
let ρ(i) denote the least integer for which T ∗ρ(i) = T ∗i , and let ρ(1) = 1. Clearly ρ(2) = 2

and ρ(3) = 3 as well. For the tree T in Figure 3, we have ρ(i) = 1, 2, 3, 4, 5, 5, 5, 6, 7 for
i = 1, 2, . . . 9.

The sequence of distinct trees T ∗1 , T
∗
2 , . . . , T

∗
ρ(n) satisfies the hypotheses of Lemma 3.2.

Therefore we let G∗ denote the sequentially convex triangulation constructed exactly as
in Lemma 3.2 from this sequence of trees. That is, G∗ is the triangulation H in the
notation of the lemma, and G∗ has the exact vertex coordinates given in the lemma. We let
a∗ = (a∗1, . . . , a

∗
ρ(n)) denote the corresponding convex shedding sequence of G∗ produced by

Lemma 3.2. For brevity we will write G∗i = G∗i (a
∗) for all i = 1, 2, . . . , ρ(n), so in particular

G∗ρ(n) = G∗. We call the G∗i the reduced triangulations of G (see Figure 3). Note that each

vertex a∗i has degree 2 in G∗i . So we may think of G∗ as being obtained from G by “throwing
away” all vertices ai for which di(ai) > 2. It was this property that originally motivated
our definition of G∗.

As we will see, the triangulation G∗ will tell us exactly how to add vertices of degree
2, in our construction of a sequentially convex embedding of G. A particular property of
the reduced triangulations makes this possible. Namely, for any boundary edge e of Gi,
there is a corresponding boundary edge e∗ of G∗ρ(i), which we define as follows. The edge

e is a node of the shedding tree Ti(G,a). As described above, we obtain T ∗i from Ti by
contracting all edges of Ti containing a node of degree 2. This contraction identifies the node
e with a unique node of T ∗i = T ∗ρ(i) which, on constructing G∗ from T ∗ as in Theorem 3.2,

corresponds to a unique edge e∗ of G∗ρ(i).

Theorem 3.3 Let G be a plane triangulation with n vertices and boundary edge uv, and
let a = (a1, . . . , an) be a shedding sequence for G with u = a1, v = a2. Then G has a
geometric embedding G′ in a 4n3 × 8n5 integer grid, such that the corresponding sequence
a′ = (a′1, . . . , a

′
n) is a convex shedding sequence for G′.

Proof. We recursively construct a sequence of graphs G′1, . . . , G
′
n, and a sequence of vertices

a′1, . . . , a
′
n, such that each G′i is a geometric embedding of Gi with convex shedding sequence

a′ = (a′1, . . . , a
′
i), where a′i is the vertex of G′ corresponding to ai. Let G∗i denote the reduced

triangulations of G, and let a∗ = (a∗1, . . . , a
∗
R) denote the corresponding shedding sequence

for G∗. Let m′ denote the number of vertices of G∗ lying between a∗3 and a∗2, and m the
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G′i−1

(x, y)

a′i = (x′, y′)

w′1

w′2 w′3
w′4

`u `s

Figure 4. The construction of vertex a′i when di(ai) > 2. In this example,
di(ai) = 4.

number of vertices lying between a∗1 and a∗3. Then m′+m+3 = n. Without loss of generality
we may assume that m ≤ m′.

We first scale G∗ to obtain a much larger triangulation, which we will use to construct
the triangulations G′i. Specifically, let α = 2n2 +n+ 1 and β = 2nα. These are the smallest
scaling factors that ensure that we have “enough room” to carry out our constructions. In
particular, α will ensure that we have enough horizontal room to add new points, and β
will ensure that we have enough vertical room to maintain convexity at each step of the
construction.

We define Zi to be the result of scaling G∗i by a factor of α in the x dimension and β
in the y dimension. That is, for each i = 1, . . . , R, we define zi = (αx(a∗i ), βy(a∗i )). Then
z = (z1, . . . , zR) is the shedding sequence for ZR corresponding to a∗. We write Z = ZR.

Define a′1 = z1 and a′2 = z2. Take G′1 to consist of the single vertex a′1, and take G′2 to
consist of the vertices a′1, a

′
2, together with the line segment a′1a

′
2. Now let 3 ≤ i ≤ n, and

suppose we have constructed G′i−1. To define a′i, we consider two cases, namely whether
di(ai) = 2 or di(ai) > 2.

Construction of a′i, in the case di(ai) > 2. If di(ai) > 2, then let w1, . . . , wk denote the
neighbors of ai in Gi, and let w′1, . . . , w

′
k denote the corresponding vertices of G′i−1, ordered

from left to right. Let s denote the slope of the edge w′1w
′
2, and u the slope of the edge

w′k−1w
′
k. Let `s denote the line of slope s containing the point w′1, and `u the line of slope u

containing the point w′k. We denote by (x, y) the point of intersection of the lines `s and `u.
We then move (x, y) to the integer grid point (x′, y′) defined as follows. Let x′ = dxe and
γ = x′ − x, and let y′ = dye + bγsc + 1. We now define a′i = (x′, y′) (see Figure 4). We
obtain G′i from G′i−1 by adding the vertex a′i, together with all line segments between a′i
and the vertices w′1, . . . , w

′
k.

Construction of a′i, in the case di(ai) = 2. If di(ai) = 2, then let ∆ be the triangle of
Zρ(i) containing zρ(i). Let w1, w2 denote the boundary neighbors of ai in Gi, and let w′1, w

′
2

denote the corresponding vertices of G′i−1, so that w′1 lies to the left of w′2. We are going
to construct a triangle ∆′, such that ∆′ is the image of ∆ under an affine map which is
the composition of a uniform scaling and a translation. Furthermore, we will place ∆′ in
a specific position with respect to the triangulation G′i−1. In particular, if v1, v2, v3 denote
the vertices of ∆′, we require that x(v1) = x(w′1), v2 = w′2, and x(v1) < x(v3) < x(v2) (see
Figure 5). It is easily verified that these conditions, together with the requirement that ∆′

is a scaled, translated copy of ∆, determine the vertices v1, v2, v3 of ∆′ uniquely.
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Zρ(i) G′i−1

zρ(i)

b1 z2

z3

b2

v1

v2 = w′2

v3

η
w′1

∆

∆′

Figure 5. The first stage of the construction of vertex a′i when di(ai) = 2.
The red triangles ∆ and ∆′ differ by a uniform scaling and a translation.

To define the new vertex a′i, we start by applying a vertical shearing to the triangle ∆′,
namely the unique shearing that fixes v2 = w′2 and maps v1 to w′1. We will denote the image
of v3 under this shearing by v3. So in terms of the vertices of Zρ(i) and G′i−1, the point v3
is defined as follows.

Let η = y(v1) − y(w′1). Let b1 and b2 denote the left and right boundary neighbors,
respectively, of zρ(i) in Zρ(i). By taking the ratio

κ =
x(b2)− x(zρ(i))

x(b2)− x(b1)
,

we may now define v3 = (x(v3), y(v3)− κη).
We move v3 to the integer grid point

v′3 =

{
(bx(v3)c, dy(v3)e) if x(zρ(i)) ≤ 0,

(dx(v3)e, dy(v3)e) if x(zρ(i)) > 0,

and define a′i = v′3. We obtain G′i from G′i−1 by adding the vertex a′i and the two line
segments between a′i and the vertices w′1, w

′
2.

Verification of the construction.
We have now explicitly described the construction of G′, from which it is clear that

G′i ∼ Gi for all i = 1, . . . , n. It remains to show that the above constructions actually
produce a convex shedding sequence a′ = (a′1, . . . , a

′
n) for G′, and that G′ lies in the grid

size indicated.
Since G′i ∼ Gi, the edges of G′i and Gi are in correspondence. Thus every boundary edge

e of G′i has a corresponding boundary edge e∗ of G∗ρ(i), as defined above. We then write Z(e)

for the edge of Zρ(i) corresponding to e∗. Note that if e∗ has slope s, then Z(e) has slope
β
αs. In particular, since m′ + 1 is the largest magnitude of the slope of any edge of G∗, we

see that β
α(m′ + 1) = 2n(m′ + 1) is the largest magnitude of the slope of any edge of Z.

Let M denote this slope, and note that M ≤ 2n2. Note also that the absolute difference
of two boundary edge slopes of Z is at least β

α = 2n. It follows immediately that for each
i = 1, . . . , R, the absolute difference of two boundary edge slopes of Zi is at least 2n.
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Clearly, the horizontal width of the grid remains constant throughout the construction.
Specifically, the triangulations G′1, G

′
2, . . . , G

′
n all have the same width α2(n− 2), which is

the width of the Zi. So to show that the construction is sequentially convex, and that the
bound on the height of G′ is correct, we will calculate how the boundary slopes are modified
when we add the new vertex a′i in the two cases di(ai) = 2 and di(ai) > 2.

For points v1, v2 ∈ R2 and e = v1v2 the line segment between them, we write

x(e) = |x(v1)− x(v2)| and y(e) = |y(v1)− y(v2)|.
For each 3 ≤ i ≤ n, let P(i) denote the conjunction of the following three properties, that
we wish to show:

P(i, 1). For every boundary edge e of G′i, we have x(e) ≥ x(Z(e)).

P(i, 2). For every boundary edge e of G′i, the slopes of e and Z(e) differ by at most i.

P(i, 3). G′i ∼ Gi and G′i has convex shedding sequence (a′1, . . . a
′
i).

To prove P(i) for each i = 3, . . . , n, we proceed by induction on i.
For i = 3, note that a′1 = z1, a

′
2 = z2, and the vertex a′3 is chosen so that in particular the

triangle (a′1a
′
2a
′
3) is a scaling of the triangle (z1z2z3) = F(Z3). This implies that a′3 = z3.

Thus G′3 = Z3, which immediately establishes P(3).
Now let i > 3, and suppose that P(i − 1) holds. As in the construction, we consider

separately the cases di(ai) > 2 and di(ai) = 2.

Verification of P(i) in the case di(ai) > 2. From the definition of Z(e), we have
Z(w′1a

′
i) = Z(w′1w

′
2) and Z(a′iw

′
k) = Z(w′k−1w

′
k). Note that x(w′2) ≤ x ≤ x(w′k−1), and

thus x(w′2) ≤ x(a′i) ≤ x(w′k−1), because x(a′i) = dxe and x(w′2) and x(w′k−1) are integers.
Therefore

x(w′1a
′
i) = x(a′i)− x(w′1) ≥ x(w′2)− x(w′1) = x(w′1w

′
2) ≥ x(Z(w′1w

′
2)) = x(Z(w′1a

′
i)),

where the last inequality follows from P(i−1, 1). Similarly, we have x(a′iw
′
k) ≥ x(Z(a′iw

′
k)).

Thus P(i, 1) holds.
We now show that the slopes of the boundary edges of G′i containing a′i differ only slightly

from the slopes s and u defined in the above construction. That is, let s′ denote the slope of
the line passing through w′1 and a′i = (x′, y′), and let u′ denote the slope of the line passing
through a′i and w′k. First note that

y′ − y = (dye − y) + bγsc+ 1 ≥ bγsc+ 1 > γs.

Therefore

s′ − s =
y′ − y(w′1)

x+ γ − x(w′1)
− s =

y′ − y(w′1)− (x− x(w′1))s− γs
x+ γ − x(w′1)

=
(y′ − y)− γs
x+ γ − x(w′1)

> 0.

On the other hand,

s′ − s =
(y′ − y)− γs
x+ γ − x(w′1)

=
(dye − y) + (bγsc − γs) + 1

x+ γ − x(w′1)

<
2

x+ γ − x(w′1)
≤ 2

x− x(w′1)
≤ 2

x(w′2)− x(w′1)

≤ 2

x(Z(w′2w
′
1))
≤ 2

α
≤ 1.

In the last line we have used P(i− 1, 1).
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Since s > u, we have y′ − y > γs > γu. From this, together with the fact that x′ ≥ x, it
follows that u− u′ > 0. By P(i− 1, 2), we have |s| ≤M + (i− 1). Thus

u− u′ =
y(w′k)− y
x(w′k)− x

−
y(w′k)− y′

x(w′k)− x′
≤

y(w′k)− y
x(w′k)− x′

−
y(w′k)− y′

x(w′k)− x′
=

y′ − y
x(w′k)− x′

=
(dye − y) + bγsc+ 1

x(w′k)− x′
<

|s|+ 2

x(w′k)− x′
≤ |s|+ 2

x(w′k)− x(w′k−1)
≤ |s|+ 2

x(Z(w′k−1w
′
k))

≤ |s|+ 2

α
≤ M + (i− 1) + 2

α
≤ 2n2 + i+ 1

α
≤ 2n2 + n+ 1

α
= 1.

In the second line we have used P(i− 1, 1).
Let sZ denote the slope of the edge Z(w′1w

′
2), and let uZ denote the slope of Z(w′k−1w

′
k).

By P(i− 1, 2), we have |s− (Zs)| ≤ i− 1 and |u− uZ | ≤ i− 1. Thus

|s′ − sZ | ≤ |s′ − s|+ |s− sZ | ≤ 1 + (i− 1) = i,

and similarly |u′ − uZ | ≤ i, so P(i, 2) holds.
Since s′− s > 0 and u−u′ > 0, each line segment a′iw

′
j intersects G′i−1 only in the vertex

w′j , for all j = 1, . . . k. Thus G′i is a plane triangulation, and G′i ∼ Gi. It remains to show

that F(G′i) is projectively convex, in order to establish P(i, 3). To do this, we will show
that when the slope s is changed to s′ for example, convexity is preserved at the vertex w′1.
That is, the slope s′, while greater than s, is still less than the slope of the boundary edge
to the left of w′1w

′
2.

Let ŝ denote the slope of the boundary edge of G′i adjacent and to the left of w′1, if
such an edge exists, and let û denote the slope of the boundary edge of G′i adjacent and
to the right of w′k, if such an edge exists. Let ŝZ and ûZ denote the boundary slopes of
Zh(i−1) corresponding to ŝ and û, respectively. By P(i− 1, 2), we have s− sZ ≤ i− 1 and
ŝZ − ŝ ≤ i− 1. Therefore

(3.1)
ŝ− s′ = (ŝZ − sZ)− (ŝZ − ŝ)− (s− sZ)− (s′ − s)
≥ 2n− (i− 1)− (i− 1)− 1 = 2n− 2i+ 1 > 0.

An analogous calculation shows that u′− û > 0. Thus w′1 and w′k are convex vertices of G′i.
Because the region F(G′i−1) is projectively convex by P(i − 1, 3), we conclude that F(G′i)
is projectively convex. The sequence (a′1, . . . , a

′
i−1) is a convex shedding sequence for G′i−1

by P(i− 1, 3), hence (a′1, . . . , a
′
i) is a convex shedding sequence for G′i. Thus P(i, 3) holds.

We have now established P(i) in the case that di(ai) > 2.

Verification of P(i) in the case di(ai) = 2. First note that by P(i− 1, 1), we have

x(v1v2) = x(w′1w
′
2) ≥ x(Z(w′1w

′
2)) = x(b1b2).

This implies that x(w′1v3) = x(v1v3) ≥ x(b1zρ(i)), because ∆′ is a scaled, translated copy
of ∆. Since x(a′i) is either bx(v3)c or dx(v3)e, and x(b1zρ(i)) and x(w′1) are integers, we also
have

x(w′1a
′
i) ≥ x(b1zρ(i)) = x(Z(w′1a

′
i)).

Similarly, we obtain x(a′iw
′
2) ≥ x(zρ(i)b2) = x(Z(a′iw

′
2)). Thus P(i, 1) holds.

To establish P(i, 2), we first consider an important pair of corresponding slopes in the
construction. Let r denote the slope of the edge w′1w

′
2 of G′i−1, and let Z(r) denote the

slope of the corresponding edge Z(w′1w
′
2) = b1b2 of Zρ(i−1). Since the triangle ∆′ is a

scaled, translated copy of ∆, we see that Z(r) is also the slope of the edge v1v2 of ∆′. Let
ε = r − Z(r).
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We now consider the slopes of the other two edges of ∆′. Namely, let q1 and q2 denote
the slopes of the line segments v1v3 and v3v2, respectively. Since ∆′ is a scaled, translated
copy of ∆, these slopes q1 and q2 are also the slopes of the boundary edges b1zρ(i) and zρ(i)b2
of Zρ(i), respectively. Let q1 and q2 denote the slopes of the line segments v3w

′
1 and v3w

′
2,

respectively. Then the vertical shearing of ∆′, described above, takes lines of slopes q1, q2,
and Z(r) to lines of slopes q1, q2, and r, respectively. Since a vertical shearing adds the
same constant to the slope of every line, we conclude that

q1 − q1 = q2 − q2 = r − Z(r) = ε.

We now investigate how the slopes q1 and q2 change when we move v3 to the integer point
v′3 = a′i. We may assume without loss of generality that x(zρ(i)) < 0, and hence that
a′i = (bx(v3)c, dy(v3)e), as the other case is treated identically. We will let q′1 and q′2 denote
the slopes that result from replacing v3 with v′3 = a′i. That is, let q′1 be the slope of the line
passing through a′i and w′1, and let q′2 be the slope of the line passing through a′i and w′2.

By P(i− 1, 2), we have |ε| ≤ i− 1. Therefore we obtain

q′1 − q1 =
dy(v3)e − y(w′1)

bx(v3)c − x(w′1)
− q1 <

y(v3)− y(w′1) + 1

x(v3)− x(w′1)− 1
− q1

=
y(v3)− y(w′1) + 1− (x(v3)− x(w′1))q1 + q1

x(v3)− x(w′1)− 1
=

1 + q1
x(v3)− x(w′1)− 1

=
1 + q1

x(v3)− x(v1)− 1

≤ 1 + q1
x(zρ(i))− x(b1)− 1

≤ 1 + q1
α− 1

=
1 + q1 + ε

α− 1
≤ 1 +M + ε

α− 1
≤ 1 +M + (i− 1)

α− 1

≤ 2n2 + n

α− 1
= 1.

In the third line we have used the fact that x(v3) − x(v1) ≥ x(zρ(i)) − x(b1), which we
demonstrated above in order to establish P(i, 1). An analogous calculation shows that
q2 − q′2 < 1.

Since a′i = (bx(v3)c, dy(v3)e), the vertex a′i lies above and to the left of v3. Therefore we
clearly have q′1 − q1 ≥ 0 and q2 − q′2 ≥ 0. We may now compute

|q′1 − q1| ≤ |q′1 − q1|+ |q1 − q1| = |q′1 − q1|+ ε < 1 + ε ≤ 1 + (i− 1) = i.

An identical calculation shows that |q′2 − q2| ≤ i. Note that q′1 is the slope of the boundary
edge w′1a

′
i of G′i and q1 is the slope of the edge b1zρ(i) = Z(w′1a

′
i), and similarly for q′2 and

q2. This establishes P(i, 2).
From the construction of a′i it is clear that the line segments w′1a

′
i and a′iw

′
2 intersect

G′i−1 only in the vertices w′1 and w′2. Thus G′i is a plane triangulation, and G′i ∼ Gi. To
show that F(G′i) is projectively convex, we proceed similarly to the di(ai) > 2 case.

Let q̂1 denote the slope of the boundary edge of G′i adjacent and to the left of w′1, if
such an edge exists, and let q̂2 denote the slope of the boundary edge of G′i adjacent and to
the right of w′2, if such an edge exists. Let Z(q̂1) and Z(q̂2) denote the boundary slopes of
Zρ(i−1) corresponding to q̂1 and q̂2, respectively. By P(i− 1, 2), we have q1− q1 = ε ≤ i− 1
and Z(q̂1)− q̂1 ≤ i− 1. Therefore, by a calculation identical to that in the di(ai) > 2 case
(see inequality (3.1)), we conclude that q̂1 − q′1 > 0 and q′2 − q̂2 > 0.

Thus w′1 and w′2 are convex vertices of G′i. Because the region F(G′i−1) is projectively
convex by P(i − 1, 3), we conclude that F(G′i) is projectively convex. By P(i − 1, 3), the
sequence (a′1, . . . , a

′
i−1) is a convex shedding sequence for G′i−1, hence (a′1, . . . , a

′
i) is a convex
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shedding sequence for G′i. Thus P(i, 3) holds. We have now established P(i) in the case
that di(ai) = 2.

This completes the induction, and we conclude that P(i) holds for all 3 ≤ i ≤ n. Thus
the triangulation G′ = G′n is a sequentially convex embedding of G, with convex shedding
sequence a′ = (a′1, . . . , a

′
n).

We have immediately that the x dimension of G′ is at most

α2(n− 2) = (2n2 + n+ 1)(2n− 4) = 4n3 − 6n2 − 2n− 4 ≤ 4n3.

Since P(n, 2) holds, we conclude that the largest absolute value of a boundary slope of G′

is at most M + n ≤ 2n2 + n. Thus the y dimension of G′ is at most

α2(n− 2)(2n2 +n) = (4n3− 6n2− 2n− 4)(2n2 +n) = 8n5− 8n4− 10n3− 10n2− 4n ≤ 8n5.

Therefore G′ is embedded in a 4n3 × 8n5 integer grid. �

4. The shedding diameter

Let G = (V,E) be a plane triangulation and let AG denote the set of all shedding sequences
for G. For a = (a1, . . . , an) ∈ AG, we write aj →a ai if aj is adjacent to ai in Gi(a). Then
we define the height of each vertex ai recursively, by

τ(ai,a) =

{
i i ≤ 3,

1 + max{τ(aj ,a) | aj →a ai} i > 3.

We define the height of the shedding sequence a ∈ AG by

τ(a) = max
i
τ(ai,a),

and the shedding diameter of G by

τ(G) = min
a∈AG

τ(a).

Taking the transitive closure of the relation →a, we obtain a partial order �a on the
vertices of G. The height τ(a) of the sequence a is then precisely the height of �a. That
is, τ(a) is the maximal length of a chain in �a. One way to visualize this is to direct the
edges of G from vertices of lower index in a to vertices of higher index. Then τ(a) is the
maximal length of a directed path.

The next lemma involves the following intuitive notion. Let π : R3 → R2 denote the
coordinate projection π(x, y, z) = (x, y). We say that a convex polyhedron P ⊂ R3 (possibly
unbounded) projects vertically onto a geometric plane graph G, if π(P ) = F(G), and π
induces an isomorphism on the face structures of P and G. This last condition means that
w1, . . . , wk are the vertices of a facet (2-face) of P if and only if π(w1), . . . , π(wk) are the
vertices of a face of G.

Lemma 4.1 Let G be a plane triangulation with n vertices and shedding sequence a ∈ AG,
embedded as in Theorem 3.3, so that a is a convex shedding sequence for G. Then there is
a convex polyhedron Pi that projects vertically onto Gi, for each i = 3, . . . , n. Furthermore,
if h(ai) denotes the height of the vertex of Pi projecting to ai, then we may choose h(ai) to
be an integer such that h(ai) ≤ 499n8mi + 1, where

mi = max{h(aj) | aj →a ai}.
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Proof. We proceed by induction on i. Let h(v) denote the height assigned to the vertex
v ∈ V (G), and let ϕ(v) = (x(v), y(v), h(v)) ∈ R3 denote the point of R3 projecting vertically
to v. We define h(a1) = h(a2) = h(a3) = 0, and let

P3 = {(x, y, z) ∈ R3 | (x, y) ∈ conv(a1, a2, a3), z ≥ 0}.
That is, P3 is the unbounded prism with triangular face a1a2a3 and lateral edges extending
in the positive vertical direction, parallel to the z-axis.

If i > 3, then by the induction hypothesis, there is a convex polyhedron Pi−1 that projects
vertically onto Gi−1. So in particular, the vertices of Pi−1 are ϕ(a1), ϕ(a2), . . . , ϕ(ai−1). To
obtain a lifting of Gi, we must choose h(ai) properly. Namely, we must choose h(ai) large
enough to ensure that ϕ(ai) is in convex position with respect to ϕ(a1), ϕ(a2), . . . , ϕ(ai−1).

Let Si denote the set of faces of Gi−1 having a vertex v such that v →a ai, and let
ϕ(Si) denote the facets of Pi−1 that project vertically to the faces of Si. We choose the
height h(ai) large enough so that for every facet F ∈ ϕ(Si), the point ϕ(ai) lies above the
hyperplane spanned by F . That is, we require that ϕ(ai)− (0, 0, k) is coplanar with F for
some k > 0.

Let `i denote the ray with vertex ϕ(ai) and extending in the positive vertical direction,
parallel to the z-axis. Then we define a convex polyhedron Pi = conv(Pi−1 ∪ `i). By the
choice of h(ai), the point ϕ(ai) lies above all facet hyperplanes of ϕ(Si), hence above all
facet hyperplanes of Pi−1. Thus the vertices of Pi are ϕ(a1), ϕ(a2), . . . ϕ(ai), and ϕ(ai) is
not a vertex of any facet of Pi−1. This last fact implies, because Gi is a triangulation, that
all faces in F(Gi) r F(Gi−1) are obtained from the projection of the new facets of Pi. On
the other hand, because F(Gi) is convex, all new facets of Pi project vertically to faces in
F(Gi)rF(Gi−1). Since Pi−1 projects vertically onto Gi−1, these last two statements imply
that Pi projects vertically onto Gi.

Now we determine an upper bound on the height h(ai) necessary for the above construc-
tion. To do this, we determine an upper bound on the coordinate z for which (x(ai), y(ai), z)
is coplanar with some facet in ϕ(Si). If we take h(ai) to be any integer greater than this
upper bound, then ϕ(ai) lies above the hyperplane of every facet in ϕ(Si).

We write x0 = x(ai), y0 = y(ai), and let z0 > 0. Fix F ∈ Si and let v1, v2, v3 denote
the vertices of F . Let (xj , yj , zj) ∈ R3 denote the coordinates of ϕ(vj). So in particular
(x0, y0) = ai, and (xj , yj) = vj for j = 1, 2, 3.

Suppose that ϕ(ai) = (x0, y0, z0) is coplanar with ϕ(v1), ϕ(v2), ϕ(v3). Then ϕ(ai) is an
affine combination of ϕ(v1), ϕ(v2), ϕ(v3). That is, there are scalars c1, c2, c3 such that

(4.1)

 x1 x2 x3
y1 y2 y3
1 1 1

 c1
c2
c3

 =

 x0
y0
1


and

(4.2) z0 = c1z1 + c2z2 + c3z3.

Let A denote the matrix on the left side of (4.1). By Cramer’s rule, ci = det(Ai)
det(A) , where Ai

is obtained by replacing the ith column of A with (x0, y0, 1)T .
Since G is embedded as in Theorem 3.3, the vertices of G lie in a 4n3 × 8n5 integer grid.

Furthermore, from the construction of Theorem 3.3, the point (0, 0) is contained in the edge
a1a2 of G. This implies that |xi| ≤ 4n3 and |yi| ≤ 8n5 for i = 0, 1, 2, 3. Therefore, using
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Hadamard’s inequality, we obtain

| det(Ai)| ≤ (
√

3 max
0≤i≤3

|xi|)(
√

3 max
0≤i≤3

|yi|)‖(1, 1, 1)‖ ≤ (4n3
√

3)(8n5
√

3)(
√

3) = 96
√

3n8

for i = 1, 2, 3.
Since A is an invertible integer matrix, we have | det(A)| ≥ 1. Thus

|ci| =
| det(Ai)|
|det(A)|

≤ |det(Ai)| ≤ 96
√

3n8.

for i = 1, 2, 3. Then from (4.2), we have

z0 ≤ 3( max
1≤i≤3

|ci|)( max
1≤i≤3

|zi|) ≤ 3(96
√

3n8)mi.

So letting z0 be the smallest integer greater than 499n8mi will ensure that (x0, y0, z0) lies
above the hyperplane containing ϕ(v1), ϕ(v2), ϕ(v3). Thus we may take h(ai) ≤ 499n8mi+1,
as desired. �

Theorem 4.2 Let G be a plane triangulation with n vertices. Then G is the vertical
projection of a convex 3-polyhedron with vertices lying in a 4n3 × 8n5 × (500n8)τ(G) integer
grid.

Proof. Choose a shedding sequence a ∈ AG such that τ(G) = τ(a). By Theorem 3.3, we
may embed G in a 4n3 × 8n5 integer grid such that a = (a1, . . . , an) is a convex shedding
sequence for G. For each vertex ai we may assign a height h(ai) as follows. For i = 1, 2, 3
we may set zi = 0. For i > 3, by Lemma 4.1 we may choose h(ai) such that Gi is the
projection of a polyhedral surface, and

h(ai) ≤
(
499n8 + 1

)τ(ai,a) ≤ (500n8)τ(ai,a) ≤ (500n8)τ(a) = (500n8)τ(G).

�

Note that if the boundary of G is a triangle (that is, ∂F(G) contains exactly three
vertices), then the polyhedron of Theorem 4.2 may be replaced with a (bounded) 3-polytope.
Indeed, simply truncate the polyhedron with the hyperplane that is defined by the lifts of
the three boundary vertices of G. Then the three boundary vertices of G lift to the vertices
of a triangular face of the resulting 3-polytope.

5. Triangulations of a rectangular grid

For p, q ∈ Z, p, q ≥ 2, let [p × q] = {1, . . . , p} × {1, . . . , q}. We may think of the integer
lattice [p× q] as the vertices of (p− 1)(q− 1) unit squares. A geometric plane triangulation
G is a triangulation of [p × q] if the vertices of G are exactly the vertices of [p × q], and
every boundary edge of [p × q] is an edge of G. We call G a grid triangulation. An ` × `
subgrid of Z2 is an integer translation of the lattice [`× `] = {1, . . . , `} × {1, . . . , `}. By an
` × ` subgrid of [p × q] we mean an ` × ` subgrid of Z2 that is a subset of [p × q]. In this
section we state and prove the following result concerning the shedding diameter of grid
triangulations.

Theorem 5.1 Let G be a triangulation of [p × q] such that every edge e of G sits in an
`× ` subgrid. Then τ(G) ≤ 6`(p+ q).
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This gives a class of triangulations with sublinear shedding diameter, if ` is held constant.
According to Theorem 4.2, such a triangulation can be drawn in the plane so that it is the
vertical projection of a simplicial 3-polyhedron embedded in a subexponential grid. That
is, this class of triangulations corresponds to a class of simplicial polyhedra which may be
embedded in an integer grid whose size is subexponential in the number of vertices.

Let ≤Z2 denote the linear order on Z2 defined by

(x1, y1) ≤Z2 (x2, y2) if and only if y1 < y2, or y1 = y2 and x1 ≤ x2.
That is, ≤Z2 is a lexicographic order in which y-coordinates take precedence in determining
the order. We state without proof the following lemma, which summarizes some standard
properties of shedding vertices of planar triangulations (see [BP, §3] for a proof and refer-
ences). Recall from Section 2 that F(G) ⊂ R2 is homeomorphic to a ball. Therefore if e is
a diagonal of F(G), then the set F(G) r e has two connected components.

Lemma 5.2 ([BP]) Let G be a plane triangulation, and let v be a boundary vertex of G.
Then either v is a shedding vertex of G, or it is the endpoint of a diagonal e of G. In the
latter case, each of the two connected components of F(G) r e contains a shedding vertex
of G.

The rough idea of the proof of Theorem 5.1 is as follows (we provide the details below).
We begin by constructing a particular shedding sequence a for G. To do this, we first
subdivide [p × q] into a grid of dpq

`2
e subgrids, (most of) which are squares of size ` × `.

These squares form dp` e columns and d q` e rows.
We shed G in three stages. In Stage 1, we take every fourth column U(1), U(5), U(9), . . .

and shed the vertices of each of these columns from top to bottom. When shedding U(i),
we may need to shed vertices in the column U(i − 1) or U(i + 1), for a total of at most
3q` vertices shed in the process of shedding the column U(i). Because of their spacing,
the shedding vertices in each column do not interact. Specifically, at each step we have a
collection of shedding vertices, one from each column, which we may think of as shedding
“all at once”. This collection of vertices is then an antichain with respect to �a. When
shedding the vertices of each such column, to maintain connectivity we do not shed the
vertices (x, y) with y ≤ `. See Figure 6.

After Stage 1 is complete, what remains are a set of “jagged tricolumns”, each of which
consists of the remaining vertices of three adjacent columns. Hence each jagged tricolumn
contains at most 3q` vertices. In Stage 2, we shed these columns, but to maintain connec-
tivity, we do not shed vertices (x, y) with y ≤ 2`. As before, these jagged tricolumns do
not interact, and at each step we have a set of shedding vertices, each of which belongs to
a different jagged tricolumn. Hence this set forms an antichain. Finally, in Stage 3 we shed
the remaining vertices, which are contained in the bottom two rows of G. There are at most
2p` such vertices, and we simply define a singleton antichain for each of them. Therefore
we see that G may be partitioned into at most 2p` + 3q` + 3q` = `(2p + 6q) ≤ 6`(p + q)
antichains of �a. This implies that τ(a) ≤ 6`(p+ q), since τ(a) is the length of some chain
in �a. The detailed proof follows.

Proof of Theorem 5.1. Let G be such a triangulation of [p× q]. For i ∈ Z, let

U(i) = {(x, y) ∈ [p× q] | `(i− 1) + 1 ≤ x ≤ `i}, and

R = {(x, y) ∈ [p× q] | 1 ≤ y ≤ `}.
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ai−2
ai−1

ai

Figure 6. A graph Gi produced during Stage 1 of the construction of a in
the proof of Theorem 5.1. Distinct columns U(j) are separated by dashed
lines. The columns of the form U(1+4j) are shown in red, while the columns
U(3 + 4j) are shown in green. The bottom row R is shown in blue.

Many of these sets are empty (for example when i ≤ 0). We think of the sets U(i) as
columns of width ` and R as the bottom row of height `. For each i ∈ Z, we also define

T (i) = U(i− 1) ∪ U(i) ∪ U(i+ 1),

which may be empty. We call T (i) a tricolumn of [p× q].
We construct the shedding sequence a recursively. Suppose that we have a sequence

of shedding vertices ai+1, ai+2, . . . , an (for the initial step of the recursion, i = n and this
sequence is empty), and therefore we also have plane triangulations Gi, Gi+1, . . . , Gn = G,
where as usual Gj−1 = Gj−{aj} for all j = i+1, . . . , n. For each i = 1, . . . , n, let Ri denote
the subgraph of Gi induced by the vertices in R. Similarly, for each i = 1, . . . , n and j ∈ Z,
let Ui(j) denote the subgraph of Gi induced by the vertices in U(j). We let P(i, 1), P(i, 2),
and P(i, 3) denote the following statements:

P(i, 1). Ui(3 + 4j) = Un(3 + 4j)

P(i, 2). Ri is connected.

Note that P(n, 1) holds trivially. Furthermore, we have Gn = G, so the vertices of
Un(1 + 3j) are exactly those of U(1 + 3j), and similarly for Rn and R. Since G is a grid
triangulation, it follows that Un(1 + 3j) and Rn are connected. In particular, P(n, 2) holds.

To construct the vertex ai of the shedding sequence, we break the construction into three
stages, described below. As can readily be seen, each stage occurs for a consecutive sequence
of indices. That is, there are integers i2 < i1 such that Stage 1 occurs for i = i1, i1 + 1, . . . , n,
Stage 2 occurs for i = i2, i2 + 1, . . . , i1 − 1, and Stage 3 occurs for i = 1, 2, . . . , i2 − 1. We
will also show, as we describe these stages, that P(i, 1) and holds for i = i1, i1 + 1, . . . , n,
and P(i, 2) holds for i = i2, i2 + 1, . . . , i1 − 1. That is, P(i, 1) holds through all of Stage 1,
and P(i, 2) holds through all of Stage 2. Furthermore, during Stages 1 and 2, we will never
remove vertices v with y(v) = 1. We will use this fact when showing that P(i, 1) holds.

At the beginning of the section for each stage, we state the condition that uniquely
determines the stage. The stage ends when its condition is no longer satisfied.

Stage 1. Some column of the form U(1 + 4j) contains a vertex (x, y) of Gi with y > `.
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Let U(1+4j1), . . . , U(1+4jr) denote all such columns, where j1 < · · · < jr. See Figure 6.
Assume that P(i, 1) and P(i, 2) hold.

For each k = 1, . . . , r, let vk be the ≤Z2-greatest vertex of U(1 + 4jk). If vk is a shedding
vertex of Gi, define wk = vk.

Otherwise, by Lemma 5.2, the vertex vk is the endpoint of a diagonal of Gi. Let uk
denote the ≤Z2-greatest vertex of Gi such that the edge ukvk is a diagonal of Gi. Write
ek = ukvk. Then F(Gi) r ek has two connected components, call them Ak and A′k. Since
the vertices uk and vk are adjacent, by assumption they are contained in an ` × ` subgrid
of [p× q]. It follows that uk ∈ T (1 + 4jk). Thus uk, vk /∈ U(3 + 4j) for all j.

As mentioned above, the column Un(3 + 4j) is connected for all all j. So by P(i, 1),
Ui(3 + 4jk) is connected. We also have y(vk) > `, and thus y(uk) > 1, which implies that
Ak does not intersect the line segment [1, p] × {1} (which consists of the bottom vertices
and edges of R). But each column Ui(3 + 4j) clearly intersects this line segment. Therefore
one of the components of F(Gi) r ek, say Ak, does not intersect Ui(3 + 4j) for all j.

It follows that all vertices in Ak are contained in T (1 + 4jk). By Lemma 5.2, the region
Ak contains a shedding vertex of Gi. We define wk to be the ≤Z2-greatest such shedding
vertex.

We now have a collection of shedding vertices w1, . . . , wr of Gi. Clearly the neighbors
of each vertex wk lie in the tricolumn T (1 + 4jk), so no two of the vertices w1, . . . wr are
adjacent to a common vertex. Thus the vertex wr−1 is a shedding vertex of Gi − {wr}, the
vertex wr−2 is a shedding vertex of Gi − {wr, wr−1}, etc. That is, these vertices remain
shedding vertices after deleting any finite subset of them from Gi. So for each k = 1, . . . , r,
we may define ai−r+1, . . . , ai by ai−r+k = wk. Since no two of the vertices ai−r+1, . . . ai, are
adjacent, the set {ai−r+1, . . . , ai} is an antichain of �a.

Finally, we must show inductively that the property P(i− k, 1) holds for all k = 1, . . . , r,
but this is clear because wk 6∈ U(3 + 4j) for all j. This completes Stage 1.

Before we begin Stage 2, we must show that P(i, 2) will hold when we begin. Letting i1
denote the last step of Stage 1 as in the notation above, this is the claim that P(i1 − 1, 2)
holds. This will follow directly from the fact that each region Ak arising in Stage 1 is shed
entirely.

To see this fact, note our choice of vk as the ≤Z2-greatest vertex of U(1 + 4jk). This
means that, so long as vk is contained in a diagonal of Gi, we will continue to pick the same
vertex vk at each step, finding a new shedding vertex in the same original set Ak. Once Ak
is empty, vk will no longer be a diagonal of Gi, and then we will finally take wk = vk as the
shedding vertex of Gi.

As mentioned above, Rn = R is connected. Now suppose inductively that Ri is connected,
and consider a path γ in Ri containing wk but with endpoints not in Ak. Since y(vk) > `,
this path must enter and exit Ak through uk. But then γ may be replaced with a path
γ′ ⊂ Ri r Ak, having the same endpoints. It follows that Ri r Ak is connected. Using the
above fact that all vertices of Ak are shed during Stage 1, we conclude that at the beginning
of Stage 2, Ri is connected. That is, P(i1 − 1, 2) holds.

Stage 2. No column of the form U(1 + 4j) contains vertices (x, y) of Gi with y > `, but Gi
contains at least one vertex (x, y) with y > 2`.

From the criteria for this stage, the vertices (x, y) with y > 2` must be contained in a
tricolumn of the form T (3 + 4j). Let T (3 + 4j1), . . . , T (3 + 4jr) denote all such tricolumns,
where j1 < · · · < jr. Assume that P(i, 2) holds. For each k = 1, . . . , r, let vk be the ≤Z2-
greatest vertex of T (3+4jk). If vk is a shedding vertex of Gi, define wk = vk. Otherwise, by
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24 23 25 21 22

17 16 18 19 20

13 14 15 7 12

3 4
6 8 10

1 2 5
9 11

12 11 16 15 16

10 9 12 13 14

7 8 9 7 11

3 4
6 8 10

1 2 5
9 11

Figure 7. The grid triangulation of Figure 1. Here p = q = 5 and ` = 3.
Each vertex is labeled with its index i in a shedding sequence a (left) and the
corresponding value of τ(ai) (right). A chain of maximal length τ(a) = 16
is shown in red.

Lemma 5.2, the vertex vk is the endpoint of a diagonal of Gi. Let uk denote the ≤Z2-greatest
vertex of Gi such that the edge ukvk is a diagonal of Gi. Write ek = ukvk.

Then F(Gi)rek has two connected components, call them Ak and A′k. Since the vertices
uk and vk are adjacent, by assumption they are contained in an ` × ` subgrid of [p × q].
Since y(vk) > 2`, it follows that y(uk) > `, and thus uk, vk /∈ R. Then by P(i, 2), one of the
components of F(Gi) r ek, say Ak, does not intersect Ri. By definition of Stage 2, we have

(5.1) V (Ui(1 + 4j)) ⊆ R, j ∈ Z,
so we also conclude that Ak does not intersect any column of the form U(1 + 4j). By
Lemma 5.2, the region Ak contains a shedding vertex of Gi. We define wk to be the
≤Z2-greatest such shedding vertex. Note that wk ∈ T (3 + 4jk) in this case as well, for
otherwise, either Ak contains a vertex in U(1 + 4jk) or U(5 + 4jk), or Gi has an edge uv
with |x(u)− x(v)| > `.

We now have a collection of shedding vertices w1, . . . , wr of Gi. Every vertex wk lies in
the tricolumn T (3 + 4jk), and none of the neighbors of wk are contained in R. This implies,
by (5.1), that no two of the vertices w1, . . . , wr are adjacent to a common vertex. Thus
these vertices remain shedding vertices after deleting any finite subset of them from Gi. So
for each k = 1, . . . , r, we may define ai−r+1, . . . , ai by ai−r+k = wk. Since no two of the
vertices ai−r+1, . . . ai, are adjacent, the set {ai−r+1, . . . , ai} is an antichain of �a.

Finally, note that by construction we have wk /∈ R for all k = 1, . . . , r. That is, none of
the vertices of the row R are deleted in Stage 2. Thus Ri−k = Ri for all k = 1, . . . , r, so
from P(i, 2) we conclude that P(i− k, 2) holds for all k = 1, . . . , r.

Stage 3. All vertices (x, y) of Gi have y ≤ 2`. If i > 3 we define ai to be the ≤Z2-
greatest shedding vertex of Gi, which exists by Lemma 2.1. If i ≤ 3 we define ai to be the
≤Z2-greatest vertex of Gi. Clearly, the singleton set {ai} is an antichain of �a.

This completes the construction of the shedding sequence a = (a1, . . . , an) (See Figure 7).
It is straightforward to count the number of antichains of�a obtained from this construction.
Stage 1 requires as many steps as it takes for the last column of the form U(1 + 4j) to run
out of vertices (x, y) with y > `. Since each vertex ai of Stage 1 is contained in some
tricolumn of the form T (1+4j), this requires at most |T (1+4j)| = 3q` steps, each of which
produces an antichain. Similarly, Stage 2 requires as many steps as it takes for the last
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tricolumn of the form T (3 + 4j) to run out of vertices (x, y) with y > 2`. This requires at
most |T (3 + 4j)| = 3q` steps, each of which produces an antichain. Finally, each set {ai} is
trivially an antichain, so taking the singleton of each vertex ai defined in Stage 3 yields at
most 2p` antichains.

The set of antichains of �a produced by these three cases clearly forms a partition of
V (G) = [p× q]. There are at most 2p`+ 3q`+ 3q` = `(2p+ 6q) antichains in this partition.
Thus, since τ(a) is the length of some chain in �a, we have

τ(G) ≤ τ(a) ≤ `(2p+ 6q) ≤ 6`(p+ q).

�

Theorems 4.2 and 5.1 now immediately imply the following general result.

Theorem 5.3 Let G be a grid triangulation of [p × q] such that every triangle fits in an
` × ` subgrid. Then G can be realized as the graph of a convex polyhedron embedded in an
integer grid of size 4(pq)3 × 8(pq)5 × (500(pq)8)6`(p+q).

Corollary 1.2 now follows by setting p = q = k.

6. Final remarks and open problems

6.1. The study of the Quantitative Steinitz Problem was initiated by Onn and Sturmfels
in [OS], who gave the first nontrivial upper bound on the grid size. For plane triangulations,
a different approach was given in [DG]. Since then, there have been a series of improvements
(see [BS, R, Ro]), leading to the currently best expO(n) bound in [RRS]. The only other
class of graphs for which there is a known subexponential bound, is the class of triangulations
corresponding to stacked polytopes [DS], which can be embedded into a polynomial size grid.

In the opposite direction, there are no non-trivial lower bounds on the size of the grid.
If anything, all the evidence suggests that the answer may be either polynomial or near-
polynomial. Note, for example, that while the number of isomorphism classes of simplicial
polytopes (which is equal to the number of plane triangulations) on n vertices is expO(n)
(see e.g. [DRS]), the number of grid polytopes with n vertices in a polynomial size cube
O(nk) × O(nk) × O(nk) is superexponential, see [BV]. Of course, many of these have
isomorphic graphs. In any event, we conjecture that for triangulations a polynomial size
grid is sufficient indeed.

6.2. Our Theorem 3.3 is a variation on results in [BR, FPP] and can be viewed as a stand
alone result in Graph Drawing. It is likely that the polynomial bounds in the theorem can
be substantially improved. We refer to [TDET] for general background in the field.

6.3. Let us mention that not every grid triangulation is regular (see [DRS] for definitions
and further references). An example found by Santos (quoted in [KZ]), is shown in Figure 1
in the introduction. This means that one cannot lift this triangulation directly to a convex
polyhedron; another plane embedding of the triangulation is necessary for that.

6.4. The shedding diameter of a plane triangulation G is closely related and bounded from
above (up to an additive constant), by the optimal height of the visibility representation
of G. This is a parameter of general graphs, defined independently in [RT, TT], and explored
extensively in a series of recent papers by He, Zhang and others (see e.g. [HZ, HWZ, ZH1,
ZH2]). Motivated by VLSI applications, the results in these papers give linear upper bounds
on the optimal height of various classes, which are too weak for the desired subexponential
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upper bounds in the Quantitative Steinitz’s Problem. In fact, one can view our Theorem 5.3
as a sublinear bound on the height representation of a class of graphs.

6.5. While the shedding diameter is linear in the worst case, it is sublinear in a number
of special cases. For example, for random stacked triangulations the shedding diameter
becomes the height of a random ternary tree, or Θ(

√
n), see e.g. [FS]. For the (nearly-)

balanced stacked triangulations G we have τ(G) = O(log n), giving a nearly polynomial
upper bound in the Quantitative Steinitz Problem. While these cases are covered by a
polynomial bound in [DS], notice that our proof is robust enough to generalize to other
related iterative families. In fact, we conjecture that τ(G) = O(

√
n) w.h.p., for random

triangulations with n vertices (cf. [CFGN]).
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