
THE SHAPE OF RANDOM PATTERN-AVOIDING PERMUTATIONS

SAM MINER? AND IGOR PAK?

Abstract. We initiate the study of limit shapes for random permutations avoiding a given

pattern. Specifically, for patterns of length 3, we obtain delicate results on the asymptotics

of distributions of positions of numbers in the permutations. We view the permutations as
0-1 matrices to describe the resulting asymptotics geometrically. We then apply our results

to obtain a number of results on distributions of permutation statistics.

Introduction

The Catalan numbers is one of the most celebrated integer sequences, so much that it is hard to
overstate their importance and applicability. In the words of Thomas Koshy, “Catalan numbers
are [..] fascinating. Like the North Star in the evening sky, they are a beautiful and bright light
in the mathematical heavens.” Richard Stanley called them “the most special” and his “favorite
number sequence” [Kim]. To quote Martin Gardner, “they have the delightful propensity for
popping up unexpectedly, particularly in combinatorial problems” [Gar]. In fact, Henry Gould’s
bibliography [Gou] lists over 450 papers on the subject, with many more in recent years.

Just as there are many combinatorial interpretations of Catalan numbers [S1, Exc. 6.19] (see
also [P2, Slo, S2]), there are numerous results on statistics of various such interpretations (see
e.g. [B2, S1]), as well as their probabilistic and asymptotic behavior (see [Drm, FS]). The latter
results usually come in two flavors. First, one can study the probability distribution of statistics,
such as the expectation, the standard deviation and higher moments. The approach we favor
is to define the shape of a large random object, which can be then analyzed by analytic means
(see e.g. [A2, Ver, VK]). Such objects then contain information about a number of statistics,
under one roof.

In this paper we study the set Sn(π) of permutations σ ∈ Sn avoiding a pattern π. This
study was initiated by Percy MacMahon and Don Knuth, who showed that the size of Sn(π) is
the Catalan number Cn, for all permutations π ∈ S3 [Knu, Mac]. These results opened a way
to a large area of study, with numerous connections to other fields and applications [Kit] (see
also Subsection 8.2).

We concentrate on two classical patterns, the 123- and 132-avoiding permutations. Natural
symmetries imply that other patterns in S3 are equinumerous with these two patterns. We
view permutations as 0-1 matrices, which we average, scale to fit a unit square, and study the
asymptotic behavior of the resulting family of distributions. Perhaps surprisingly, behavior of
these two patterns is similar on a small scale (linear in n), with random permutations approxi-
mating the reverse identity permutation (n, n− 1, . . . , 1). However, on a larger scale (roughly,
on the order nα away from the diagonal), the asymptotics of shapes of random permutations
in Sn(123) and Sn(132), are substantially different. This explains, perhaps, why there are at
least nine different bijections between two sets, all with different properties, and none truly
“ultimate” or “from the book” (see Subsection 8.4).

Our results are rather technical and contain detailed information about the random pat-
tern avoiding permutations, on both the small and large scale. We exhibit several regimes
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(or “phases”), where the asymptotics are unchanged, and painstakingly compute the precise
limits, both inside these regimes and at the phase transitions. Qualitatively, for 123-avoiding
permutations, our results are somewhat unsurprising, and can be explained by the limit shape
results on the brownian excursion (see Subsection 8.8); still, our results go far beyond what was
known. However, for the 132-avoiding permutations, our results are extremely unusual, and
have yet to be explained even on a qualitative level (see Subsection 8.9).

The rest of the paper is structured as follows. In the next section we first present examples
and calculations which then illustrate the “big picture” of our results. In Section 2 we give
formal definitions of our matrix distributions and state basic observations on their behavior.
We state the main results in Section 3, in a series of six theorems of increasing complexity, for
the shape of random permutations in Sn(123) and Sn(132), three for each. Sections 4 and 5
contain proofs of the theorems. In the next two sections (sections 6 and 7), we give a long series
of corollaries, deriving the number and location of fixed points, and the generalized rank. We
conclude with final remarks and open problems (Section 8).

1. The big picture

In this section we attempt to give a casual description of our results, which basically makes
this the second, technical part of the introduction.1

1.1. The setup. Let Pn(j, k) and Qn(j, k) be the number of 123- and 132-avoiding permu-
tations, respectively, of size n, that have j in the k-th position. These are the main quantities
which we study in this paper.

There are two ways to think of Pn(·, ·) and Qn(·, ·). First, we can think of these as families
of probability distributions

1

Cn
Pn(j, ·) , 1

Cn
Pn(·, k) ,

1

Cn
Qn(j, ·) , and

1

Cn
Qn(·, k) .

In this setting, we find the asymptotic behavior of these distributions, where they are con-
centrated and the tail asymptotics; we also find exactly how they depend on parameters j
and k.

Alternatively, one can think of Pn(·, ·) and Qn(·, ·) as single objects, which we can view as a
bistochastic matrices:

Pn =
1

Cn

∑
σ∈S(123)

M(σ), Qn =
1

Cn

∑
σ∈S(132)

M(σ),

where M(σ) is a permutation matrix of σ ∈ Sn, defined so that

M(σ)jk :=

{
1 σ(j) = k

0 σ(j) 6= k.

This approach is equivalent to the first, but more conceptual and visually transparent, since
both Pn and Qn have nice geometric asymptotic behavior when n→∞. See Subsection 8.1 for
more on this difference.

Let us present the “big picture” of our results. Roughly, we show that both matrices Pn
and Qn are very small for (j, k) sufficiently far away from the anti-diagonal

∆ = {(j, k) | j + k = n+ 1},
and from the lower right corner (n, n) in the case of Qn. However, already on the next level of
detail there are large differences: Pn is exponentially small away from the anti-diagonal, while
Qn is exponentially small only above ∆, and decreases at a rate Θ(n−3/2) on squares below ∆.

At the next level of detail, we look inside the “phase transition”, that is what happens when
(j, k) are near ∆. It turns out, matrix Pn maximizes at distance Θ(

√
n) away from ∆, where

1Here and always when in doubt, we follow Gian-Carlo Rota’s advice on how to write an Introduction [Rota].
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the values scale as Θ(n−1/2), i.e. much greater than average 1/n. On the other hand, on the
anti-diagonal ∆, the values of Pn scale as Θ(n−3/2), i.e. below the average. A similar, but much
more complicated phenomenon happens for Qn. Here the “phase transition” splits into several
phases, with different asymptotics for rate of decrease, depending on how the distance from
(j, k) to ∆ relates to Θ(

√
n) and Θ(n3/8) (see Section 3).

At an even greater level of detail, we obtain exact asymptotic constants on the asymptotic
behavior of Pn and Qn, not just the rate of decrease. For example, we consider Pn at distance
Θ(n1/2+ε) from ∆, and show that Pn is exponentially small for all ε > 0. We also show that
below ∆, the constant term implied by the Θ notation in the rate Θ(n−3/2) of decrease of Qn,
is itself decreasing until “midpoint” distance n/2 from ∆, and is increasing beyond that, in a
symmetric fashion.

Unfortunately, the level of technical detail of our theorems is a bit overwhelming to give a
casual description; they are formally presented in Section 3, and proved in sections 4 and 5. The
proofs rely on explicit formulas for Pn(j, k) and Qn(j, k) which we give in lemmas 4.2 and 5.3.
These are proved by direct combinatorial arguments. From that point on, the proofs of the
asymptotic behavior of Pn and Qn are analytic and use no tools beyond Stirling’s formula and
the Analysis of Special Functions.

1.2. Numerical examples. First, in Figures 9 and 10 we compute the graphs of P250 and Q250

(see the Appendix). Informally, we name the diagonal mid-section of the graph of P250 the
canoe; this is the section of the graph where the values are the largest. Similarly, we use the
wall for the corresponding mid-section of Q250 minus the corner spike. The close-up views of the
canoe and the wall are given in Figures 11 and 12, respectively. Note that both graphs here are
quite smooth, since n = 250 is large enough to see the the limit shape, with C250 ≈ 4.65×10146,
and every pixelated value is computed exactly rather than approximated.

Observe that the canoe is symmetric across both the main and the anti-diagonal, and contain
the high spikes in the corners of the canoe, both of which reach 1/4. Similarly, the wall is
symmetric with respect to the main diagonal, and has three spikes which reach 1/4. These
results are straightforward and proved in the next section.

To see that the canoe is very thin, we compare graphs of the diagonal sections Pn(k, k)/Cn
for n = 62, 125, 250 and 500, as k varies from 90 to 160 (see Figures 5 to 8 in the Appendix).
Observe that as n increases, the height of the canoes decreases, and so does the width and
“bottom”. As we mentioned earlier, these three scale as Θ(n−1/2), Θ(n−1/2), and Θ(n−3/2),
respectively. Note also the sharp transition to a near flat part outside of the canoe; this is
explained by an exponential decrease mentioned earlier. The exact statements of these results
are given in Section 3.

Now, it is perhaps not clear from Figure 11 that the wall bends to the left. To see this
clearly, we overlap two graphs in Figure 1. Note that the peak of P250(k, k) is roughly in the
same place of Q250(k, k), i.e. well to the left of the midpoint at 125. The exact computations
show that the maxima occur at 118 and at 119, respectively. Note also that Q250(k, k) has a
sharp phase transition on the left, with an exponential decay, but only a polynomial decay on
the right.

1.3. Applications. We mention only one statistic which was heavily studied in previous years,
and which has a nice geometric meaning. Permutation σ is said to have a fixed point at k if
σ(k) = k. Denote by fp(σ) the number of fixed points in σ.

For random permutations σ ∈ Sn, the distribution of fp is a classical problem; for example
E[fp] = 1 for all n. In an interesting paper [RSZ], the authors prove that the distribution of fp
on S(321) and on S(132) coincide (see also [E2, EP]). Curiously, Elizalde used the generating
function technique to prove that E[fp] = 1 in both cases, for all n, see [E1]. He also finds closed
form g.f. formulas for the remaining two patterns (up to symmetry).
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Figure 1. Comparison of P250(k, k)/C250 and Q250(k, k)/C250.

Now, the graphs of Pn(k, k)/Cn and Qn(k, k)/Cn discussed above, give the expectations
that k is a fixed point in a pattern avoiding permutation. In other words, fixed points of
random permutations in Sn(123) and Sn(132) are concentrated under the canoe and under the
wall, respectively. Indeed, our results immediately imply that w.h.p. they lie near n/2 in both
cases. For random permutations in Sn(321) and Sn(231), the fixed points lie in the ends of the
canoe and near the corners of the wall, respectively. In Section 6, we qualify all these statements
and as a show of force obtain sharp asymptotics for E[fp] in all cases, both known and new.

2. Definitions, notations and basic observations

2.1. Asymptotics. Throughout this paper we use f(n) ∼ g(n) to denote

lim
n→∞

f(n)

g(n)
= 1 .

We use f(n) = O(g(n)) to mean that there exists a constant M and an integer N such that

|f(n)| ≤ M |g(n)| for all n > N.

Also, f(n) = Θ(g(n)) denotes that f(n) = O(g(n)) and g(n) = O(f(n)). Similarly, f(n) =
o(g(n)) is defined by

lim
n→∞

f(n)

g(n)
= 0 .

Recall Stirling’s formula

n! ∼
√

2πn
(n
e

)n
.

We use Cn to denote the n-th Catalan number:

Cn =
1

n+ 1

(
2n

n

)
, and Cn ∼

4n
√
πn

3
2

.

2.2. Pattern avoidance. Let n and m be positive integers with m ≤ n, and let

σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn,
and pattern τ = (τ(1), τ(2), . . . , τ(m)) ∈ Sm. We say that σ contains τ if there exist in-
dices i1 < i2 < . . . < im such that (σ(i1), σ(i2), . . . , σ(im)) is in the same relative order as
(τ(1), τ(2), . . . , τ(m)). If σ does not contain τ then we say σ is τ -avoiding, or avoiding pat-
tern τ . In this paper we use only τ ∈ S3; to simplify the notation we use 123 and 132 to
denote patterns (1, 2, 3) or (1, 3, 2), respectively. For example, σ = (2, 4, 5, 1, 3) contains 132,
since the subsequence (σ(1), σ(2), σ(5)) = (2, 4, 3) has the same relative order as (1, 3, 2). How-
ever, σ = (5, 3, 4, 1, 2) is 132-avoiding.
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Denote by Sn(π) the set of π-avoiding permutations in Sn. For the case of patterns of
length 3, it is known that regardless of the pattern π ∈ S3, we have |Sn(π)| = Cn .

Theorem 2.1 (MacMahon, Knuth). For all π ∈ S3, we have |Sn(π)| = Cn.

While the equalities |Sn(132)| = |Sn(231)| = |Sn(213)| = |Sn(312)| and |Sn(123)| = |Sn(321)|
are straightforward, the fact that |Sn(132)| = |Sn(123)| is more involved.

2.3. Symmetries. Recall that Pn(j, k) and Qn(j, k) denote the number of permutations in
Sn(123) and Sn(132), respectively, of size n that have j in the k-th position. In this section we
discuss the symmetries of such permutations.

Proposition 2.2. For all n, j, k positive integers such that 1 ≤ j, k ≤ n, we have Pn(j, k) =
Pn(k, j) and Qn(j, k) = Qn(k, j). Also, Pn(j, k) = Pn(n+ 1−k, n+ 1− j), for all k, j as above.

The proposition implies that we can interpret Pn(j, k) as either

|{σ ∈ Sn(123) s.t.σ(j) = k}| or |{σ ∈ Sn(123) s.t.σ(k) = j}|,

and we use both formulas throughout paper. The analogous statement holds with Qn(j, k) as
well. Note, however, that Qn(j, k) is not necessarily equal to Qn(n + 1 − k, n + 1 − j); for
example, Q3(1, 2) = 2 but Q3(2, 3) = 1. In other words, there is no natural analogue of the
second part of the proposition for Qn(j, k), even asymptotically, as our results will show in the
next section.

Proof. The best way to see this is to consider permutation matrices. Observe that Pn(j, k)
counts the number of permutation matrices A = (ars) which have akj = 1, but which have no
row indices i1 < i2 < i3 nor column indices j1 < j2 < j3 such that ai1j1 = ai2j2 = ai3j3 = 1.
If A is such a matrix, then B = AT is also a matrix which satisfies the conditions for Pn(k, j),
since bjk = 1 and B has no indices which lead to the pattern 123. This transpose map is clearly
a bijection, so we have Pn(j, k) = Pn(k, j).

Similarly, since any 132 pattern in a permutation matrix A will be preserved in B = AT ,
we have Qn(j, k) = Qn(k, j). Finally, observe that Pn(j, k) = Pn(n + 1 − k, n + 1 − j), since
σ is 123-avoiding if and only if ρ = (n + 1 − σ(n), n + 1 − σ(n − 1), . . . , n + 1 − σ(1)) is
123-avoiding. �

2.4. Maxima and minima. Here we find all maxima and minima of matrices Pn(·, ·) and
Qn(·, ·). We separate the results into two propositions.

Proposition 2.3. For all n ≥ 3, the value of Pn(j, k) is minimized when (j, k) = (1, 1) or
(n, n). Similarly, Pn(j, k) is maximized when

(j, k) = (1, n), (1, n− 1), (2, n) or (n− 1, 1), (n, 1), (n, 2).

Proof. For any n, the only σ ∈ Sn(123) with σ(1) = 1 is σ = (1, n, n− 1, . . . , 3, 2). This implies
that Pn(1, 1) = 1. Similarly, Pn(n, n) = 1, since the only such permutation is (n − 1, n −
2, . . . , 2, 1, n).

For every j, k ≤ n, the maximum possible value of Pn(j, k) is Cn−1, since the numbers from
1 to n excluding j must be 123-avoiding themselves. Let us show that

Pn(1, n) = Pn(2, n) = Pn(1, n− 1) = Cn−1,

proving that this maximum is in fact achieved by the above values of j and k.
If σ ∈ Sn(123) has σ(1) = n, then n cannot be part of a 123-pattern, since it is the highest

number but must be the smallest number in the pattern. Therefore, any σ ∈ Sn−1(123) can be
extended to a permutation τ ∈ Sn(123) in the following way: let τ(1) = n, and let τ(i) = σ(i−1)
for 2 ≤ i ≤ n. Since |Sn−1(123)| = Cn−1, we have Pn(1, n) = Cn−1. Similarly, if σ(2) = n, then
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n cannot be part of a 123-pattern, so Pn(2, n) = Cn−1. The same is true if σ(1) = (n− 1), so
Pn(1, n− 1) = Cn−1. By Proposition 2.2, we also have

Pn(n− 1, 1) = Pn(n, 1) = Pn(n, 2) = Cn−1,

as desired. �

Proposition 2.4. For all n ≥ 4, the value of Qn(j, k) is minimized when (j, k) = (1, 1).
Similarly, Qn(j, k) is maximized when

(j, k) = (1, n), (1, n− 1), (n− 1, 1), (n, 1), or (n, n).

Proof. For (j, k) = (1, 1), the only 132-avoiding permutation is σ = (1, 2, 3, . . . , n − 1, n).
Therefore, Qn(1, 1) = 1 for all n.

For the second part, we use the same reasoning as in Proposition 2.3, except for (j, k) = (n, n).
For (j, k) = (n, n), we have Qn(n, n) = Cn−1 as well, since n in the final position cannot be
part of a 132-pattern. Observe that unlike Pn(2, n), Qn(2, n) < Cn−1, since σ(2) = n requires
σ(1) = n− 1, in order to avoid a 132-pattern. �

3. Main results

In this section we present the main results of the paper.

3.1. Shape of 123-avoiding permutations. Let 0 ≤ a, b ≤ 1, 0 ≤ α < 1, and c ∈ R s.t. c 6= 0
for α 6= 0 be fixed constants. Recall that Pn(j, k) is the number of permutations σ ∈ Sn(123)
with σ(j) = k. Define

F (a, b, c, α) = sup

{
d ∈ R+

∣∣∣ lim
n→∞

ndPn(an− cnα, bn− cnα)

Cn
<∞

}
for α 6= 0 or a+ b 6= 1,

and

F (a, b, c, α) = sup

{
d ∈ R+

∣∣∣ lim
n→∞

ndPn(an− cnα + 1, bn− cnα)

Cn
<∞

}
for α = 0 and a+b = 1.

Similarly, let

L(a, b, c, α) = lim
n→∞

nF (a,b,c,α)Pn(an− cnα, bn− cnα)

Cn
for α 6= 0 or a+ b 6= 1,

and

L(a, b, c, α) = lim
n→∞

nF (a,b,c,α)Pn(an− cnα + 1, bn− cnα)

Cn
for α = 0 and a+ b = 1,

defined for all a, b, c, α as above, for which F (a, b, c, α) <∞; let L be undefined otherwise.

Theorem 3.1. For all 0 ≤ a, b ≤ 1, c ∈ R and 0 ≤ α < 1, we have

F (a, b, c, α) =


∞ if a+ b 6= 1 ,

∞ if a+ b = 1, c 6= 0, α > 1
2 ,

3
2 if a+ b = 1, c = 0 ,
3
2 − 2α if a+ b = 1, c 6= 0, α ≤ 1

2 .

Here F (a, b, c, α) = ∞ means that Pn(an − cnα, bn − cnα) = o(Cn/n
d), for all d > 0. The

following result proves the exponential decay of these probabilities.
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Theorem 3.2. Let 0 ≤ a, b ≤ 1 s.t. a+ b 6= 1, c ∈ R, and 0 < α < 1. Then, for n large enough,
we have

Pn(an− cnα, bn− cnα)

Cn
< εn,

where ε = ε(a, b, c, α) is independent of n, and 0 < ε < 1. Similarly, let 0 ≤ a ≤ 1, c 6= 0, and
1
2 < α < 1. Then, for n large enough, we have

Pn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε = ε(a, c, α) is independent of n and 0 < ε < 1.

These theorems compare the growth of Pn(an− cnα, bn− cnα) to the growth of Cn. Clearly,

n∑
j=1

Pn(j, k) = |Sn(123)| = Cn for all 1 ≤ k ≤ n .

Therefore, if Pn(j, k) were constant across all values of j, k between 1 and n, we would have
Pn(j, k) = Cn/n for all 1 ≤ j, k ≤ n. Theorem 3.1 states that for 0 ≤ a, b ≤ 1, a + b 6= 1, we

have Pn(an, bn) = o(Cn/n
d), for every d ∈ R. For a+ b = 1, we have Pn(an, bn) = Θ(Cn/n

3
2 ).

Theorem 3.1 is in fact stating slightly more. When we consider Pn(an− cnα, bn− cnα) instead
of Pn(an, bn), we have

Pn(an− cnα, bn− cnα) = Θ
(
Cn/n

3
2−2α

)
,

for all α ≤ 1
2 . This relationship can be seen in Figure 2.

0

1

1

γ1 : {a+ b = 1− 2c√
n
}

γ1

γ2 : {a+ b = 1− 2c
n1−α for some 0 ≤ α ≤ 1

2}
γ2

γ3

γ3 : {a+ b = 1}

a

b

Figure 2. Region where Pn(an, bn) ∼ Cn/nd for some d.

In Figure 2, on γ1, we have

Pn
(
an− c

√
n, (1− a)n− c

√
n
)

= Θ

(
Cn√
n

)
.

On γ2, where

a+ b = 1− 2c

n1−α
, for some 0 ≤ α ≤ 1

2
,

we have

Pn(an− cnα, (1− a)n− cnα) = Θ

(
Cn

n
3
2−2α

)
.

On γ3, we have Pn(an, (1− a)n) = Θ(Cn/n
3
2 ). Behavior is symmetric about the line a+ b = 1.

The following result is a strengthening of Theorem 3.1 in a different direction. For a, b, c,
and α as above, s.t. F (a, b, c, α) <∞, we calculate the value of L(a, b, c, α).
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Theorem 3.3. For all 0 ≤ a ≤ 1, c ∈ R, and 0 ≤ α ≤ 1/2, we have

L(a, 1− a, c, α) =


ξ(a, c) if c = 0 or α = 0 ,

η(a, c) if c 6= 0 and 0 < α < 1
2 ,

η(a, c)κ(a, c) if c 6= 0 and α = 1
2 ,

where

ξ(a, c) =
(2c+ 1)2

4
√
π(a(1− a))

3
2

, η(a, c) =
c2

√
π(a(1− a))

3
2

and κ(a, c) = exp

[
−c2

a(1− a)

]
.

Let us note that for α = 0 or c = 0 as in theorem, we actually evaluate

Pn(an− cnα, (1− a)n− cnα + 1) rather than Pn(an− cnα, (1− a)n− cnα).

We do this in order to ensure that we truly measure the distance away from the anti-diagonal
where j + k = n + 1. This change only affects the asymptotic behavior of Pn(·, ·) when α = 0
or c = 0.

3.2. Shape of 132-avoiding permutations. Recall that Qn(j, k) is the number of permuta-
tions σ ∈ Sn(132) with σ(j) = k. Let a, b, c and α be defined as in Theorem 3.1. Define

G(a, b, c, α) = sup

{
d ∈ R+

∣∣∣ lim
n→∞

ndQn(an− cnα, bn− cnα)

Cn
<∞

}
.

Let

M(a, b, c, α) = lim
n→∞

nG(a,b,c,α)Qn(an− cnα, bn− cnα)

Cn
,

defined for all a, b, c, α as above for which G(a, b, c, α) <∞; M is undefined otherwise.

Theorem 3.4. For 0 ≤ a, b ≤ 1, c ∈ Z and α ≥ 0, we have G(a, b, c, α) =

=



∞ if 0 ≤ a+ b < 1,
3
2 if 1 < a+ b < 2,
3
2α if a = b = 1, 0 < α < 1, c 6= 0,

0 if a = b = 1, α = 0,
3
4 if a+ b = 1, c = 0,



∞ if a+ b = 1, 1
2 < α < 1, c > 0,

3
4 if a+ b = 1, 0 ≤ α ≤ 3

8 , c 6= 0,
3
4 if a+ b = 1, 3

8 ≤ α ≤
1
2 , c < 0,

3
2α if a+ b = 1, 1

2 < α < 1, c < 0,
3
2 − 2α if a+ b = 1, 3

8 ≤ α ≤
1
2 , c > 0.

As in Theorem 3.1, here G(a, b, c, α) =∞ means that Qn(an−cnα, bn−cnα) = o(Cn/n
d), for

all d > 0. The following result proves exponential decay of these probabilities (cf. Theorem 3.2.)

Theorem 3.5. Let 0 ≤ a, b < 1 such that a + b < 1, c 6= 0, and 0 < α < 1. Then, for n large
enough, we have

Qn(an− cnα, bn− cnα)

Cn
< εn,

where ε = ε(a, b, c, α) is independent of n, and 0 < ε < 1. Similarly, let 0 ≤ a ≤ 1, 0 < c, and
1
2 < α < 1. Then, for n large enough, we have

Qn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε = ε(a, c, α) is independent of n, and 0 < ε < 1.

The above theorems compare the relative growth rates of Qn(i, j) and Cn, as n → ∞.
Theorem 3.4 states that for a+ b < 1, Qn(an, bn) = o(Cn/n

d) for all d > 0. For 1 < a+ b < 2,
we have

Qn(an, bn) = Θ

(
Cn

n
3
2

)
.
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Qn(an, bn) is the largest when a = b = 1 or when a + b = 1. The true behavior of Qn(i, j)
described in Theorems 3.4 and 3.6 takes the second order terms of i and j into account. In fact
we have that

Qn(n− cnα, n− cnα) = Θ

(
Cn

n
3
2α

)
when α ≤ 1

2
.

For a + b = 1, the asymptotic behavior of Qn(an − cnα, bn − cnα) varies through several
regimes as α varies between 0 and 1, and c varies between positive and negative numbers. This
relationship is illustrated in Figure 3.

0

1

1

γ1 : {a+ b = 1− 2c√
n
}

γ1
γ2 γ2 : {a+ b = 1− 2c

n1−α , where 3
8 < α < 1

2}

γ3 γ3 : {a+ b = 1− 2c

n
5
8
}

γ4 γ4 : {a+ b = 1 + 2c√
n
}

γ5 γ5 : {a+ b = 1 + 2c
n1−α , where 1

2 < α < 1}

a

b

Figure 3. Region where Qn(an, bn) ∼ Cn/nd for some d.

In Figure 3, on the curve γ1, we have

Qn(an− c
√
n, (1− a)n− c

√
n) = Θ

(
Cn

n
1
2

)
.

Similarly, on γ2, we have

Qn(an− cnα, (1− a)n− cnα) = Θ

(
Cn

n
3
2−2α

)
.

In the space between γ3 and γ4, we have

Qn(an+ k, (1− a)n+ k) = Θ

(
Cn

n
3
4

)
,

where −cn 3
4 ≤ k ≤ cn 1

2 . Finally, on γ5, we have

Qn(an+ cnα, (1− a)n+ cnα) = Θ

(
Cn

n
3
2α

)
.

As in Theorem 3.3, the following result strengthens Theorem 3.4 in a different direction. For
a, b, c, α where G(a, b, c, α) <∞, we calculate the value of M(a, b, c, α).

Theorem 3.6. For a, b, c, α as above, we have M(a, b, c, α) =

=



v(a, b) if 1 < a+ b < 2,

w(c) if a = b = 1, 0 < α < 1,

u(c) if a = b = 1, c ≥ 0, α = 0,

w(c) if a+ b = 1, c < 0, 1
2 < α,

x(a, c) if a+ b = 1, c < 0, α = 1
2 ,



z(a) if a+ b = 1, 0 ≤ α < 3
8 ,

z(a) if a+ b = 1, c < 0, 3
8 ≤ α <

1
2 ,

z(a) + y(a, c) if a+ b = 1, c > 0, α = 3
8 ,

y(a, c) if a+ b = 1, c > 0, 3
8 < α < 1

2 ,

y(a, c)κ(a, c) if a+ b = 1, c > 0, α = 1
2 ,



10 SAM MINER AND IGOR PAK

where

u(c) =

c∑
s=0

(
s+ 1

2c+ 1− s

)2(
2c+ 1− s
c+ 1

)2

4s−2c−1, v(a, b) =
1

2
√
π(2− a− b) 3

2 (a+ b− 1)
3
2

,

w(c) =
1

2
5
2 c

3
2
√
π
, x(a, c) =

1

4πa
3
2 (1− a)

3
2

∫ ∞
0

s2

(s+ 2c)
3
2

exp

[
−s2

4a(1− a)

]
ds,

y(a, c) =
2c2

√
πa

3
2 (1− a)

3
2

, z(a) =
Γ( 3

4 )

2
3
2πa

3
4 (1− a)

3
4

,

and κ(a, c) is defined as in Theorem 3.3.

Observe that for c = 0 or α = 0, values Qn(an − cnα, (1 − a)n − cnα) behave the same
asymptotically as Qn(an−cnα, (1−a)n−cnα+1). We explain this in more detail in Lemma 5.7.
This is in contrast with the behavior of Pn(·, ·), where we need to adjust when on the anti-
diagonal. Note also that for a = b = 1, α = 0 and c = 0, we have

u(0) =
1

4
= lim

n→∞

Qn(n, n)

Cn
= lim

n→∞

Cn−1
Cn

,

which holds since Qn(n, n) = Cn−1 given in the proof of Proposition 2.4. We prove the theorem
in Section 5.

4. Analysis of 123-avoiding permutations

4.1. Combinatorics of Dyck Paths. We say a Dyck path of length 2n is a path from (0, 0)
to (2n, 0) in Z2 consisting of upsteps (1,1) and downsteps (1,-1) such that the path never goes
below the x-axis. We denote by Dn the set of Dyck paths of length 2n. We can express a Dyck
path γ ∈ Dn as a word of length 2n, where u represents an upstep and d represents a downstep.

Recall that Pn(j, k) is the number of permutations σ ∈ Sn(123) with σ(j) = k. Let f(n, k) =
Pn(1, k) (or Pn(k, 1)). Let b(n, k) be the number of lattice paths consisting of upsteps and
downsteps from (0, 0) to (n + k − 2, n − k) which stay above the x-axis. Here b(n, k) are the
ballot numbers, given by

b(n, k) =
n− k + 1

n+ k − 1

(
n+ k − 1

n

)
.

Lemma 4.1. For all 1 ≤ k ≤ n, we have f(n, k) = b(n, k).

Proof. We have that f(n, k) counts the number of permutations σ ∈ Sn(123) such that σ(1) = k.
By the RSK-correspondence (see e.g. [B2, S1]), we have f(n, k) counts the number of Dyck paths
γ ∈ Dn whose final upstep ends at the point (n + k − 1, n + 1 − k). Remove the last upstep
from path γ, and all the steps after it. We get a path γ′ from (0, 0) to (n+ k− 2, n− k) which
remains above the x-axis. These paths are counted by b(n, k), and the map γ → γ′ is clearly
invertible, so f(n, k) = b(n, k), as desired. �

Lemma 4.2. For all 1 ≤ j, k ≤ n, we have

Pn(j, k) = b(n− k + 1, j) b(n− j + 1, k), where j + k ≤ n+ 1.

Similarly, we have

Pn(j, k) = b(j, n− k + 1) b(k, n− j + 1), where j + k > n+ 1.

Proof. Let us show that the second case follows from the first case. Suppose j + k > n+ 1. By
assuming the first case of the lemma, we have

Pn(j, k) = Pn(n+ 1− j, n+ 1− k)

= b(n− (n+ 1− k) + 1, n+ 1− j) b(n− (n+ 1− j) + 1, n+ 1− k)

= b(k, n− j + 1) b(j, n− k + 1),
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by Proposition 2.2. Therefore, it suffices to prove the lemma for j + k ≤ n+ 1.
Let j + k ≤ n + 1, and let σ be a 123-avoiding permutation with σ(j) = k. We use

decomposition σ = τ kρ, where

τ = {σ(1), . . . , σ(j − 1)} and ρ = {σ(j + 1), . . . , σ(n)}.

We now show that σ(i) > k, for all 1 ≤ i < j. Suppose σ(i) < k for some i < j. Then there are
at most (j−2) numbers x < j with σ(x) > k. Since σ(j) = k, in total there are (n−k) numbers
y such that σ(y) > k. Since j − 2 < n − k, there must be at least one number z > j with
σ(z) > k. However, this gives a 123 pattern consisting of (i, j, z), a contradiction. Therefore,
σ(i) > k, for all 1 ≤ i < j.

Consider the values of σ within τ . From above, the values within τ are all greater than k.
Given a possible τ , the values within ρ which are greater than k must be in decreasing order,
to avoid forming a 123-pattern starting with k. Therefore, to count possible choices for τ , it
suffices to count possible orderings within σ of the numbers x with k ≤ x ≤ n. The number of
such orderings is b(n − k + 1, j), since the smallest number is in the j-th position. Therefore,
there are b(n− k + 1, j) possible choices for τ .

Now consider the values of σ within {k} ∪ ρ. We have (n − j + 1) numbers to order, and
(k − 1) of them are less than k. Our only restriction on ρ is that we have no 123-patterns.
There are b(n−j+1, k) of these orderings, since the k-th smallest number is in the 1-st position.
Therefore, we have b(n− j + 1, k) possible choices for ρ.

Once we have chosen τ and ρ, this completely determines the permutation σ. Therefore,
there are b(n− j + 1, k)b(n− k + 1, j) choices of such σ, as desired. �

4.2. Proof of theorems 3.1, 3.2, and 3.3. The proof follows from several lemmas: one
technical lemma and one lemma for each case from Theorem 3.1.

Let h : [0, 1]2 → R be defined as

h(a, b) =
(1− a+ b)(1−a+b)(1− b+ a)(1−b+a)

aa(1− a)(1−a)bb(1− b)(1−b)
.

Lemma 4.3 (Technical lemma). We have

h(a, b) ≤ 4, for all 0 ≤ a, b ≤ 1.

Moreover, h(a, b) = 4 if and only if b = 1− a.

Proof. Observe that h(a, 1− a) = 4. Furthermore, we consider the partial derivatives of h with
respect to a and b. We find that h has local maxima at each point where b = 1 − a. In fact
these are the only critical points within [0, 1]2. We omit the details.2 �

Lemma 4.4 (First case). Let a, b ∈ [0, 1], c 6= 0, and 0 ≤ α < 1, such that a + b 6= 1. Then
F (a, b, c, α) =∞. Moreover, for n sufficiently large, we have Pn(an− cnα, bn− cnα)/Cn < εn,
where ε is independent of n and 0 < ε < 1.

Proof. By lemmas 4.1 and 4.2, we have

Pn(an− cnα, bn− cnα) = b(n− (bn− cnα) + 1, an− cnα) b(n− (an− cnα) + 1, bn− cnα)

=
(n(1− a− b) + 2cnα + 2)

2

n2(1− b+ a)(1− a+ b)

(
n(1− b+ a)

n− (bn− cnα) + 1

)(
n(1− a+ b)

n− (an− cnα) + 1

)
.

Applying Stirling’s formula gives

Pn(an− cnα, bn− cnα) ∼ r(n, a, b) · h(a, b)n,

2The proof follows similar (and even somewhat simplified) steps as the proof of Lemma 5.4.



12 SAM MINER AND IGOR PAK

where r(n, a, b) =

=
(n(1− a− b) + 2cnα + 2)2(an− cnα)(bn− cnα)

√
(1− a+ b)(1− b+ a)

2πn3(n(1− a) + cnα + 1)(n(1− b) + cnα + 1)(1− a+ b)(1− b+ a)
√
ab(1− a)(1− b)

.

Using

Cn ∼
4n
√
πn

3
2

,

we obtain
ndPn(an− cnα, bn− cnα)

Cn
∼
√
π nd+

3
2 r(n, a, b)h(a, b)n 4−n.

Clearly, for h(a, b) < 4, the r.h.s. → 0 as n → ∞, for all d ∈ R+. By Lemma 4.3, we have
h(a, b) < 4 unless b = 1− a. Therefore, since a+ b 6= 1, we have F (a, b, c, α) =∞. Also, when
n is large enough,

Pn(an− cnα, bn− cnα)

Cn
<

(
h(a, b) + 4

8

)n
,

as desired. �

Lemma 4.5 (Second case). For all a ∈ (0, 1), 0 < c, and 1
2 < α < 1, we have F (a, 1 −

a, c, α) = ∞. Moreover, for n large enough, we have

Pn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε is independent of n and 0 < ε < 1.

Proof. Let k = cnα. Evaluating Pn(an− k, (1− a)n− k), we have

Pn(an− k, (1− a)n− k) =
(2k + 2)2

(2(1− a)n)(2an)

(
2(1− a)n

(1− a)n+ k + 1

)(
2an

an+ k + 1

)
.

Using Stirling’s formula and simplifying this expression gives

Pn(an− k, (1− a)n− k) ∼ (k + 1)2

π(a(1− a))
3
2n3

4n
(

an

an+ k

)an+k (
an

an− k

)an−k
×
(

(1− a)n

(1− a)n+ k

)(1−a)n+k (
(1− a)n

(1− a)n− k

)(1−a)n−k

.

Clearly,

ln

[(
an

an+ k

)an+k (
an

an− k

)an−k]
∼ −k

2

an
as n→∞.

Therefore,

ndPn(an− k, (1− a)n− k)

Cn
∼ nd(k + 1)2
√
π(a(1− a)n)

3
2

exp

[
−k2

a(1− a)n

]
.

Substituting k ← cnα, gives

ndPn(an− k, (1− a)n− k)

Cn
∼ c2nd
√
π(a(1− a))

3
2n

3
2−2α

exp

[
−c2

a(1− a)n1−2α

]
.

For α > 1
2 , this expression → 0 as n→∞, for all d. This implies that F (a, 1− a, c, α) =∞. In

fact, we have also proved the second case of Theorem 3.6, as desired. �

Lemma 4.6 (Third case). For all a ∈ (0, 1), c > 0, and α ∈ [0, 1], we have

F (a, 1− a, 0, α) = F (a, 1− a, c, 0) =
3

2
.

Furthermore, we have L(a, 1− a, c, 0) = ξ(a, c).
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Proof. In this case, to ensure that cnα measures the distance from the anti-diagonal, we need
to analyze Pn(an− cnα, (1− a)n− cnα + 1). Evaluating as in Lemma 4.5, gives

ndPn(an− cnα, (1− a)n− cnα + 1)

Cn
∼ nd−

3
2 (2k + 1)2

4
√
π(a(1− a))

3
2

exp

[
−k2

a(1− a)n

]
.

For c = 0, we get F (a, 1 − a, 0, α) = 3/2 and L(a, 1 − a, 0, α) = ξ(a, 0). For α = 0, we get
F (a, 1− a, c, 0) = 3/2 and L(a, 1− a, c, 0) = ξ(a, c), as desired. �

Lemma 4.7 (Fourth case). For all a ∈ (0, 1), c > 0 and 0 < α ≤ 1
2 , we have

F (a, 1− a, c, α) =
3

2
− 2α.

Furthermore, for 0 < α < 1
2 , we have

L(a, 1− a, c, α) = η(a, c) and L

(
a, 1− a, c, 1

2

)
= η(a, c)κ(a, c),

where η(a, c) and κ(a, c) are defined as in Theorem 3.3.

Proof. As in Lemma 4.5, we have

ndPn(an− k, (1− a)n− k)

Cn
∼ c2nd
√
π(a(1− a))

3
2n

3
2−2α

exp

[
−c2

a(1− a)n1−2α

]
.

We can rewrite this expression as

c2nd
√
π(a(1− a))

3
2n

3
2−2α

exp

[
−c2

a(1− a)n1−2α

]
∼ η(a, c) nd−(

3
2−2α) exp

[
−c2

a(1− a)n1−2α

]
.

For α < 1
2 , we clearly have

exp

[
−c2

a(1− a)n1−2α

]
→ 1 as n→∞,

so F (a, 1 − a, c, α) = 3
2 − 2α and L(a, 1 − a, c, α) = η(a, c). For α = 1

2 , by the definition of
κ(a, c), we have

exp

[
−c2

a(1− a)n1−2α

]
→ κ(a, c), as n→∞,

so F (a, 1− a, c, 1/2) = 1/2, and L(a, 1− a, c, 1/2) = η(a, c)κ(a, c), as desired. �

Let us emphasize that the results of the previous two lemmas hold for c < 0 as well as c > 0.
This is true by the symmetry of Pn(j, k) displayed in Lemma 2.2, and since c only appears in
the formulas for η(a, c) and κ(a, c) as c2. Therefore, we have proven all cases of Theorems 3.1
and 3.3.

5. Analysis of 132-avoiding permutations

5.1. Combinatorics of Dyck paths. We recall a bijection ϕ between Sn(132) and Dn, which
we then use to derive the exact formulas for Qn(j, k). This bijection is equivalent to that in [EP],
itself a variation on a bijection in [Kra] (see also [B2, Kit] for other bijections between these
combinatorial classes).

Given γ ∈ Dn, for each downstep starting at point (x, y) record y, the level of (x, y). This
defines yγ = (y1, y2, . . . , yn).

We create the 132-avoiding permutation by starting with a string {n, n − 1, . . . , 2, 1} and
removing elements from the string one at a time each from the yi-th spot in the string, creating
a permutation ϕ(γ). Suppose this permutation contains a 132-pattern, consisting of elements
a, b, and c with a < b < c. After a has been removed from the string, the level in the string must
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be beyond b and c. Since we can only decrease levels one at a time, we must remove b before
removing c, a contradiction. Therefore, the map ϕ is well-defined, and clearly one-to-one. By
Theorem 2.1, this proves that ϕ is the desired bijection.

Example 5.1. Take the Dyck path γ = (uuduuddudd). Then zγ = (2, 3, 2, 2, 1), as seen in
Figure 4. We then create our 132-avoiding permutation ϕ(γ) by taking the string {5, 4, 3, 2, 1}
and removing elements one at a time. First we remove the 2-nd element (4), then we remove the
3-rd element from the remaining list {5, 3, 2, 1}, which is 2, then the 2-nd from the remaining
list {5, 3, 1}, which is 3, then the 2-nd from {5, 1}, which is 1, then the last element (5), and
we obtain ϕ(γ) = (4, 2, 3, 1, 5).

Level 1
Level 2
Level 3

Figure 4. Dyck Path γ with downsteps at yγ = (2, 3, 2, 2, 1).

Let g(n, k) be the number of permutations σ ∈ Sn(132) with σ(1) = k, so g(n, k) = Qn(1, k).
Recall that since Qn(j, k) = Qn(k, j), we can also think of g(n, k) as the number of permutations
σ ∈ Sn(132) with σ(k) = 1. Let b(n, k) denote the ballot numbers as in Lemma 4.1.

Lemma 5.2. For all 1 ≤ k ≤ n, we have g(n, k) = b(n, k).

Proof. Let σ ∈ Sn(132) with σ(1) = k. Using bijection ϕ, we find that ϕ−1(σ) is a Dyck path
with its final upstep from (n + k − 2, n − k) to (n + k − 1, n + 1 − k). The result now follows
from the same logic as in the proof of Lemma 4.1. �

Lemma 5.3. For all 1 ≤ j, k ≤ n,

Qn(j, k) =
∑
r

b(n− j + 1, k − r) b(n− k + 1, j − r)Cr,

where the summation is over values of r such that

max {0, j + k − n− 1} ≤ r ≤ min {j, k} − 1.

Proof. Since our formula is symmetric in j and k except for the upper limit of summation,
proving the lemma when j ≤ k will suffice. When j ≤ k the upper limit is j − 1, rather than
k − 1 when j > k. Qn(j, k) represents the number of permutations σ ∈ Sn(132) with σ(j) = k.
Let qn(j, k, r) be the number of 132-avoiding permutations σ counted by Qn(j, k) such that
there are exactly r values x with x < j such that σ(x) < k. Below we show that

qn(j, k, r) = b(n− j + 1, k − r)b(n− k + 1, j − r)Cr for all 0 ≤ r ≤ j − 1,

which implies the result.
Let σ ∈ Sn(132) such that σ(j) = k and there are exactly r numbers xi with xi < j and

σ(xi) < σ(j) = k. We use decomposition σ = τ πkφ, where

τ = {σ(1), . . . , σ(j − r − 1)}, π = {σ(j − r), . . . , σ(j − 1)}, and φ = {σ(j + 1), . . . , σ(n)} .
Observe that either all elements of π are smaller than k, or there is some element of π greater
than k, and some element of τ smaller than k. Suppose the second case is true, with a an
element of τ smaller than k, and b an element of π larger than k. Then a, b, and k form a
132-pattern, a contradiction. Therefore, all elements of π must be smaller than k.

Suppose some element x of π is smaller than (k−r). Then some number y with k−r ≤ y < k
is an element of φ. Then we have a 132-pattern, formed by x, k, and y, which is a contradiction,
so π consists of {k − r, k − r + 1, . . . , k − 2, k − 1}. There are Cr possible choices for π, since π
must avoid the 132-pattern.
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Now consider the values of σ within τ . Observe that regardless of τ , the numbers s in φ
with s > k must be in decreasing order in φ, in order to avoid a 132-pattern that starts with k.
Therefore, the number of possible choices for τ is equal to the number of possible orderings of
the numbers between k and n that avoid 132, with k in the (j − r)-th position (since π only
consists of numbers smaller than k). There are exactly b(n− k+ 1, j− r) such possible choices.

Finally, consider values of σ within {k} ∪ φ. Here we need to order n − j + 1 numbers so
that they avoid the 132-pattern, with the first number being the (k − r)-th smallest. There
are exactly b(n− j + 1, k − r) ways to do this. Choosing π, τ , and φ completely determines σ.
Therefore, there are b(n−j+1, k−r) b(n−k+1, j−r)Cr possible choices for σ, as desired. �

5.2. Proof of theorems 3.4, 3.5, and 3.6. The proof again involves one technical lemma
and several cases corresponding to the statements of Theorems 3.4 and 3.6.

Let h : [0, 1]3 → R be defined so that

h(a, s, t) =
4ast(1− at+ a− ast)1−at+a−ast(1− a+ at− ast)1−at+a−ast

(1− at)(1−at)(a− ast)(a−ast)(1− a)(1−a)(at− ast)(at−ast)
.

Lemma 5.4. For all (a, s, t) ∈ [0, 1]3, we have h(a, s, t) ≤ 4. Moreover,

h(a, s, t) = 4 if and only if s =
at+ a− 1

at
.

Proof. Take the logarithmic derivative of h to obtain

d(lnh)

ds
= at ln 4 + (−at(1 + ln (1− at+ a− ast))) + (−at(1 + ln (1− a+ at− ast)))

− [−at(1 + ln (a− ast))− at(1 + ln (at− ast))]
= at ln [4(a− ast)(at− ast)]− at ln [(1− at+ a− ast)(1− a+ at− ast)].

Set this derivative equal to 0 to get

4(a− ast)(at− ast)− (1− at+ a− ast)(1− a+ at− ast) = 0,

or
(ast− (at+ a− 1))(3ast− (at+ a+ 1)) = 0,

giving

s =
at+ a− 1

at
or s =

at+ a+ 1

3at
.

Since
at+ a+ 1

3at
=

1

3
+

1

3t
+

1

3at
≥ 1

3
+

1

3
+

1

3
= 1,

this value of s is greater than 1, and is only equal to 1 if a = s = t = 1. Similarly, the ratio
(at+ a− 1)/at is between 0 and 1 if at+ a > 1. It is easy to see that the second derivative

d2(lnh)

(ds)2
< 0 at s =

at+ a− 1

at
,

which implies that this value of s does indeed maximize h(a, s, t). We can also verify that

h
(
a,
at+ a− 1

at
, t
)

=
4(at+a−1)(2− 2at)(2−2at)(2− 2a)(2−2a)

(1− at)(1−at)(1− at)(1−at)(1− a)(1−a)(1− a)(1−a)
= 4.

Observe that h(a, s, t) < 4 on the boundary of [0, 1]3 except for where a = s = t = 1, completing
the proof. �

Lemma 5.5. Let a, b ∈ [0, 1]2, c 6= 0 and 0 ≤ α < 1, such that a+b < 1. Then G(a, b, c, α) =∞.
Moreover, for n sufficiently large, we have

Qn(an− cnα, bn− cnα)

Cn
< εn,

where ε is independent of n, and 0 < ε < 1.
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Proof. By Lemma 5.3, we have

Qn(atn, an) =
∑
r

b(n− atn+ 1, an− r) b(n− an+ 1, atn− r)Cr

=
∑
r

[
n− atn+ 1− (an− r) + 1

n− atn+ 1 + (an− r)− 1

(
n− atn+ an− r
n− atn+ 1

)]
×
[
n− an+ 1− atn+ r + 1

n− an+ 1 + atn− r − 1

(
n− an+ 1 + atn− r − 1

n− an+ 1

)]
×
[

1

r + 1

(
2r

r

)]
,

where the summation is over values of r such that

max {0, j + k − n− 1} ≤ r ≤ min {j, k} − 1.

Let r = atsn, so s varies from 0 to
(
1− 1

atn

)
by increments of 1

atn . Applying Stirling’s formula,
we get

Qn(atn, an) ∼
∑
r

χ(n, atn, an, astn) h(a, s, t)n,

where

χ(n, atn, an, astn) =

√
(1− at+ a− ats)(1− a+ at− ats)

(1− at)(a− ats)(1− a)(at− ats)(ats)

× a2t(1− s)(1− st)(n(1− a− at+ ats) + 2)2

2(πn)3/2(n(1− at) + 1)(n(1− a) + 1)(1 + a− at− ats)(1− a+ at− ats)(atsn+ 1)
.

We now have

ndQn(an− cnα, bn− cnα)

Cn
∼
√
πnd+

3
2

an−cnα−1∑
r=0

νr(n),

where

νr(n) = χ(n, an− cnα, bn− cnα, r)h(b, r/an, a/b)n 4−n.

From Lemma 5.4, we have that h(b, r/an, a/b) < 4 for r 6= (a+ b− 1)n. For values of r where
h(b, r/an, a/b) < 4, νr(n) decreases exponentially as n → ∞ for fixed d. Therefore, for these
values of r, √

πnd+
3
2 νr(n)→ 0 as n→∞ for all d.

The only values of r which could potentially have limn→∞ νr(n) 6= 0, are when r ∼ (a+ b−1)n,
as n→∞. Observe that since a+ b−1 < 0, there are no such possible values of r. In this case,

lim
n→∞

ndQn(an− cnα, bn− cnα)

Cn
= 0 for all d > 0.

This implies G(a, b, c, α) =∞ when a+ b < 1. Also, for n large enough, we have

Qn(an− cnα, bn− cnα)

Cn
<

(
1 + h(b, 0, a/b)

2

)n
,

as desired. �

Lemma 5.6. Let a ∈ [0, 1], c > 0, and 1
2 < α < 1. Then G(a, 1 − a, c, α) = ∞. Moreover, for

n large enough, we have

Qn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε = ε(a, c, α) is independent of n, and 0 < ε < 1.
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Proof. Let k = cnα. Then

Qn(an− k, (1− a)n− k) = qn(an− k, (1− a)n− k, 0) Sa,n,k ,

where

Sa,n,k =

(
1 +

an−k−1∑
r=1

gr(n)

)
,

and

gr(n) =

(
qn(an− k, (1− a)n− k, r)
qn(an− k, (1− a)n− k, 0)

)
.

Observe that

qn(an− k, (1− a)n− k, 0) = Pn(an− k, (1− a)n− k).

Applying Stirling’s formula and using the Taylor expansion for ln(1 + x) gives

gr(n) ∼ (2k + r + 2)2Cr
(2k + 2)24r

exp

[
−(4kr + r2)

4a(1− a)n

]
.

Therefore,

ndQn(an− cnα, bn− cnα)

Cn
∼
(
ndPn(an− cnα, bn− cnα)

Cn

)

×

(
1 +

an−k−1∑
r=1

(2k + r + 2)2Cr
(2k + 2)24r

exp

[
−(4kr + r2)

4a(1− a)n

])
.

For α > 1
2 , by Theorem 3.1, we have

lim
n→∞

ndPn(an− cnα, (1− a)n− cnα)

Cn
= 0 for all d.

Therefore, G(a, 1−a, c, α) =∞ for α > 1
2 . Also, we have proven the second case of Theorem 3.5,

as desired. �

It remains to prove the cases of Theorem 3.4 where G(a, b, c, α) is finite, as well as proving
Theorem 3.6. We prove one case in detail and omit the calculations for the other cases, since
they are very similar to the first case. The calculations for all cases are available in the extended
version of this paper [MP].

Denote r = hnp, and let h and p be fixed as n→∞. For p > 1
2 , we have

ndgr(n)

Cn
→ 0 as n→∞, for all d,

since gr(n) decreases exponentially for fixed d.
For α < p < 1

2 , we have

gr ∼
r

1
2

4
√
πk2

∼

( √
h

4
√
π

)
n
p
2−2α.

For p ≤ α < 1
2 or p < α = 1

2 , we have

gr = Θ
(
r−

3
2

)
= Θ

(
n−

3p
2

)
.

Similarly, for p = 1
2 , we obtain

gr = Θ
(
n

1
4−2α

)
.
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Lemma 5.7. Let a ∈ [0, 1], c ∈ R and 0 ≤ α < 3
8 . Then

G(a, 1− a, c, α) =
3

4
and M(a, 1− a, c, α) = z(a),

where

z(a) =
Γ( 3

4 )

2
9
4π [a(1− a)]

3
4

as in Theorem 3.6.

Proof. As in Lemma 5.6, we write

Qn(an− cnα, (1− a)n− cnα) = Pn(an− cnα, (1− a)n− cnα)Sa,n,k ,

where

Sa,n,k = 1 +

an−k−1∑
r=0

gr(n).

Again, as n→∞, we have

gr(n) ∼ (2k + r + 2)2Cr
(2k + 2)24r

exp

[
−(4kr + r2)

4a(1− a)n

]
.

Fix s > 0, and observe that for any 0 ≤ α < 3
8 , we have

gnδ(n) = o(gs
√
n(n)), for every δ 6= 1

2
.

Therefore, as n→∞, t→ 0, and u→∞, we have

Sa,n,k ∼
u
√
n∑

r=t
√
n

gr(n).

Interpreting this sum as a Riemann sum, we have

Sa,n,k ∼
√
n

∫ u

t

gv
√
n(n)dv

∼
√
n

∫ u

t

(2k + v
√
n+ 2)2

(2k + 2)2
√
π(v
√
n)

3
2

(
exp

[
−(4kv

√
n+ (v

√
n)2)

4a(1− a)n

])
dv.

Therefore, we have

Sa,n,k ∼
√
n

∫ u

t

v
1
2n

1
4

4k2
√
π

(
exp

[
−v2

4a(1− a)

])
dv.

A direct calculation gives

Sa,n,k =
n

3
4−2α

c2
z(a)

(√
π [a(1− a)]

3
2

)
.

Now we see that

ndQn(an− cnα, (1− a)n− cnα)

Cn
∼ ndPn(an− cnα, (1− a)n− cnα)

Cn
Sa,n,k

∼ z(a)nd−
3
4 ,

by the proof of Theorem 3.1 and the analysis of Sa,n,k. Therefore, G(a, 1 − a, c, α) = 3
4 . For

α < 3
8 this also gives M(a, 1− a, c, α) = z(a), as desired. �

This case displays why we do not need to adjust our analysis to be on the anti-diagonal.
Since the behavior of Q depends on values of r on the order of

√
n, adding 1 to the second

coordinate is a lower-order term and does not affect G or M at all. In fact, the whole value of
cnα has no effect on G or M for this case.

We omit the proofs of the remaining cases of Theorem 3.6, since their proofs involve very
similar calculations to the calculations shown in the proof of Lemma 5.7,
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6. Fixed points in random permutations

6.1. Results. Let σ ∈ Sn. The number of fixed points of σ is defined as

fpn(σ) = #{i s.t. σ(i) = i, 1 ≤ i ≤ n}.

In [E1, §5.6], Elizalde uses bijections and generating functions to obtain results on the expected
number of fixed points of permutations in Sn(321),Sn(132), and Sn(123). In the following three
theorems, the first part is due to Elizalde, while the second parts are new results.

We use In,ε(a) = [(a− ε)n, (a+ ε)n] to denote the intervals of elements in {1, . . . , n}.

Theorem 6.1. Let ε > 0, and let σ ∈ Sn(321) be chosen uniformly at random. Then

E[fpn(σ)] = 1 for all n.

Moreover, for a ∈ (ε, 1− ε),

P (σ(i) = i for some i ∈ In,ε(a))→ 0 as n→∞.

Theorem 6.2. Let ε > 0, and let σ ∈ Sn(132) be chosen uniformly at random. Then

E[fpn(σ)] = 1, as n→∞.

Moreover, for a ∈ (0, 1/2− ε) ∪ (1/2 + ε, 1− ε),

P (σ(i) = i for some i ∈ In,ε(a))→ 0 as n→∞.

Theorem 6.3. Let ε > 0, and let σ ∈ Sn(123) be chosen uniformly at random. Then

E[fpn(σ)]→ 1

2
, as n→∞.

Moreover, for a ∈ (0, 1/2− ε) ∪ (1/2 + ε, 1),

P (σ(i) = i for some i ∈ In,ε(a))→ 0 as n→∞.

In fact, Elizalde obtains exact formulas for E[fpn(σ)] in the last case as well [E1, Prop. 5.3].
We use an asymptotic approach to give independent proofs of all three theorems.

The final case to consider, of fixed points in 231-avoiding permutations, is more involved.
In the language of Section 1, the expectation is equal to the sum of entries of Qn along anti-
diagonal ∆, parallel to the wall. It is larger than in the case of the canoe since the decay from
the wall towards ∆ is not as sharp as in the case of the canoe.

In [E1], Elizalde calculated the (algebraic) generating function for the expected number of
fixed points in Sn(231), but only concluded that E[fpn(σ)] > 1 for n ≥ 3. Our methods allow
us to calculate the asymptotic behavior of this expectation, but not the location of fixed points.

Theorem 6.4. Let σ ∈ Sn(231) be chosen uniformly at random. Then

E[fpn(σ)] ∼
2Γ( 1

4 )
√
π

n
1
4 , as n→∞.

Recall that if σ ∈ Sn is chosen uniformly at random, then E[fpn(σ)] = 1, so the number
of fixed points statistic does not distinguish between random permutation in Sn(132), Sn(321)
and random permutations in Sn. On the other hand, permutations in Sn(123) are less likely
to have fixed points, in part because they can have at most 2 of them, and permutations in
Sn(231) are much more likely to have fixed points than the typical permutation in Sn.
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6.2. Proof of Theorem 6.1. Let σ ∈ Sn(321) be chosen uniformly at random, and σ′ =
(σ(n), . . . , σ(1)). Since σ ∈ Sn(321), we have σ′ ∈ Sn(123). For τ ∈ Sn, define afp(τ) =
#{i s.t. τ(i) = n + 1 − i, 1 ≤ i ≤ n}. Let afpn : Sn(123) → Z such that afpn(τ) = afp(τ). Let
fpn : Sn(321)→ Z such that fpn(σ) = fp(σ). By definition, we have fpn ∼ afpn.

Clearly,

E[afpn] =
1

Cn

n∑
k=1

Pn(k, n+ 1− k).

Observe that

Pn(k, n+ 1− k) = Ck−1Cn−k

by Lemma 4.2. By the recurrence relation for the Catalan numbers, we have
n∑
k=1

Pn(k, n+ 1− k) = Cn.

Therefore,

E[afpn] = 1, so E[fpn] = 1.

For the proof of the second part, let ε > 0 and a ∈ (ε, 1− ε), and define δ = min {ε, a− ε}.
Let

P = P (σ(i) = i for some i ∈ [δn, (1− δ)n+ 1]) .

By the definition of P, we have

P(σ(i) = i for some i ∈ In,ε(a)) ≤ P for all n,

so it suffices to show that P→ 0 as n→∞. Observe that for all n, we have

P =
1

Cn

(1−δ)n+1∑
k=δn

Pn(k, n+ 1− k).

By Lemma 4.2, we have

Pn(δn, (1− δ)n+ 1)

Cn
=
Cδn−1C(1−δ)n

Cn
∼ 1

4
√
π(δ(1− δ)n)

3
2

, as n→∞.

Observe that for d ∈ (δ, 1 − δ) and for n sufficiently large, we have Pn(dn, (1 − d)n + 1) <
Pn(δn, (1− δ)n+ 1). Therefore, for n sufficiently large, we have

P =
1

Cn

(1−δ)n+1∑
k=δn

Pn(k, n+ 1− k) ≤ (1− 2δ)n+ 2

Cn
Pn(δn, (1− δ)n+ 1) ∼ 1− 2δ

4
√
π(δ(1− δ)) 3

2
√
n
.

Therefore, P→ 0 as n→∞, as desired.

6.3. Proof of theorems 6.2 and 6.3. We omit the proofs of the probabilities tending to
0 since they are very similar to the proof of Theorem 6.1, and instead prove the following
proposition.

Proposition 6.5. Let σ ∈ Sn(123) and τ ∈ Sn(132) be chosen uniformly at random. Then

E[fpn(τ)] = 1 for all n, and E[fpn(σ)]→ 1

2
, as n→∞.

Proof. Let σ ∈ Sn(123) and τ ∈ Sn(132) be chosen uniformly at random. By a bijection between
132-avoiding and 321-avoiding permutations in [EP] (see also [CK, Rob, RSZ]), fixed points
are equidistributed between Sn(132) and Sn(321). Therefore, by the proof of Theorem 6.1, we
have E[fpn(τ)] = 1.

Now we prove that

E[fpn(σ)]→ 1

2
, as n→∞.
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Observe that for all n, we have

E[fpn(σ)] =

n∑
k=1

Pn(k, k)

Cn
.

Let C1 and C2 be constants such that 0 < C1 < C2. By Theorems 3.1 and 3.3, we have

E[fpn(σ)] ∼
n/2−C1

√
n∑

k=n/2−C2
√
n

Pn(k, k)

Cn
+

n/2+C2
√
n∑

k=n/2+C1
√
n

Pn(k, k)

Cn
+ e(C1, C2, n),

where the error term e(C1, C2, n) → 0 as C1 → 0, C2 → ∞, and n → ∞. By the symmetry in
Proposition 2.2, and by Lemma 4.7, we have

E[fpn(σ)] ∼ 2

n/2−C1
√
n∑

k=n/2−C2
√
n

Pn(k, k)

Cn
+ e(C1, C2, n) ∼ 2

C2
√
n∑

k=C1
√
n

8k2n−
3
2

√
π

e−
4k2

n + e(C1, C2, n).

As C1 → 0 and C2 →∞, we have

E[fpn(σ)] ∼ 2
√
n

∫ ∞
0

8c2√
π
√
n
e−4c

2

dc =
16√
π

∫ ∞
0

c2e−4c
2

.

Since ∫ ∞
0

c2e−4c
2

dc =

√
π

32
,

we get E[fpn(σ)]→ 1/2, as desired. �

6.4. Proof of Theorem 6.4.

Proof. Let σ ∈ Sn(231) be chosen uniformly at random. Observe that τ = (σ(n), σ(n −
1), . . . , σ(1)) ∈ Sn(132) and is distributed uniformly at random. Therefore,

E[fpn(σ)] = E[afpn(τ)] =

n∑
k=1

Qn(k, n+ 1− k)

Cn
.

Let Ak = Qn(k, n−k+ 1)/Cn, so E[fpn(σ)] =
∑n
k=1Ak. By Lemma 5.3 and Stirling’s formula,

we have

E[fpn(σ)] ∼ 2

n/2∑
k=1

n
3
2

√
πk

3
2 (n− k)

3
2

(
1 +

k−1∑
r=1

√
r√
π

exp

[
− r2n

4k(n− k)

])
.

Let BK =
∑K−1
k=1 Ak, CK =

∑n
k=K Ak, and let K =

√
n. We show that BK = o(CK). For

k < K, we have(
k−1∑
r=1

√
r√
π

exp

[
− r2n

4k(n− k)

])
= O(k

3
4 ), since

C
√
k∑

r=1

√
r√
π
∼ 2Ck

3
4

3
√
π
.

Therefore, Ak = O(k−
3
4 ), and

BK = O(
√
n(
√
n)−

3
4 ) = O(n

1
8 ).

For k →∞ as n→∞, we have(
1 +

k−1∑
r=1

√
r√
π

exp

[
− r2n

4k(n− k)

])
∼ k

3
4

√
π

∫ ∞
0

√
x exp

[
− x2n

4k(n− k)

]
dx =

√
2 Γ

(
3
4

)
√
π

(
k(n− k)

n

) 3
4

.

Therefore, for these values of k, we have

Ak ∼
√

2 Γ
(
3
4

)
π

· n
3
4

k
3
4 (n− k)

3
4

.
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Consequently, we have

CK =

n∑
k=
√
n

Ak ∼
2
√

2 Γ
(
3
4

)
π

n
1
4

∫ 1
2

0

(x− x2)−
3
4 dx

∼
2
√

2 Γ
(
3
4

)
π

n
1
4

(
2
√

2π Γ
(
5
4

)
Γ
(
3
4

) )
=

2 Γ
(
1
4

)
√
π

n
1
4 .

As a result, we have

E[fpn(σ)] = BK + CK ∼
2 Γ

(
1
4

)
√
π

n
1
4 ,

as desired. �

7. Generalized rank and the longest increasing subsequence

7.1. Results. For λ > 0, define the rankλ of a permutation σ ∈ Sn as the largest integer r
such that σ(i) > λr for all 1 ≤ i ≤ r. Observe that for λ = 1, we have rankλ = rank as defined
in [EP] (see also [CK, Kit]).

Theorem 7.1. Let c1, λ > 0 and 0 < ε < 1
2 . Also, let σ ∈ Sn(123) and τ ∈ Sn(132) be chosen

uniformly at random. Let Rλ,n = rankλ(σ) and Sλ,n = rankλ(τ). Then E[R1,n] = E[S1,n] for
all n. Furthermore, there exists a constant c2 > 0 such that for n sufficiently large, we have

n

λ+ 1
− c1n

1
2+ε ≤ E[Rλ,n] ≤ n

λ+ 1
− c2
√
n.

The following corollary rephrases the result in a different form.

Corollary 7.2. Let λ and Rn be as in Theorem 7.1. Then we have

lim
n→∞

log
(

n
λ+1 −E[Rn]

)
log n

=
1

2
.

For λ = 1, the corollary is known and follows from the following theorem of Deutsch,
Hildebrand and Wilf. Define lis(σ), the length of the longest increasing subsequence in σ,
to be the largest integer k such that there exist indices i1 < i2 < . . . < ik which satisfy
σ(i1) < σ(i2) < . . . < σ(ik). Let lisn : Sn(321)→ Z such that lisn(σ) = lis(σ).

Theorem 7.3 ([DHW]). Let σ ∈ Sn(321). Define

Xn(σ) =
lisn(σ)− n

2√
n

.

Then we have

lim
n→∞

P(Xn(σ) ≤ θ) =
Γ( 3

2 , 4θ
2)

Γ( 3
2 )

,

where Γ(x, y) is the incomplete Gamma function

Γ(x, y) =

∫ y

0

ux−1e−udu.

Theorem 7.3 states that E[lisnσ]→ n
2 + c

√
n as n→∞, for some constant c > 0. By [EP],

we have S1,n ∼ (n− lisn). By Knuth-Richards’ bijection between Sn(123) and Sn(132), we have
S1,n ∼ R1,n, so E[R1,n] = E[n− lisn]. Therefore,

E[R1,n]→ n− (
n

2
+ c
√
n) =

n

2
− c
√
n, as n→∞.



SHAPE OF PATTERN-AVOIDING PERMUTATIONS 23

7.2. Another technical lemma. By Knuth-Richards’ bijection (also Simion-Schmidt’s bijec-
tion) between Sn(123) and Sn(132), the rank statistic is equidistributed in these two classes of
permutations, so E[R1,n] = E[S1,n] for all n (see [CK, Kit]). Therefore, it suffices to prove the
inequalities for Rλ,n.

We prove the lower bound first, followed by the upper bound. To prove the lower bound, we
first need a lemma regarding this sum.

Lemma 7.4. Let ε > 0, c1 > 0, λ > 0, n a positive integer, and i, j be integers such that

1 ≤ i ≤ r, 1 ≤ j ≤ λr, where r =

⌊
n

λ+ 1
− c1n

1
2+ε

⌋
.

Then the function Pn(i, j) is maximized for (i, j) = (r, λr), as n→∞.

Proof of Lemma 7.4. By reasoning similar to the proof of Lemma 4.5,

Pn(r, λr)

Cn
∼ (λ+ 1)5c21n

2ε− 1
2

4λ
3
2
√
π

exp

[
− (λ+ 1)4c21n

2ε

4λ

]
, as n→∞.

Let 1 ≤ i ≤ r and 1 ≤ j ≤ λr such that i + j ∼ sn for some 0 ≤ s < 1. Then by Lemma 4.4,
there exists some 0 < δ < 1 such that

Pn(i, j)

Cn
< δn for n sufficiently large.

For n sufficiently large, we have

δn <
(λ+ 1)5c21n

2ε− 1
2

4λ
3
2
√
π

exp

[
− (λ+ 1)4c21n

2ε

4λ

]
,

so Pn(i, j) < Pn(r, λr) as n→∞.
It remains to consider 1 ≤ i ≤ r, 1 ≤ j ≤ λr such that i + j ∼ n. Since r ∼ n/(λ + 1), we

need

i ∼ n

λ+ 1
and j ∼ λn

λ+ 1

as well. Let i = n/(λ+ 1)− c and j = λn/(λ+ 1)− d, where

c = an
1
2+ε+α and d = bn

1
2+ε+β ,

0 ≤ α, β < 1/2− ε, and if α = 0 (or β = 0), then a ≥ c1 (or b ≥ λc1, respectively).
We have

Pn(i, j)

Cn
∼ (λ+ 1)3(c+ d+ 2)2

4λ
3
2
√
πn

3
2

exp

[
− (λ+ 1)2(c+ d)2

4λn

]
,

by similar logic to that used in the proof of Lemma 4.5. Plugging in for c and d in the exponent
gives

Pn(i, j)

Cn
∼ (λ+ 1)3(c+ d+ 2)2

4λ
3
2
√
πn

3
2

exp

[
− (λ+ 1)2(anα + bnβ)2n2ε

4λ

]
.

Clearly if α > 0 or β > 0 we have Pn(i, j) < Pn(r, λr) as n → ∞. Similarly, if α = β = 0 but
a + b > (λ + 1)c1, then we again have Pn(i, j) < Pn(r, λr) as n → ∞. Therefore, the function
Pn(i, j) is indeed maximized at (i, j) = (r, λr), as desired. �
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7.3. Proof of the lower bound in Theorem 7.1. Let ε > 0, σ ∈ Sn(123), and let 0 < c1.
Consider

P(Rλ,n ≤ r), where r =
n

λ+ 1
− c1n

1
2+ε.

By the union bound,

P(Rλ,n ≤ r) ≤
r∑
i=1

λr∑
j=1

Pn(i, j)

Cn
.

By Lemma 7.4, we have

P(Rλ,n ≤ r) ≤ λr2
Pn(r, λr)

Cn
,

and by Lemma 4.5, there exists δ > 0 so that for n sufficiently large, we have

λr2
Pn(r, λr)

Cn
< λr2δn

2ε

→ 0.

Therefore,

P

(
Rλ,n ≤

n

λ+ 1
− c1n

1
2+ε

)
→ 0 as n→∞,

and

E[Rλ,n] ≥ n

λ+ 1
− c1n

1
2+ε ,

as desired.

7.4. Proof of the upper bound in Theorem 7.1. We can express E[Rλ,n] as

E[Rλ,n] =

n/(λ+1)∑
k=0

kP(Rλ,n = k) =
n

λ+ 1
−
n/(λ+1)∑
k′=0

k′P

(
Rλ,n =

n

λ+ 1
− k′

)
,

if we let k′ = n/(λ+ 1)− k. From here, for every 0 < a < b, we have

E[Rλ,n] ≤ n

λ+ 1
−

b
√
n∑

k′=a
√
n

k′P

(
Rλ,n =

n

λ+ 1
− k′

)

≤ n

λ+ 1
− a
√
n

b
√
n∑

k′=a
√
n

P

(
Rλ,n =

n

λ+ 1
− k′

)
.

Therefore, it suffices to show that for some choice of 0 < a < b, we have

P

(
n

λ+ 1
− b
√
n ≤ Rλ,n ≤

n

λ+ 1
+ a
√
n

)
= A > 0,

for some constant A = A(a, b, λ).
Let

F =

⌊
λ− 1

λ+ 1
n

⌋
.

Let σ ∈ Sn(123), and suppose we have

i, j <
n

λ+ 1
, σ(i) = i+ F, and σ(j) = j + F.

Then for any r > j, we have σ(r) < j + F , since otherwise a 123-pattern would exist with
(i, j, r). However, this is a contradiction, since σ : Z ∩ [j + 1, n] → Z ∩ [1, j + F − 1] must be
injective, but n− j > j + F − 1. Consequently, σ can have at most one value of i < n/(λ+ 1)
with σ(i) = i+ F .
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Let k′ = n/(λ+ 1)− d
√
n for some constant d. Then we have

P(Rλ,n ≤ k′) ≥
k′∑
i=1

Pn(i, i+ F )

Cn
,

since
∑k′

i=1 Pn(i, i + F ) counts the number of values i ≤ k′ such that σ(i) = i + F for some
σ ∈ Sn(123), and each σ is counted by at most one i. In the notation of Theorem 3.3, we obtain

P(Rλ,n ≤ k′) ≥
∫ ∞
d

η

(
1

λ+ 1
, t

)
κ

(
1

λ+ 1
, t

)
dt as n→∞.

For any d > 0, this integral is a positive constant which is maximized at d = a for d ∈ [a, b].
Therefore,

P

(
n

λ+ 1
− b
√
n ≤ Rλ,n ≤

n

λ+ 1
+ a
√
n

)
→
∫ b

a

η

(
1

λ+ 1
, t

)
κ

(
1

λ+ 1
, t

)
dt as n→∞.

Denote

A(a, b, λ) =

∫ b

a

η

(
1

λ+ 1
, t

)
κ

(
1

λ+ 1
, t

)
dt.

For any λ we can choose 0 < a(λ) < b(λ) so that A(a, b, λ) is bounded away from 0. Plugging
back into our upper bound gives

E[Rλ,n] ≤ n

λ+ 1
− a(λ)A(a, b, λ)

√
n,

completing the proof of the upper bound and of Theorem 7.1.

8. Final remarks and open problems

8.1. The history of asymptotic results on Catalan numbers goes back to Euler who noticed in
1758, that Cn+1/Cn → 4 as n→∞, see [Eul]. In the second half of the 20th century, the study
of various statistics on Catalan objects, became of interest first in Combinatorics and then in
Analysis of Algorithms. Notably, binary and plane trees proved to be especially fertile ground
for both analysis and applications, and the number of early results concentrate on these. We
refer to [A3, BPS, Dev, DFHNS, DG, FO, GW, GP, Ort, Rus, Tak] for an assortment of both
recent and classical results on the distributions of various statistics on Catalan objects, and
to [FS] for a compendium of information on asymptotic methods in combinatorics.

The approach of looking for a limiting object whose properties can be analyzed, is standard
in the context of probability theory. We refer to [A1, A2] for the case of limit shapes of
random trees (see also [Drm]), and to [Ver, VK] for the early results on limit shapes of random
partitions and random Young tableaux. Curiously, one of the oldest bijective approach to
pattern avoidance involves infinite “generating trees” [West].

8.2. The study of pattern avoiding permutations is very rich, and the results we obtain here
can be extended in a number of directions. First, most naturally, one can ask what happens
to patterns of size 4, especially to classes of equinumerous permutations not mapped into each
other by natural symmetries (see [B1]). Of course, multiple patterns with nice combinatorial
interpretations, and other generalizations are also of interest (see e.g. [B2, Kit]). Perhaps, only
a few of these will lead to interesting limit shapes; we plan to return to this problem in the
future.

Second, there are a number of combinatorial statistics on Sn(123) and Sn(123), which have
been studied in the literature, and which can be used to create a bias in the distribution. In
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other words, for every such statistic α : Sn(π) → Z one can study the limit shapes of the
weighted average of matrices∑

σ∈Sn(π)

qα(σ)M(σ) , where q ≥ 0 is fixed

(cf. Subsection 1.1). Let us single out statistic α which counts the number of times pattern ω
occurs in a permutation σ. When π is empty, that is when the summation above is over the
whole Sn, these averages interpolate between Sn for q = 1, and Sn(ω) for q → 0. We refer
to [B3, Hom] for closely related results (see also [MV1, MV2]).

Finally, there are natural extension of pattern avoidance to 0-1 matrices, see [KMV, Spi],
which, by the virtue of their construction, seem destined to be studied probabilistically. We
plan to make experiments with the simple patterns, to see if they have interesting limit shapes.

8.3. By using the explicit formulas for Pn(j, k) and Qn(j, k) shown in Lemmas 4.2 and 5.3, one
can prove the following result on expected behavior of the first and last element of permutations
σ ∈ Sn(123) and τ ∈ Sn(132) (see [Min, MP]).

Theorem 8.1. Let σ ∈ Sn(123) and τ ∈ Sn(132) be permutations chosen uniformly at random
from the corresponding sets. Then

(1) E[σ(1)] = E[σ−1(1)] = E[τ(1)] = E[τ−1(1)]→ n− 2 as n→∞,

(2) E[σ(n)] = E[σ−1(n)]→ 3, as n→∞,
and

(3) E[τ(n)] = E[τ−1(n)] =
(n+ 1)

2
for all n.

We remark that this theorem can also be proven by analyzing statistics which are preserved
by various bijections between Sn(123),Sn(132), and the sets of plane trees on n+1 vertices and
Dyck paths of length 2n.

8.4. There are at least nine different bijections between Sn(123) and Sn(132), not counting
symmetries which have been classified in the literature [CK] (see also [Kit, §4]). Heuristically,
this suggests that none of these is the most “natural” or “canonical”. From the point of view
of [P1], the reason is that such a natural bijection would map one limit shape into the other.
But this is unlikely, given that these limit shapes seem incompatible.

8.5. The integral which appears in the expression for x(a, c) in Theorem 3.5 is not easily
evaluated by elementary methods. After a substitution, it is equivalent to∫ ∞

0

z2

(z + c)
3
2

e−z
2

dz,

which can be then computed in terms of hypergeometric and Bessel functions3; we refer to [AS]
for definitions. Similarly, it would be nice to find an asymptotic formula for u(c) in Theorem 3.6.

8.6. Let us mention that the results in Section 3 imply few other observations which are not
immediately transparent from the figures. First, as we mentioned in Subsection 1.1, our results
imply that the curve Qn(k, k) is symmetric for (1+ε)n/2 < k < (1−ε)n, reaching the minimum
at k = 3n/4, for large n. Second, our results imply that the ratio

Qn(n/2−
√
n, n/2−

√
n)

Pn(n/2−
√
n, n/2−

√
n)
→ 2 as n→∞,

which is larger than the apparent ratios of peak heights visible in Figure 1. Along the main
diagonal, the location of the local maxima of Pn(k, k) and Qn(k, k) seem to roughly coincide

3For more discussion of this integral, see http://tinyurl.com/akpu5tk
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and have a constant ratio, as n→∞. Our results are not strong enough to imply this, as extra
multiplicative terms can appear. It would be interesting to see if this is indeed the case.

8.7. The generalized rank statistics rankλ we introduce in Section 7 seem to be new. Our
numerical experiments suggest that for all λ > 0 and for all n, rankλ is equidistributed between
Sn(132) and Sn(123). This is known for λ = 1 (see §7.2). We conjecture that this is indeed the
case and wonder if this follows from a known bijection. If true, this implies that the “wall” and
the left side of the “canoe” are located at the same place indeed, as suggested in the previous
subsection.

Note that rank(σ) ≤ n/2 for every σ ∈ Sn, since otherwise M(σ) is singular. Using the same
reasoning, we obtain rankλ(σ) ≤ n/(1 + λ) for λ ≤ 1. It would be interesting to see if there
is any connection of generalized ranks with the longest increasing subsequences, and if these
inequalities make sense from the point of view of the Erdős-Szekeres inequality [ES].

8.8. From Lemma 4.2, it is easy to see that Pn(j, k) for j + k ≤ n + 1, coincided with the
probability that a random Dyck path of length 2n passes through point (n− j + k− 1, n+ j −
k − 1). This translates the problem of computing the limit shape of the “canoe” to the shape
of Brownian excursion, which is extremely well understood (see [Pit] and references therein).
As mentioned in the introduction, this explains all qualitative phenomena in this case. For
example, the expected maximum distance from the anti-diagonal is known to be

√
πn(1 +o(1))

(see [Chu, DI]). Similarly, the exponential decay of Pn(k − t, n− k − t) for t = n1/2+ε, follows
from the setting, and seems to correspond to tail estimates for the expected maximal distance.
However, because of the emphasis on the maxima and occupation time of Brownian excursions,
it seems there are no known probabilistic analogues for results such as our Theorem 3.3 despite
a similarities of some formulas. For example, it is curious that for c 6= 0 and α = 1/2, the
expression

η(a, c)κ(a, c) =
c2

√
πa

3
2 (1− a)

3
2

exp

[
−c2

a(1− a)

]
is exactly the density function of a Maxwell-distributed random variable, which appears in the
contour process of the Brownian excursion (cf. [GP]).

8.9. Unfortunately, there seem to be no obvious way to interpret Lemma 5.3 probabilistically.
One can of course, use bijections to random binary trees, but the corresponding statistics are
not very natural. It would be interesting to find a good probabilistic model with the same limit
shape as Sn(132).4

8.10. Let us define the following variation on the χ-squared statistic on Sn :

χ2(σ) :=

n∑
i=1

r(i), where r(i) = min
{

(n+ 1− σ(i)− i)2, (2n− σ(i)− i)2
}
.

This statistic measures how far the permutation σ is from the reverse identity permutation
(in cyclic order). Curiously, in contrast with the number of fixed points, this statistic can
distinguish our sets of pattern avoiding permutations.

Theorem 8.2. For χ2 defined as above and n→∞, we have:

E[χ2(σ)] = Θ(n2), where σ ∈ Sn(123) uniform,

E[χ2(σ)] = Θ(n2.5), where σ ∈ Sn(132) uniform,

E[χ2(σ)] = Θ(n3), where σ ∈ Sn uniform.

The remaining four patterns of length 3 have also these asymptotics by the symmetries. The
proof of Theorem 8.2 will appear in a forthcoming thesis [Min] by the first author.

4Most recently, such model was found by Christopher Hoffman, Erik Slivken and Doug Rizzolo, using the

tunnel concept from [E1] (in preparation).
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8.11. After this paper was written and posted on the arXiv, we learned of two closely related
papers. In [ML], the authors set up a related random pattern avoiding permutation model
and make a number of Monte Carlo simulations and conjectures, including suggesting an em-
piric “canoe style” shape. Rather curiously, the authors prove the exponential decay of the
probability P

(
τ(1) > 0.71n

)
, for random τ ∈ Sn(4231).

In [AM], the authors prove similar “small scale” results for patterns of size 3, i.e. exponential
decay above anti-diagonal and polynomial decay below anti-diagonal for random σ ∈ Sn(132).
They also study a statistic similar but not equal to rank. The first author surveys these results
and explores the connections in [Min].
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9. Appendix: Numerical calculations

Figure 5. Values of P62(k, k). Figure 6. Values of P125(k, k).

Figure 7. Values of P250(k, k). Figure 8. Values of P500(k, k).

Figure 9. Surface of P250(j, k). Figure 10. Surface of Q250(j, k).

Figure 11. A closer look at
P250(j, k), 201 ≤ j + k ≤ 301.

Figure 12. A closer look at

Q250(j, k), 201 ≤ j + k ≤ 301.


