Enumeration of spanning trees of certain graphs

I.M. Pak and A.E. Postnikov

In this note we give an algorithm which enables us to encode and enumerate all the spanning trees of a multipartite graph (see below). This algorithm may turn out to be useful for the enumeration of spanning trees satisfying certain conditions.

The number of spanning trees of a given graph Γ without loops and without multiple edges will be denoted by $t(\Gamma)$. We shall consider the graphs $\Gamma = \Gamma(G; G_1, ..., G_k)$, where G is a graph with vertices $\overline{1}, \overline{2}, ..., \overline{k}$, and Γ is obtained from it by replacing the vertex \overline{i} by G_i , where, for vertices $a \in G_i, b \in G_i \ (i \neq j)$, the edge $(a, b) \in \Gamma$ if and only if $(\overline{i}, \overline{j}) \in G$.

Theorem.

(1)
$$t (\Gamma (G; G_1, \ldots, G_k)) = \prod_{l=1}^k \left(\sum_{i=1}^{n_l} f_l(i) \ d(l)^{i-1} \right) \sum_{\gamma} \prod_{r=1}^k n_r^{\rho_{\gamma}(\bar{r})-1},$$

where $n_i := |G_i|$, $d_i = \sum_{j=1}^k m_{ij} n_j$, (m_{ij}) is the adjacency matrix of the vertices of the graph G, $f_i(i)$ is

the number of spanning rooted forests of G_I with i connected components (a spanning rooted forest of a graph is a forest containing all the vertices of the graph in which a vertex called the root has been selected in each connected component); the second summation is taken over all spanning trees γ of G, and $\rho_{\gamma}(\bar{r})$ denotes the degree of the vertex \bar{r} in the graph γ .

We shall describe here a method of encoding the spanning trees of the graph Γ . We label the vertices of the graph G_1 by the numbers 1, 2, ..., n_1 , those of the graph G_2 by $n_1 + 1$, ..., $n_1 + n_2$, ...,

and those of the graph G_k by $N-n_k+1$, ..., N, so that $N = \sum_{i=1}^k n_i$. We shall encode each spanning

tree α of Γ by the set of sequences P_1, P_2, \dots, P_k, R , of vertices of Γ of length $n_1-1, n_2-1, \dots, n_k-1$, k-2 respectively.

We shall first describe a method of encoding trees due to Prüfer (see for example [1], [2]).

Let T be a tree with vertices labelled by distinct natural numbers. Consider the sequence of edges (b_i, a_i) of T constructed as follows: b_1 is the terminal vertex in T labelled by the smallest number $(a_1 \text{ is then uniquely determined});$ similarly b_2 is the terminal vertex with the smallest number in the tree $T \setminus (a_1, b_1)$, and so on. We have thus constructed a sequence of length |T| = 2. The sequence $a_1, a_2, ..., a_{|T|-2}$ will be called the *Prüfer code*.

We now orient a spanning tree α of Γ towards the root at the vertex labelled N. Let μ_i denote the directed rooted forest $\alpha \cap G_i$ (all its trees are directed towards their roots). From each μ_i we shall form a tree $\tilde{\mu}_i$. To do this we join each root of μ_i to a formal vertex \tilde{i} . Let $G_i + \{\tilde{i}\}$ be the graph containing the vertex \tilde{i} joined to all the vertices of G_i . Then $\tilde{\mu}_i$ is a spanning tree of $G + \{\tilde{i}\}$. We shall assume that the vertex \tilde{i} has a maximal label, and we find P_i , the Prüfer code of the tree $\tilde{\mu}_i$, which we write down in the sequence P_i .

Consider the tree α' obtained from α by contraction of the rooted forests μ_i to their roots; we find the Prüfer sequence of edges (b_i, a_i) for the tree α' . If $b_1 \in G_j$, then we replace the first occurrence of \tilde{j} in P_j by the vertex a'_1 such that the edge $(b_1, a'_1) \in \alpha$ (in the given orientation). We deal similarly with the edge (b_2, a_2) and so on. If at the r th step $b_r \in G_i$, but \tilde{i} does not occur in P_i , then we write a_r in the first free place in the sequence R. By repeating one of these operations we arrive at the final code: P1, P2, ..., Pk, R.

Lemma 1. A set of sequences $P_1, P_2, ..., P_k$, R of lengths $n_1-1, n_2-1, ..., n_k-1, k-2$ respectively is the code of some tree a if and only if the following conditions are satisfied: 1) for each i, $a \in P_i \Rightarrow a \in G_i \cup D_i$, where $D_i := \bigcup_{\substack{m_{ij} > 0}} G_j$;

2) let P'_i be the sequence formed from P_i by replacing every b in P_i that is not a vertex of G_i by \tilde{i} ; then for each i the sequence P'_i is the Prüfer code of a spanning tree of the graph $G_i + \{i\}$;

3) let the sequence R' be formed from R by replacing every $a \in G_i$ by \overline{i} . Then R' is the Prüfer code of some spanning tree of G.

Lemma 2. This encoding sets up a bijection between the spanning trees of the graph Γ and the sequences satisfying the conditions of Lemma 1.

Lemma 3. For each set of spanning rooted forests $\mu_1, \mu_2, ..., \mu_k$ of graphs $G_1, G_2, ..., G_k$ respectively and spanning tree β of the graph G, the number of spanning trees of the graph Γ corresponding to $\mu = (\mu_1, ..., \mu_n)$ and β (see Lemma 1, parts 2), 3)) is equal to

(2)
$$t(\Gamma, \mu, \beta) = \prod_{l=1}^{\kappa} (d(l)^{\delta_l - 1} n_l^{\rho_{\beta}(l) - 1}),$$

where δ_I is the number of connected components of the forest μ_I .

It is not difficult to find the method of decoding inverse to the encoding algorithm above, which, given a sequence satisfying the conditions of Lemma 1, constructs a spanning tree of the graph Γ . We have thus obtained a method of running through all spanning trees. Lemmas 1 and 2 follow from this, and the proofs of Lemma 3 and the Theorem now follow easily.

Corollary 1. Let
$$n_1 = n_2 = ... = n_k = 1$$
, $G = \Gamma = K_k$ the complete graph with k vertices. Then
(3) $t(\Gamma) = k^{k-2}$.

This is Cayley's well-known formula [3]. The idea of encoding trees to compute $t(\Gamma)$ is due to Prüfer [2]. In this case our code just consists of the sequence R coinciding with the Prüfer code.

Corollary 2. Let $n_1 = p$, $n_2 = q$, k = 2, $\Gamma = K_{p,q}$ the bipartite graph with p vertices in one part and q in the other. Then

(4)
$$t(\Gamma) = p^{q-1}q^{p-1}$$
.

Formula (4) was obtained by Scoins [4] and proved by means of the Rényi encoding [5].

Corollary 3. Let $G_i = O_{n_i}$ (where O_m is the empty graph with m vertices), $G = K_k$. Then $\Gamma = K_{n_1, n_2, \dots, n_k}$ and

(5)
$$t(\Gamma) = (N - n_1)^{n_1 - 1} (N - n_2)^{n_2 - 1} \dots (N - n_k)^{n_k - 1} N^{k-2}.$$

Formula (5) is a generalization of (3) and (4). A proof by Austin may be found in [6], and an encoding in a paper of Oláh [7]; in this case his code is the same as ours.

Corollary 4. Let
$$G_i = O_{n_i}$$
 $(i = 1, 2, ..., k)$; then $t(\Gamma) = \prod_{i=1}^k d(i)^{n_i-1} \sum_{\gamma} \prod_{j=1}^k n_j^{\rho_{\gamma}(j)-1}$.

The authors are grateful to A.V. Zelevinskii for the interest he has shown in this paper.

References

 F. Harary and E.M. Palmer, Graphical enumeration, Academic Press, New York-London 1973. MR 50 # 9682.

Translation: Perechislenie grafov, Mir, Moscow 1977.

- H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der Math. und Phys. (3) 27 (1918), 142-144.
- [3] A. Cayley, A theorem on trees, Quart. J. of Pure and Appl. Math. 23 (1889), 376-378.
- [4] H.I. Scoins, The number of trees with nodes of alternate parity, Proc. Cambridge Philos. Soc. 58 (1962), 12-16.
- [5] A. Rényi, New methods and results in combinatorial analysis. I (Hungarian), Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 16 (1966), 77-105. MR 34 # 4145.
- [6] T.L. Austin, The enumeration of point labelled chromatic graphs and trees, Canad. J. Math. 12 (1960), 535-545. MR 25 # 2976.
- [7] G. Oláh, A problem on the enumeration of certain trees (Russian), Studia Sci. Math. Hungar. 3 (1968), 71-80. MR 37 # 6209.

Moscow State University

Received by the Baord of Governors 16 January 1990