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1. INTRODUCTION

A ribbon polyomino is a polyomino which has at most one square (i, j)
in every diagonal i& j=c. A tetromino is a polyomino with four squares.
Up to translations there are exactly 8 different ribbon tetrominoes, which
we denote {1 , ..., {8 as in Fig. 1. Let T=[{1 , ..., {8].

Now let 1 be a simply connected region (a finite connected set of
squares), and let & be a tiling of 1 by ribbon tetrominoes. This means that
1 is covered without intersection by parallel translations of ribbon
tetrominoes. Denote by ai (&) the number of times tetromino {i occurs in
the tiling &. While numbers ai may be different for different tilings, this is
no longer true for certain linear combinations of them.

Theorem 1.1. For every simply connected region 1 and a tiling & of 1 we
have

a2 (&)+a3 (&)&a6 (&)&a7 (&)=C1 (1 )

and

a1 (&)+a2 (&)+a7 (&)+a8 (&)=C2 (1 ) (mod 2),

where C1, 2(1 ) are functions of 1 and do not depend on &.

The theorem was conjectured by the second author in [P], where it was
proved for all row (column) convex regions. A more general version of the
conjecture for all ribbon polyominoes remains open (see [P] for details).
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FIGURE 1

While the result for row (column) convex regions was obtained by use of
the Young tableau technique, here we rely on the technique developed by
Conway and Lagarias in [CL].

It remains open whether there exists a finite set of ``moves'' such that by
using these moves one can start with any tiling and get to any other tiling
of a given simply connected region. Such a set of moves was proposed in
[P] where this property was shown for Ferrer's shapes. In case of domino
tilings and lozenges the result is known for all simply connected regions
(see [ST, T]).

It is important to note that as shown in [P] the theorem cannot
be obtained by use of the coloring arguments (see [G, CL]). Thus our
result lays in line with other ``hard'' results for trominoes (see [CL]),
T-tetrominoes (see [W]), skew and square tetrominoes (see [Pr]), and
rectangles (see [K]).

2. PROOF OF THE THEOREM

Observe that all tiles { # T are simply connected. This fact is crucial in
the induction we present below. Our proof relies on the following lemma.

Lemma 2.1. Let 1 be a compact simply connected region. Assume that &
is a tiling of 1 by tiles {i # T. Then there exists a tile { in the tiling & such
that (1&{) is simply connected.

Versions of the lemma have appeared previously in [CL, Pr]. We give
here a new rigorous proof of the claim.

Proof. Denote by |&| the number of tiles in a tiling &. The result is tri-
vial for |&|=1, 2. Now suppose |&|>2. We say that two regions are

189NOTE



attached if the intersection of their boundaries contains an interval. Note
that two regions can be attached from either inside or outside.

Observe that if we remove any tile { # & which is attached to 1, then we
obtain a region which is a union of simply connected regions. Indeed, this
follows from 1c+{ being connected since 1 is simply connected, and { is
attached to 1c. (1 c is a complement of 1.)

Denote by l({) the number of tetrominoes in the smallest connected com-
ponent in 1&{, and by n({) the number of connected components of 1&{.
We will show that there exists a tile { # & such that either n({)=1 or
l({)=1. This implies the lemma. Indeed, in the first case tile { is the desired
tile while in the second case we can simply remove a unique tile {$ in either
of the smallest connected components and obtain the desired simply con-
nected region 1&{$.

Now, let { be a tile attached to 1. Let 11 be any smallest connected com-
ponent obtained after removing {. Observe that the boundary of 11 is made
up of pieces of the boundary of 1 and {. As { is simply connected, 11 has
a common boundary with 1, otherwise the boundary of 11 lies inside the
boundary of {. Consider any tile {$ in 11 which is attached to 1. Consider
removing tile {$ instead of {. In this case, the component of 1&{$ which
contains { also contains all components of 1&{ other than 11 simply
because they are attached to {. We call it a big component of 1&{$.
Observe that besides the big component all the other components must be
of size smaller than l({). If there are no components other than the big
component, then n({$)=1 and tile {$ is the one desired in the lemma. If
there exists such a component, we have l({$)<l({). Now proceed by induc-
tion until either n({)=1 or l({)=1.

This finishes proof of the lemma.

Let F2=(A, B) be a free group generated by A, B. A represents the
direction from left to right and B represents the up direction.

For any region 1 and a point x on the boundary �1 define a word |(1 )
obtained by reading �1 counterclockwise starting from x. For example for
{2 starting at the lowest left corner |({2)=AB2ABA&2B&3. Any region has
more than one representation depending on the starting point. However, it
is easy to see that all these presentations are conjugates of each other.

Consider a subgroup G=(A4, B4, (AB)2) of F2 , generated by the
elements as shown, and let H=N(G) be the smallest normal subgroup of
F2 which contains H. Finally, consider a quotient F2 �H and its Cayley
graph representation given in Fig 2. Here we have an edge correspond to
a generator A or B if it belongs to the corresponding square.

Lemma 2.2. If 1 is tileable by tiles T then |(1 ) is in H.

Proof. By Lemma 2.1, it is sufficient to check that for every tile { # T we
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FIGURE 2

have |({) # H. Indeed, if this is true, we can use induction to show that
|(1 ) # H.

On the other hand, for the Cayley graph above it is easy to check that
every tile in T is mapped into a closed path on the graph. This proves the
lemma.

Now, to each simply connected region 1 which is tileable by tiles T we
can assign a closed path |(1) on the Cayley graph of F2 �H, although this
path is not uniquely defined. By assigning weights to each cell in Fig. 2 and
counting the winding numbers of the path of �1 with respect to these
weights we will show that the identities in the theorem hold. (cf. [CL]).

Lemma 2.3. Assign values 0 to each cell that correspond to A4 and B4

and values 1 to each cell of ABAB. Then

a2 (&)+a3 (&)&a6 (&)&a7 (&)

is equal to &1
2 times the winding number of ABAB cells.

Proof. Use induction on the number of tiles covering 1. For n=1,
check that the paths associated to tiles {2 and {3 enclose two cells ABAB
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FIGURE 3

going clockwise. Similarly, paths for tiles {6 and {7 enclose two cells ABAB
going counterclockwise. Paths for tiles {1 and {5 enclose no ABAB cells.
Finally, paths for tiles {4 and {8 enclose 2 ABAB cells, one in the clockwise
direction and one the in counterclockwise direction. Thus for n=1 the
statement is true.

Assume the statement is true for n=k. Let 1 be covered by n=k+1
tiles. By Lemma 2.1, there exists a tile { such that 1&{ is a simply con-
nected region. Call it 11. Then by a suitable conjugation |(1)=|(11) b |({)
(here b is a group operation in F2 ). Now use the additivity property of
winding numbers and the induction assumption for the region 11 . This
proves the lemma.

Note that the first part of the Theorem 1.1 follows immediately from
Lemma 2.3. Similarly, the second part is implied by the following result.

Lemma 2.4. Assign the values to each cell as shown on the Fig. 3.
Namely, assign &1 to squares (i, j) with exactly one coordinate divisible
by 4. Assign 1 to the remaining squares. Then

a1 (&)+a2 (&)+a7 (&)+a8 (&) (mod 2)

is equal to 1
2 times the winding number of the region 1.
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Proof. The proof is similar to the proof of Lemma 2.3. It is easy to
check that the winding numbers are: 2 (mod 4) for {1 , 2 (mod 4) for {2 ,
0 (mod 4) for {3 , 0 (mod 4) for {4 , 0 (mod 4) for {5 , 0 (mod 4) for {6 ,
2 (mod 4) for {7 , 2 (mod 4) for {8 . The rest of the proof goes along the
lines of the proof of Lemma 2.3. We omit the details.
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