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ABSTRACT

The tree volume of a weighted graph G is the “sum” of the tree volumes of all spanning
trees of G, and the tree volume of a weighted tree T is the product of the edge weights
of T times the “product” of the letters of the Prüfer code of T where the vertices of G
are viewed as independent indeterminants that can be multiplied and commute. The
forest volume of G is the tree volume of the graph Gc obtained from G by adding
a new vertex c and connecting every vertex of G with c by an arc of weight 1. We
show that the forest volume is a natural generalization of the Laplacian polynomial of
graphs and that it also can be expressed as the characteristic polynomial of a certain
matrix similar to the Laplacian matrix. It turns out that the forest volumes of graphs
possesses many important properties of the Laplacian polynomials, for example, the
reciprocity theorem holds also for the forest volumes. We describe two constructions
of graph compositions, and show that the forest volume of a composition can be easily
found if the “structure” of the composition and the forest volumes of the graph–bricks
are known. As an illustration of the results on the forest volume of graph–compositions
we give a combinatorial interpretation and proof of Hurwitz’s identity.

Keywords: graph, tree, forest spanning tree, Laplacian matrix and polynomial,
tree and forest volume.
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1 Introduction

Enumerating and/or finding the number of spanning trees of a graph is one of the
classical problems in enumerative combinatorics and graph theory. The first result to
be mentioned in this respect is the classical matrix–tree theorem that in its general
form expresses, as the determinant of a certain graph matrix, not only the number
of spanning trees of a graph but also a certain polynomial that can be viewed as an
enumerator (a generating function) of all spanning trees of a graph [4, 22] (see also
[2, 6]). This theorem provides an efficient (polynomial time) algorithm for finding the
number of spanning trees of a graph.

Another aspect of the spanning tree enumeration is the problem of finding formulas
for the number of spanning trees of graphs of special type (as a function of certain
parameters of the graph). There are various natural classes of graphs whose descrip-
tions are (asymptotically) much smaller than O(n2) which is the size of descriptions of
arbitrary graphs. It is natural to expect that for some of these classes the number of
spanning trees of their members also have a short description (formula) as a function
of certain graph parameters. The first example of such classes is the class of complete
graphs.
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An elegant formula nn−2 for the number of spanning trees of a complete graph on
n vertices was found in the last century [3, 5, 28] (see also [2, 6]).

There are various approaches for finding such “good” classes of graphs and the
corresponding formulas for graphs of these classes.

One approach is to use directly the matrix–tree theorem. If a class of graphs
under consideration is “good enough”, one may use his skill and the properties of
the corresponding matrices of such special graphs and succeed in finding formulas for
the determinant of these matrices because of their special structure. For example,
the Sylvester–Borchardt–Cayley formula (usually called the Cayley formula) for the
complete graphs can easily be found that way.

One more approach was developed by Moon [23] in 1967. This approach views
every graph as obtained from the corresponding complete graph by deleting some edges,
and accordingly uses the inclusion–exclusion principle. The success of this approach
depends essentially on one’s skill in finding closed formulas for the corresponding series
sums, and formulas for some special graphs have been found that way.

Another approach was developed by A. Kelmans [9] in 1964. In this approach the
characteristic polynomial of the Laplacian matrix (so called Laplacian polynomial) of a
graph plays an essential role. It turns out that the Laplacian polynomial of graphs has
very interesting and useful combinatorial properties that can be used to approach the
above problem [9]. Many papers have since been devoted to the Laplacian polynomials
(see, for example, [6]). One important observation [9] is that the number of spanning
trees times the number of vertices of the graph is the product of all eigenvalues of the
Laplacian matrix excluding one zero eigenvalue. Another essential property is the so
called reciprocity theorem concerning the relation between the Laplacian polynomial
(and the Laplacian spectrum) of a graph and its complement [9, 11]. This theorem
gives, in particular, an expression for the number of spanning trees of a graph in
terms of the Laplacian polynomial of the complement graph. A remarkable property
of this expression is that it turns out to be nothing but (it can be read term by term
as) the basic inclusion–exclusion relation in the previous approach [12]. Therefore
this approach contains the previous approach but says much more about the basic
inclusion–exclusion relation.

As we mentioned above, the class of complete graphs was the first “good” class in
this respect. The next natural classes were the classes of complete bipartite graphs, and
more generally, complete multipartite graphs. The question arises as to what would
be a natural direction to develop these results.

The main idea suggested and explored in [9] was to find a certain composition C of
graph–components with the property that if we know the Laplacian polynomials (the
Laplacian spectrum) of the components and the “structure” of the composition C then
we can find the same information for the result of the composition.

The reciprocity theorem mentioned above turned out to be a natural basis to de-
velop such a composition. It suggested certain operations on graphs that induced the
corresponding operations on the Laplacian polynomials. Therefore the Laplacian poly-
nomial (the Laplacian spectrum) of any graph obtained from the graph–components by
a series of such operations can be easily found if we know the same information on the
graph–components and the series of operations (the composition “structure”). This
development resulted in an algorithm providing formulas of the Laplacian polynomial
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(and spectrum) for so called decomposable graphs [9, 11] (see also Sections 9 and 10
below). It turns out that many formulas for the number of spanning trees found so far
by either approach can be obtained by this algorithm. In particular, the correspond-
ing formulas for the complete mulipartite graphs can be easily found by applying the
above mentioned algorithm. A natural class of graphs that are uniquely defined by
their degree functions (so called threshold graphs) turns out to be a small subclass of
the class of decomposable graph. Therefore the above approach provides the formulas
for the number of spanning trees of threshold graphs in terms of their vertex degrees [7].

When studying the combinatorial structure of the set of spanning trees of a graph
it is natural to classify spanning trees by their degree functions. For that reason A.
Kelmans introduced in [17, 18] (see also [15]) a notion of the spanning tree volume (or
simply T –volume) of a graph which is a generating function of the graph spanning
trees that reflects the above mentioned classification.

In this paper we consider the so called forest volume (or simply F–volume) of a
graph which is a modification of the spanning tree volume (each of these two notions
uniquely defines the other, see Section 5). We show that the forest volume is a natural
generalization of the Laplacian polynomial of graphs and that it also can be expressed
as the characteristic polynomial of a certain matrix similar to the Laplacian matrix (see
Section 5). It turns out that many important properties of the Laplacian polynomial
can be generalized to the forest volume of a graph.

The main notions and notation are given in Section 2.
In Section 3 we recall the matrix–tree theorem.
In Section 4 we outline the main properties of the Laplacian polynomials of graphs.
The notions of the tree and forest volumes of graphs are defined and discussed in

Section 5.
Recursive properties of the forest volumes are given in Sections 6 and are used in

Sections 8 and 11.
In Section 7 we show that the forest volume is the characteristic polynomial of a

matrix similar to the Laplacian matrix of a graph. We also discuss the relation between
the forest volumes and the Laplacian polynomials.

In Section 8 we prove the reciprocity theorem for the forest volumes similar to that
for the Laplacian polynomials.

Two constructions of graph compositions (T–aggregates and G–compositions) are
described in Section 9.

In Section 10 we adopt the algorithm of finding the Laplacian polynomials of de-
composable graphs in [9, 11] to find the forest volumes of T–aggregates.

In Section 11 we consider the G–compositions of graphs and describe the relation
between the forest volumes of a G–composition and its graph–components. This rela-
tion shows that the forest volume of a G–composition is uniquely defined by the forest
volumes of its graph–components and the “structure” G of the composition.

In Section 12 we find formulas of the forest volumes for some special weighted
digraphs.

In Section 13 we use the results of Sections 11 and 12 to give a combinatorial
interpretation and proof of Hurwitz’s identity.
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In another paper we use the relation between the forest volumes of a G–composition
and its graph–components in Section 11 to obtain more general results on identities.

2 Main notions and notation

The notions that are used but not defined here can be found in [2].

An undirected graph or simply a graph G is a pair (V, E) where V is a finite non–

empty set of elements (called vertices), E ⊆
(

V

2

)

where
(

V

2

)

is the set of unordered pairs

of different elements of V (the elements of E are called edges of G). Let V (G) = V
and E(G) = E.

Let E(u, G) = {[u, v] : [u, v] ∈ E(G). The number d(u, G) = |E(u, G)| is called the
degree of the vertex v in G.

A directed graph or simply a digraph G is a pair (V, E) where V is a finite non–
empty set of elements (called vertices of G), E ⊆ (V 2) where (V 2) is the set of ordered
pairs of different elements of V . Let V (G) = V and E(G) = E.

Note that in the above definitions both
(

V

2

)

and (V 2) do not contain pairs of type

(v, v) which means that the above defined graphs do not have loops.
For a digraph G, let Ein(u, G) = {(v, u) : (v, u) ∈ E(G) and Eout(u, G) = {(u, v) :

(u, v) ∈ E(G)}.
The numbers din(u, G) = |Ein(u, G)|, dout(u, G) = |Eout(u, G)|, and d(u, G) =

din(u, G) + dout(u, G) are called, respectively, the indegree, outdegree, and degree of the
vertex v in G.

A source (a sink) of a digraph G is a vertex v having no incoming (respectively,
outgoing) edges in G. Let S(G) and R(G) denote the sets of sources and sinks of G,
respectively.

A digraph is acyclic if it has no directed cycles.

A graph S is a subgraph of G, written S ⊆ G if V (S) ⊆ V (G) and E(S) ⊆ E(G).
A subgraph S of G is spanning if V (S) = V (G).

Two spanning subgraphs S1 and S2 of G are different if E(S1) 6= E(S2).

For digraph the corresponding notions are defined similarly.

A forest is a graph with no cycles. A tree is a connected graph with no cycles (i.e.
a connected forest).

A spanning tree of G is a spanning subgraph of G which is a tree.
Let F(G) and T (G) denote the sets of different spanning forests and spanning trees

of G, respectively. Put t(G) = |T (G)|, i.e. t(G) is the number of different spanning
trees of G.
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A ditree (or an arborescence) A is a digraph with the properties:
(a1) A has no directed cycles, and
(a2) for every vertex v in V (A) except for one vertex, say r, there exists a unique arc
ev = (v, tv) starting at v.

The vertex r is called the root of A, and A is also called a ditree rooted at r. A
leaf of a ditree A is a vertex having no incoming edge in A (or equivalently, a vertex
of degree one in A). Clearly R(A) = {r} and S(A) is the set of leaves of A.

It is clear that a ditree is a special acyclic digraph. It is easy to see that a ditree
can be obtained from a tree T by specifying one of its vertices, say r, and assigning
orientations to its edges such that for every edge e of T if we walk in T along a path
starting at r and containing e then we traverse e in the direction opposite to its orien-
tation.

A diforest is a digraph such that every its component is a ditree.
For a diforest A and a vertex u ∈ V (A \R(A)) let f(u) = v if (u, v) ∈ E(A). Since

A is a diforest, clearly f : V (A \R(A)) → V (A) is a function. We call f the pointer of
a diforest A.

A spanning ditree (spanning diforest) of a digraph G is a spanning subdigraph of G
which is a ditree (respectively, a diforest).

Let Tr(G) denote the set of different spanning ditrees of G rooted at r ∈ V (G). Sim-
ilarly let F(G) denote the set of different spanning diforests of G. Put tr(G) = |Tr(G)|,
i.e. tr(G) is the number of different spanning ditrees of G rooted at r.

A weighted graph G is a pair (V, g) where V = V (G) is a finite set of elements called

vertices, and g :
(

V

2

)

→ Re is a function that prescribes to every undirected pair [u, v]

with u, v ∈ V and u 6= v, a weight g[u, v] which is an element of a commutative ring Re.
Let G̀ denote the graph such that V (G̀) = V (G) and [u, v] ∈ E(G) if g[u, v] 6= 0 ∈ Re

(i.e. E(G̀) is the support of function g). If e = [u, v] ∈ E(G) then put g(e) = g[u, v].
The graph G̀ is called the skeleton of the weighted graph G. Let

t(G) =
∑

{g(T ) : T ∈ T (G̀)} where g(T ) =
∏

{g(e) : e ∈ E(T )}.

A weighted digraph G = (V, g) and its graph–skeleton G̀ are defined similarly. The

only difference is that the set
(

V

2

)

of all 2–subsets of V is replaced by the set (V 2) of

all ordered pairs of distinct elements of V and G̀ is the corresponding digraph.
Note that in the definition of a weighted digraph the set (V 2) of all ordered pairs

of distinct elements of V can be replaced by the set V 2 of all ordered pairs with the
additional condition that g(v, v) = 0 for each v ∈ V .

For a weighted digraph G = (V, g) and e = (b, a), a, b ∈ V , let G \ e = (V, g|g(e)=0).
Let G/e denote the graph H = (Vh, h) such that Vh = V \ b and h(a, v) = g(a, v) +
g(b, v), h(v, a) = g(v, a) + g(v, b), and h(u, v) = g(u, v) if u, v ∈ Vh \ a. The operations
\ and / are called deletion and contraction an edge e in G.
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Let
tv(G) =

∑

{g(T ) : T ∈ Tv(G̀)}

where g(T ) =
∏

{g(e) : e ∈ E(T )}.

A weighted digraph is acyclic if its skeleton is an acyclic digraph.

In many situations weighted graph G can be viewed as the weighted digraph
~G = (G,~g) such that V (~G) = V (G) and ~g(u, v) = ~g(v, u) = g[u, v].

If in particular, Re is the set of integers, and g(e) ≥ 0 for every e ∈ E(G) then G
can be viewed as the graph obtained from G̀ by replacing every edge e of G̀ by g(e)
parallel (labeled) edges, and so t(G) is the number of spanning trees of the graph G.
A weighted digraph has a similar interpretation in this case.

A p–complete weighted digraph Kp is a pair (V, k) where V = V (Kp) is a finite set
of elements (vertices of Kp), and k(u, v) = p ∈ Re for every ordered pair of distinct
vertices (u, v) of V .

Let A = (Va, a) and B = (Vb, b) be two weighted digraphs such that Vb ⊆ Va.
Let B − A denote the weighted digraph G = (V, g) such that V = Va, and g(u, v) =
a(u, v)− b(u, v) if u, v ∈ Vb, and g(u, v) = a(u, v) otherwise. If, in particular, A = Kp

and Va = Vb then Kp − B is called the weighted digraph p–complement to B, written
Ḡp = Kp − B.

Let A \ B denote the weighted digraph G = (V, g) such that V = Va \ Vb and g is
the restriction of a on V 2.

A complete graph Kp is a very particular case of so called totally decomposable
graphs [9, 11] (see Section 9).

Let G1 = (V1, g1) and G2 = (V1, g1) be two disjoint weighted digraphs, and let
p ∈ Re. Let G1(p)G2 denote the weighted digraph G = (V, g) such that V = V1 ∪ V2,
and g(u, v) = gi(u, v) if u, v ∈ Vi, i = 1, 2, and g(u, v) = p if u ∈ V1 and v ∈ V2 or
v ∈ V1 and u ∈ V2. We denote G1(0)G2 by G1 + G2, and G1(1)G2 by G1 × G2.

For example, we can describe Kp
n using the above p–operation as follows:

Kp
n = v1(p)v2 . . . (p)vn = (P ){vi : i ∈ In

1 and, in particular,

K1
n = v1 × v2 . . . × vn =

∏

{vi : i ∈ In
1 }, and

K0
n = v1 + v2 . . . + vn =

∑

{vi : i ∈ In
1 }

where V (Kp
n) = {v1, . . . vn}. We can abbreviate:

Kp
n = v(p)n, K1

n = vn, and K0
n = v(0)n = nv.

Here and after Is
k = {k, . . . , s} where k and s are integers and k ≤ s.
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Let G∗ = (V ∗, w∗) be the weighted digraph obtained from G = (V, w) as follows:
V ∗ = V ∪ ∗, w∗(v, ∗) = 1 ∈ Re, w∗(∗, v) = 0 ∈ Re for v ∈ V , and w∗(u, v) = w(u, v)
for u, v ∈ V . We call G∗ the cone of G.

Let f : A → R be a function, and let S ⊆ A. Then let f |S = f |A\S and f ↓U
a be the

function obtained from f by putting f(u) = a ∈ R for every u ∈ U .

3 Laplacian matrix and the matrix–tree theorem

The first result to mention concerning enumeration of the spanning trees in a graph is
the classical matrix–tree theorem.

Let G = (V, g) be an (undirected) weighted graph with V = {v1, . . . , vn} and with

the function g :
(

V

2

)

→ Re. Let L(H) = {lij} where lij = −g[vi, vj] for i 6= j, and

lii = −
∑

{lij : j 6= i, j ∈ In
1 . The matrix L(G) is called the Laplacian matrix of the

weighted graph G. Let Lv(G) denote the matrix obtained from L(G) by deleting the
row and the column of L(G) corresponding to a vertex v of G.

Let t(G) =
∑

{g(T ) : T ∈ T (G̀)} where G(T ) =
∏

{g(e) : e ∈ E(T̀ )}.

The matrix–tree theorem states the following:

3.1 [4, 22] (see also [2, 6]) Let G be a weighted graph. Then t(G) = det(Lv(G)) for
every vertex v of G.

If, in particular, Re is the set of integers, and g(e) ≥ 0 for every e ∈ E(G) then
G can be viewed as the multigraph obtained from G̀ by replacing every edge e of G̀
by g(e) parallel edges, and so t(G) is the number of spanning trees of the multigraph G.

A more general form of the matrix–tree theorem concerns directed weighted graphs.
Let G = (V, g) be a weighted digraph. Put tv(G) =

∑

{g(T ) : T ∈ Tv(G̀)} where
G(T ) =

∏

{g(e) : e ∈ E(T )} and Tv(G) is the set of all different spanning ditrees of a
simple digraph G rooted at v. Let L(G) = {lij} where lij = −g(vi, vj) for i 6= j, and
lii = −

∑

{lij : j 6= i, j ∈ In
1 }. The matrix L(G) is called the Laplacian matrix of G.

Let as above Lv(G) denote the matrix obtained from L(G) by deleting the row and the
column of L(G) corresponding to a vertex v of G.

3.2 [4] (see also [2, 6]) Let G be a weighted digraph and v ∈ V (G). Then

tv(G) = det(Lx(G)).

This small formula opens a world of opportunities. We will use some of these
opportunities in this paper.
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4 Laplacian polynomial of a graph

The Laplacian polynomial of a graph was introduced in [9] (see also [6]). This poly-
nomial has very interesting combinatorial properties (e.g. [9, 10, 12, 13], see also [6]).
Because of these properties the Laplacian polynomial of a graph plays an important
role in problems concerning the enumeration of spanning trees of graphs as well as the
comparison of graphs by their number of spanning trees. We will see that many prop-
erties of the Laplacian polynomial can be generalized to the so called forest volumes
of graphs (see Section 5). In this section we will list some important properties of the
Laplacian polynomial of a graph.

Let G = (V, g) be an undirected weighted graph with the function g : E(G) → Re

where Re is a commutative ring. Let L(G) be the Laplacian matrix of G (see Section
3). The Laplacian polynomial L(λ, G) of a graph G is the characteristic polynomial of
the Laplacian matrix L(G), i.e. L(λ, G) = det(λIn − L(G)) where n = |V (G)|.

By using 3.1, one can prove that

4.1 [10, 12] Let G = (V, g) be a weighted graph with n vertices.

L(λ, G) =
∑

{(−1)iai(G)λn−i : i ∈ In−1
0 }

where
ai(G) =

∑

{γ(F )g(F ) : F ∈ F(G̀), |E(F )| = i},

g(F ) =
∏

{g(e) : e ∈ E(F )},

and γ(F ) is the product of the numbers of vertices of the components of a forest F .

In particular, a0(G) = 1, a1(G) = 2W (G) where W (G) =
∑

{w(e) : e ∈ E(G̀)},
and an−1(G) = nt(G).

Let Φ(λ, G) = λm−n+1L(λ, G) where n = |V (G)| and m = |E(G)|. Note that
Φ(λ, G) does not depend on the number of isolated vertices of G, i.e.
Φ(λ, G) = Φ(λ, G + v).

The Laplacian polynomial has the following recursive property:

4.2 [12] Let G \ e = (V, w|w(e)=0). Then

Φ′
λ(λ, G) =

∑

{Φ(λ, G \ e) : e ∈ E(G̀)}

or equivalently,

Φ(λ, G) = Φ(a, G) +
∫ z

a

∑

{Φ(λ, G \ e) : e ∈ E(G̀)}dλ.

This theorem was used in [12, 13] to find graphs having the maximum number of
spanning trees among graphs of the same number of vertices and the same number of
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edges.

Suppose that Re = C is the set of complex numbers. Let
S(G) = {λ0(G), . . . , λn−1(G)} be the list of eigenvalues of G.

From 3.1 and 4.1 we have:

4.3 [9] Let G = (V, g) be a weighted graph with n vertices where g :
(

V

2

)

→ C. Then

t(G) = n−1
∏

{λi(G) : i ∈ In−1
1 }.

The Laplacian polynomial has the following important property:

4.4 [9, 11] Let G = (V, g) be a weighted graph with n vertices where g :
(

V

2

)

→ C. Let

λ0(G) = 0. Then there is a bijection α : In−1
1 → In−1

1 such that

λi(G) + λα(i)(Ḡ
p) = np

for every i = In−1
1 .

Different proofs of this theorem were given in [9, 11]. One of them did not use
the symmetry of L(G) and allowed us to prove similar theorem for directed graphs.
We will adopt later this proof to obtain a generalization of this theorem for the forest
volumes of weighted digraphs. Another proof is very short and uses the symmetry of
L(G). Here we give this short proof.

Proof of 4.4. Since for every row of L(G) the sum of its entries is equal to 0, it follows
that the vector ~1 is an eigenvector of L(G) corresponding to the eigenvalue 0.

Since G is an undirected graph, the matrix L(G) is symmetric. For every eigenvector
x0 of a symmetric n × n–matrix A there exists a list (x0, x1, . . . , xn−1) of n mutually
orthogonal eigenvectors (i.e. xi · xj = 0 for i 6= j and i, j ∈ In−1

0 ). Let A = L(G) and
x0 = ~1. We can assume that the eigenvector x0 corresponds to λ0 = λ0(G) = 0 and
that xi corresponds to λi = λi(G). Then L(G)xi = λixi.

Since Ḡp is the graph p–complement to G, we have:
L(G) + L(Ḡp) = L(Kp) = npIn + pJn

where Jn is the n × n–matrix with every entry equal 1. Therefore
L(G)xi + L(Ḡp)xi = npInxi + pJnxi.

Since x0 · xi = 0, we have Jnxi = 0 for every i 6= 0 and i ∈ In−1
1 . Therefore we obtain

from the last equation: L(Ḡp)xi = (np−λi)xi. Thus xi is an eigenvector of L(Ḡp) with
the eigenvalue np−λi. Let λα(i) denote the the eigenvalue of L(Ḡp) corresponding to its
eigenvector xi. Then clearly α : In−1

1 → In−1
1 is a bijection and λi(G) + λα(i)(Ḡp) = np

for every i = In−1
1 . 2

Theorem 4.4 is equivalent to the following:

4.5 [9, 11] Let G be a weighted graph with n vertices. Then

L(λ, Ḡp) = (−1)n−1L(np − λ, G).
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We will call this theorem the Reciprocity Theorem for the Laplacian polynomials.

From 4.3 and 4.5 we have:

4.6 [9] Let G = (V, g) be a weighted graph, and let V (G) ⊆ V (Kp). Then

t(Kp −G) = (sp)s−n−2L(sp, G)

where n = |V (G)| and s = |V (Kp)|.

This relation was used in [12, 13, 16, 19, 20] to obtain various results on the com-
parison of graphs by their number of spanning trees (see also [14]).

By using 4.1 and 4.6, we can obtain the following interesting combinatorial inter-
pretation of formula 4.6:

4.7 [12] Equation 4.6 is an inclusion–exclusion formula for t(Kp − G).

Suppose now that G = (V, g) and g is a real valued non-negative function. Since
L(G) is symmetric, all eigenvalues of L(G) are real numbers. It is easy to show [10]
(see also [6]) that in this case L(G) is a positive semi–definite matrix, and so all its
eigenvalues are non-negative real numbers, say 0 ≤ λ0(G) ≤ λ1(G) ≤ . . . ≤ λn−1(G)
where λ0(G) = 0. Therefore we have from 4.4:

4.8 [9, 11] Let G = (V, g) be a weighted graph with n vertices where g :
(

V

2

)

→ R+.

Then λi(G) + λn−i(Ḡp) = np for every i = In−1
1 .

From 4.8 it follows that

4.9 [10] Let G = (V, g) be a weighted graph with n vertices where g :
(

V

2

)

→ [0, p].

Then 0 ≤ λi(G) ≤ np for every i = In−1
1 .

By using 4.5, one can easily obtain:

4.10 [9, 11] Let G1 and G2 be weighted graphs with n1 and n2 vertices, respectively.
Then

λL(λ, G1(p)G2) = (λ − n1p − n2p)L(λ − n2p, G1)L(λ − n1p, G2).

The last relation was used in [9, 11] to give an algorithm for finding the Laplacian
spectra and the Laplacian polynomials of so called decomposable weighted graphs. We
will describe the analogue of this algorithm in Section 10 for finding the tree and forest
volumes of decomposable weighted graphs.

Similar results were shown to be true for weighted digraphs [11].
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5 Tree and forest volumes of graphs

The notion of the spanning tree volume (or simply tree volume) of a graph was intro-
duced in [17, 18]. For a simple graph G the tree volume of G is actually the “sum” of
the “Prüfer code volumes” of all spanning trees of G where the labels of the vertices
of G are viewed as independent indeterminants that can be multiplied and commute,
and the “volume of a Prüfer code” is the product of its entries.

We recall that the digraph–skeleton G̀ of G is a simple digraph such that V (G̀) =
V (G) and (u, v) ∈ E(G̀) if and only if w(u, v) 6= 0 ∈ Re. If e = (u, v) ∈ E(G̀) we put
w(e) = w(u, v).

Given a simple digraph Q and a vertex r ∈ V (Q), let as above Tr(Q) denote the
set of spanning ditrees of Q rooted at r. Let T (Q) = ∪{Tr(Q) : r ∈ V (Q)}. As usual,
let tr(Q) = |Tr(Q)| and t(Q) = |T (Q)|.

A weighted ditree is a weighted digraph whose skeleton is a ditree.
For a weighted digraph G = (V, g), let Tr(G) denote the set of weighted ditrees

T = (Vt, t) such that r is the root of T and t(u, v) = g(u, v) for (u, v) ∈ Vt.

Let x : V (G) → Rv be a function where Rv is a commutative ring. We assume
as above that a commutative and distributive operation ab is defined for a ∈ Rv and
b ∈ Re.

Let Tr = (V, w) be a weighted ditree rooted at r. Put

X(Tr) =
∏

{x(v)d(v,T̀r)−1 : v ∈ V (T̀r)} and W (Tr) =
∏

{w(e) : e ∈ E(T̀r)}.

Clearly X(Tr) = xdin(r,T̀r)−1
r

∏

{x(v)din(v,T̀r) : v ∈ V (T̀r) \ r}.

Let Tr(Tr, x) = X(Tr)W (Tr). We call Tr(Tr, x) the volume of a weighted tree Tr.

The spanning tree volume (or T –volume) of an arbitrary weighted digraph G =
(V, w) with respect to a given vertex r ∈ V (G) is

Tr(G, x) =
∑

{Tr(T, x) : T ∈ Tr(G)}.

Clearly Tr(G, x) is a polynomial in variables x(v), v ∈ V (G).

The spanning tree volume (or simply T –volume) of a weighted digraph G = (V, w)
is

T (G, x) =
∑

{x(r)Tr(G, x) : r ∈ V (G)}. (5.1)

The spanning tree volume of a weighted digraph G can also be viewed as a generating
function of weighted spanning ditrees of G classified by their roots, degree functions,
and numbers of edges (if the edge weights are non-negative integers).

Let 1̄ be a function x : V (G) → Rv such that x(v) = 1 ∈ Rv for every v ∈ V (G).
Clearly tr(F ) = Tr(G, 1̄) and t(F ) = T (G, 1̄).
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Let G∗ = (V ∗, w∗) be the weighted digraph obtained from G = (V, w) as follows:
V ∗ = V ∪ ∗ (where ∗ 6∈ V ), w∗(v, ∗) = 1 ∈ Re, w∗(∗, v) = 0 ∈ Re for v ∈ V , and
w∗(u, v) = w(u, v) for u, v ∈ V . For a function x : V (G) → Rv let x∗ : V (G∗) → Rv

be a function such that x∗(v) = x(v) if v ∈ V (G) and x∗(∗) = z ∈ Rv, and so x is a
restriction of x∗ on V (G). We call G∗ the cone of G.

The forest volume or simply F–volume of G = (G, w) is

F(z, G, x) = T∗(G
∗, x∗). (5.2)

The forest volume of a weighted digraph G (with positive integer weights) can also be
viewed as a generating function of weighted spanning diforests of G classified by their
numbers of edges and degree functions.

We recall that a diforest is a digraph in which every component is a ditree. A
weighted diforest is a weighted digraph whose skeleton is a diforest.

For a weighted digraph G = (V, g), let F(G) denote the set of weighted diforests
F = (Vf , f) such Vf = V and f(u, v) = g(u, v) for every (u, v) ∈ E(F̀ ).

Let F be a weighted diforest. Let w(F ) =
∏

{w(e) : e ∈ E(F̀ )}. Put

F(F, x) = w(F )
∏

{x(v)din(v,F̀ ) : v ∈ V (F )}.

From the definition of F(z, G, x) it follows that

5.1 Let G = (V, w) be a weighted digraph, n = |V (G)| and let x : V (G) → Re be a
function. Then

F(z, G, x) =
∑

{zn−1−ifi(G, x) : i ∈ In−1
0 } (5.3)

where

fi(G, x) =
∑

{F(F, x) : F ∈ F(G), |E(F )| = i} (5.4)

and, in particular, f0(G, x) = 1, f1(G, x) =
∑

{w(u, v)x(v) : (u, v) ∈ E(G̀), and

fn−1(G, x) = F(0, G, x) = T (G, x). (5.5)

Clearly F(z, G, x) is a polynomial in z and x(v), v ∈ V (G). As a polynomial
F(z, G, x) has the following useful property.

5.2 F(z, G, x) is a homogeneous polynomial of degree |V (G)| − 1 in variables x(v) :
v ∈ V (G) and z.

Proof By the definition, the forest volume of G is F(z, G, x) = T∗(G∗, s). Let T be
a spanning tree of G̀∗. Then V (T ) = V (G∗) = V (G) ∪ {∗}, and clearly
∑

{d(v, T ) : v ∈ V (T )} = 2|V (G∗)|. Therefore

deg(T∗(T, x)) =
∑

{d(v, T )− 1 : v ∈ V (T )} = |V (G∗)| − 2 = |V (G)| − 1. 2
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6 Recursive properties of graph volumes

In this section we establish some recursive relations for the forest volumes of digraphs.
We will use some of them in Sections 8 and 11.

For a vertex u of G, let du(G, x) =
∑

{x(v)w(u, v) : v ∈ V (G) \ u}. It is natural to
call du(G, x) the outdegree of u in (G, x). We recall that for U ⊆ V , x|U = x|V \U and
x ↓U

0 is obtained from x by putting x(u) = 0 for every u ∈ U .

6.1 Let r ∈ V (G) and U ⊆ V (G). If r 6∈ U then

Tr(G, x ↓U
0 ) =

∏

{du(G \ (U \ u), x) : u ∈ U}Tr(G \ U, x|U).

If r ∈ U then

Tr(G, x ↓U
0 ) =

∑

{xvw(v, r)Tv(G \ U, x|U) : v ∈ V (G \ U)}
∏

{du(G \ (U \ u), x) : u ∈ U \ r}Tr(G \ U, x|U).

Proof By the definitions of Tr(G, x),

Tr(G, x ↓U
0 ) =

∑

{Tr(T, x) : T ∈ Tr(G̀), d(u, T ) = 1, u ∈ U}.

If u is not the root of T , then the equality d(u, T ) = 1 implies
din(u, T ) = 0. If u = r is the root of T , then the equality d(r, T ) = 1 implies
din(r, T ) = 1. Therefore if r 6∈ U , then

Tr(G, x ↓U
0 ) =

∏

{du(G \ (U \ u), x) : u ∈ U}
∑

{Tr(T, x|U) : T ∈ Tr(G̀ \ U)} =
∏

{du(G \ (U \ u), x) : u ∈ U}Tr(G \ U, x|U).

Now suppose that r ∈ U . Then

Tr(G, x ↓U
0 ) =

∑

{xvw(v, r)Tv(G \ U, x|U) : v ∈ V (G \ U)}
∏

{du(G \ (U \ u), x) : u ∈ U \ r}Tr(G \ U, x|U). 2
Note that the formula for fn−1(H, x) in 5.1 is a particular case of the last formula

in 6.1 when r = ∗, G = H∗ (and so G \ r = H), and w(v, r) = w(v, ∗) = 1 for every
v ∈ V (H).

From 6.1 we have in particular:

6.2 Let U ⊂ V (G). Then

F(z, G, x ↓U
0 ) =

∏

{(z + du(G \ U, x) : u ∈ U}F(z, G \ U, x|U).

Proof (uses 6.1). Let x∗(u, v) = x(u, v) if u, v ∈ V (G), x∗(v, ∗) = 1 ∈ Re, and
x∗(∗, v) = 0 ∈ Re for every v ∈ V (G). By the definitions of G∗ and a forest volume of
a digraph,

F(z, G, x ↓U
0 ) = T∗(G∗, x∗ ↓U

0 ). Clearly du(G∗, x) = z + du(G, x). Therefore by 6.1,
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F(z, G, x ↓U
0 ) =

∏

{(z + du(G \ U, x) : u ∈ U}F(z, G \ U, x|U). 2
Next statement is a generalization of the recursive relation 4.2 for the Laplacian

polynomial. Let |V (G)| = n and |E(G)| = m. It is sometimes more convenient to
consider the polynomial

Φ(z, G, x) = zm−n+1F(z, G, x)

instead of F(z, G, x) because Φ(z, G, x) does not depend on the number of isolated
vertices of G, i.e. Φ(z, G, x) = Φ(z, G + g, x).

6.3 Let G \ e = (V, w|w(e)=0). Then

Φ′
z(z, G, x) =

∑

{Φ(z, G \ e, x) : e ∈ E(G)}

or equivalently,

Φ(z, G, x) = Φ(a, G, x) +
∫ z

a

∑

{Φ(z, G \ e, x) : e ∈ E(G)}dz.

Proof (uses 5.1). Let |V (G)| = n and |E(G)| = m. From (5.4) in 5.1, we have:

(m − n + 1 + i) · fi(G, x) =
∑

{fi(G \ e, x) : e ∈ E(G)}. (6.1)

By (5.3) in 5.1,

Φ(z, G, x) = zm−n+1F(z, Gm
n , x) =

∑

{zm−n+1+ifi(G, x) : i ∈ In−1
1 }. (6.2)

By (6.1) and (6.2),

Φ′
z(z, G, x) =

∑

{(m − n + 1 + i)zm−n+ifi(G, x) : i ∈ In−1
1 } =

∑

{zm−n+i ∑

{fi(G \ e, x) : e ∈ E(G)} : i ∈ In−1
1 } =

∑ ∑

{{zm−1−n+1+ifi(G \ e, x) : i ∈ In−1
1 } : e ∈ E(G)} =

=
∑

{Φ(z, G \ e, x) : e ∈ E(G)}. 2
We recall the deletion and contraction operations for weighted digraph.
For a weighted digraph G = (V, g) and e = (b, a), a, b ∈ V , let G \ e = (V, g|g(e)=0.

Let G/e denote the graph H = (Vh, h) such that Vh = V \ b and h(u, v) = g(u, v)
if u, v ∈ Vh \ a, h(a, v) = g(a, v) + g(b, v), and h(v, a) = g(v, a) + g(v, b). Let
Gb = G \ {(b, v) : v ∈ Vh \ b.

It is easy to see that

6.4 Let G = V, g) be a digraph, r ∈ V , and e = (b, a) ∈ G̀. Then

tr(G) = trG \ e) + g(e)tr(Gb/e).
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7 Graph volumes and Laplacian polynomials

It turns out that there are natural relations between the tree and forest volumes of a
digraph and its Laplacian matrix and Laplacian polynomial.

The first important observation is that a theorem similar to the matrix–tree theorem
3.2 turns out to be true for the tree volume of a weighted digraph.

Let Is
k = {k, . . . s} for k ≤ s. Let V (G) = {v1, . . . , vn}. Let Lx(G) = {lij} where

lij = −x(vi)x(vj)w(vi, vj) if i 6= j, and lii = −
∑

{lij : j 6= i, j ∈ In
1 }.

Let Mx(G) = {mij} where i, j ∈ In
1 , mij = −x(vj)w(vi, vj) if i 6= j and mii =

−
∑

{mij : j 6= i, j ∈ In
1 }. In other words, Lx(G) is obtained from Mx(G) by mul-

tiplying every entry of the i-th row of Mx(G) by x(vi). If all x(vi)’s are 1 then
Lx(G) = Mx(G) = L(G). Thus Mx(G) is a generalization of the Laplacian matrix of G.
We call Mx(G) the x–Laplacian matrix of G. Clearly det(Lx(G)) = det(Mx(G)) = 0.
Let Lx

v(G) and Mx
v (G) denote the matrices obtained, respectively, from Lx(G) and

Mx(G) by deleting the row and the column of Lx(G) corresponding to a vertex v of G.

Let πx(G) = π(x) =
∏

{x(v) : v ∈ V (G)}.

From 3.2 we have:

7.1 πx(G)x(r)Tr(G, x) = det(Lx
r (G)) = πx(G)det(Mx

r (G)) where r ∈ V (G).

From 7.1 we have

7.2 zπx(G)F(z, G, x) = det(Lx
∗(G

∗)) = πx(G)det(Mx
∗ (G∗)).

It is easy to see that

7.3 det(Lx
∗(G

∗)) = πx(G)det(zIn + Mx(G)) where n = |V (G)|.

As in Section 4, Lx(λ, G) = det(λIn − Lx(G)) and Ľx(λ, G) = λ−1Lx(λ, G). Sim-
ilarly let Mx(λ, G) = det(λIn − Mx(G)) and M̌x(λ, G) = λ−1Mx(λ, G). We call
Mx(λ, G) an x–Laplacian polynomial of G.

Since det(Mx(G) = 0, clearly M̌x(λ, G) is a polynomial in λ. We recall that
x : V (G) → Rv and λ ∈ Rv where Rv is a commutative ring.

It turns out that there is a natural relation between the forest volume and x–
Laplacian polynomial of a graph.

From 7.2 and 7.3 we have:

7.4 F(z, G, x) = (−1)n−1M̌(−z, G, x) where n = |V (G)|.

If x(v) = 1 for every v ∈ V (G) then clearly M(λ, G, x) = L(λ, G).
Therefore from 7.4 we have in particular:

7.5 F(z, G, 1̄) = (−1)n−1Ľ(−z, G) where n = |V (G)|.
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The last statement shows that the forest volume is a natural generalization of the
Laplacian polynomial of a graph. We will see that many properties of the Laplacian
polynomials can be generalized to the forest volumes.

Suppose that Rv is the set of real or complex numbers. Then we can consider the
list S(G, x) = (λ0(G, x), . . . , λn−1(G, x)) of eigenvalues of Mx(G) where λi(G, x) ∈ C.
We call S(G, x) the x–Laplacian spectrum of G. Since det(Mx(G)) = 0, one of λi(G, x)
is 0. We will assume that λ0(G, x) = 0. Clearly Mx(λ, G) =

∏

{λ−λi(G, x) : i ∈ In−1
1 }.

Thus from 5.1 and 7.2 we have:

7.6 Suppose that Rv is the set of real or complex numbers. Then

T (G, x) =
∏

{λi(G, x) : i ∈ In−1
1 }

where n = |V (G)|.

8 Reciprocity theorem for graph volumes

In this section we obtain a generalization 11.2 of the Reciprocity Theorem 4.5 on the
Laplacian polynomials to the x–Laplacian polynomials (and therefore to the forest vol-
umes) of graphs. We use this generalization to establish a relation between the forest
volume of a graph and the tree volume of its complement (see 8.5). We also use this
theorem in Section 10 to give an algorithm for finding the forest volumes of so called
decomposable graphs.

We recall that Ḡp = Kp − G where V (Kp) = V (G).

8.1 Let n = |V (G)|. Then

M̌(λ, Ḡp, x) = (−1)n−1M̌(px(G) − λ, G, x).

Proof This proof is similar to the proof of theorem 4.5 in [9, 11] on the Laplacian
matrices of graphs.

Let Mx(G) = {mij} and Mx(Ḡp) = {m̄ij}. Let A = {aij} be the n × n–matrix
such that ai1 = 1 , aii = λ − mii, and aij = −mij for j 6= 1, i 6= j and i, j ∈ In

1 . The
matrix Ā = {āij} is defined similarly by Mx(Ḡp). Clearly
M̌(λ, G, X) = det(A) and M̌(λ, Ḡp, X) = det(Ā). Put x(vi) = xi. Since Ḡp is p–
complement of G we have: mii + m̄ii = px(G) − pxi and mij + m̄ij = −pxj for i 6= j.
Therefore aii + āii = 2λ − px(G) + pxj and aij + āij = pxj for j 6= 1 and i 6= j.

Let B̄ = {b̄ij} where b̄i1 = 1, and b̄ij = āij − pxj for i 6= 1 and i 6= j. In other
words, B is obtained from A by adding the first column times pxj to the j-th column.
Clearly det(Ā) = det(B̄). From the above equations we have:
b̄ii = 2λ − px(G) − aii = λ − px(G) + mii and b̄ij = −aij = mij for j 6= 1 and
i, j ∈ In

1 . Therefore det(B̄) = (−1)n−1M̌(px(G) − λ, G, x). Since det(Ā) = det(B̄) and
M̌(λ, Ḡp, x) = det(Ā), we have M̌(λ, Ḡp, x) = (−1)n−1M̌(px(G) − λ, G, x). 2
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Suppose that both Rv and Re are the sets of real or complex numbers. Then we
can consider the list
S(G, x) = (λ0(G, x), . . . , λn−1(G, x)) of eigenvalues of Mx(G) where λi(G, x) ∈ C.

Since Mx(λ, G) =
∏

{(λ − λi(G, x)) : i ∈ In−1
0 }, we have from 8.1:

8.2 Let both Rv and Re be the sets of real or complex numbers. Then there is a
bijection α : In−1

1 → In−1
1 such that

λi(G, x) + λα(i)(G, x) = px(G)

for every i ∈ In−1
1 .

From 8.1 we obtain the corresponding Reciprocity Theorem for the forest volumes:

8.3 Let n = |V (G)|. Then

F(z, Ḡp, x) = (−1)n−1F(−z − px(G), G, x).

Proof (uses 7.4 and 8.1). By 7.4,

F(z, G, x) = (−1)n−1M̌(−z, G, x). Therefore by 8.1, F(z, Ḡp, x) =

(−1)n−1M̌(−z, Ḡ, x) = M̌(z + px(G), G, x) = (−1)n−1F(−z − px(G), G, x). 2
This proof uses the relation between F(z, G, x) and the characteristic polynomial

of the matrix Mx(G) (see 7.4). By using 5.2 and 6.2, we can give an alternative proof
of the reciprocity theorem 8.3 for F(z, G, x). The idea of this proof is similar to that
A. Réney used in [27].

We need the following simple statement on polynomials.

8.4 Let p be a polynomial in |A| variables in x(a) : a ∈ A. Suppose that

(h1) the degree of p is less than |A|: deg(p) < |A|, and

(h2) p|x(a)=0 ≡ 0 for every a ∈ A.

Then p ≡ 0.

Proof Suppose on the contrary that p 6≡ 0. Then p has a monomial, say M , with a
non-zero coefficient. Since by (h1), deg(p) < |A|, there exists b ∈ A such that x(b) is
not an entry of M . Therefore p|x(b)=0 6≡ 0. This contradicts (h2). 2

Now we are ready to give an alternative

Proof of Theorem 8.3 (uses 5.2, 6.2, and 8.4).
Let as above x|V \u = x|u and x|x(u)=0 = x ↓u

0 . Let

∆p(z, G, x) = F(z, Ḡp, x)− (−1)n−1F(−z − px(G), G, x).

We will prove 8.3 by induction on |V (G)| that ∆p(z, G, x) ≡ 0. Suppose that |V (G)| =
1. There is only one graph K1 with one vertex, and F(z, K1, x) ≡ 1. Therefore
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∆p(z, K1, x) ≡ 0.

Now suppose that |V (G)| ≥ 2. Let u ∈ V (G). By 6.2,

∆p(z, G, x ↓u
0) = F(z, Ḡp, x ↓u

0) − (−1)n−1F(−z − px(G), G, x ↓u
0) =

(z +
∑

{x(v)(p− w(v, u)) : v ∈ V (G) \ u})F(z, Ḡp \ u, x|u)−

(−1)n−1(−z − px(G) +
∑

{x(v)w(v, u) : v ∈ V (G)})F(−z − px(G), G \ u, x|u) =

(z +
∑

{x(v)(p− w(v, u)) : v ∈ V (G) \ u})(F(z, Ḡp \ u, x|u)−

(−1)n−2F(−z − px(G), G \ u, x|u) =

(z +
∑

{x(v)(p− w(v, u)) : v ∈ V (G) \ u})∆p(z, G \ u, x|u).

By the induction hypothesis, ∆p(z, G \ u, x|u) ≡ 0. Therefore ∆p(z, G, x ↓u
0) ≡ 0 for

every u ∈ V (G). By 5.2, the degree of ∆p(z, G, x), as a polynomial in |V (G)| variables
x(v), v ∈ V (G), is less than |V (G)|. Therefore by 8.4, ∆p(z, G, x) ≡ 0. 2

We recall some notations. Let F = (V, f) be a weighted diforest. Put f(F ) =
∏

{f(e) : e ∈ E(F̀ )}, and

F(F, x) = f(F )
∏

{x(v)din(v,F̀ ) : v ∈ V (F )}.

If V (G) ⊆ V (Kp) then clearly Kp − G = G + dg
p

where d = |V (Kp| − |V (G)|.

8.5 Let G be a weighted digraph, Kp be a p–complete weighted digraph, |V (G)| = n,
|V (Kp)| = s, V (G) ⊆ V (Kp) (and so n ≤ s). Let x : V (Kp) → Rv. We will write
F(z, G, x) instead of F(z, G, x|G). Then

T ((Kp − G), x) = (−1)n−1(px(Kp))s−nF(−px(Kp), G, x) =

(−1)n−1
∑

{(−px(Kp))s−i−1fi(G, x) : i ∈ In−1
0 }

where
fi(G, x) =

∑

{F(F, x) : F ∈ F(G), |E(F̀ )| = i}.

Proof (uses 5.1, and 8.3, 10.4 below). We write + instead of the graph operation
(0).

T (Kp − G, x) = F(0, Kp − G, x) = F(0, G + (s − n)g
p
, x) =

(−1)s−1F(−px(Kp), G + (s − n)g, x) = (−1)s−1(−px(Kp))s−nF(−px(Kp), G, x)

(−1)n−1(px(Kp))s−nF(−px(Kp), G, x). 2
Since t(G) = T (G, 1̄), we have from 5.1 and 8.5 the following analogue of 4.6 for

weighted digraphs:

8.6 [11] Suppose that the hypothesis of 8.5 is satisfied. Then

t(Kp − G) = (−1)s(ps)s−nF(−ps, G, 1̄) = (ps)s−n−1L(ps, G).
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9 Graph constructions

In this section we describe some constructions that give new weighted digraphs from
a given set of weighted digraph–bricks. We will show in Sections 10 and 11 that these
constructions have the following important property: if we know the forest volumes for
the bricks and the “structure” of the construction then we can easily find the forest
volume of the result of this construction.

We recall that a graph Ḡp is p–complement to G if V (G) = V (Ḡp) and Ḡp = Kp−G.
Given two disjoint weighted digraphs G1 = (V1, w1) and G2 = (V1, w1), let G1(p)G2

denote the weighted digraph G = (V, w) such that V = V1 ∪ V2, and w(u, v) = wi(u, v)
if u, v ∈ Vi, i = 1, 2, and w(u, v) = p if u ∈ V1 and v ∈ V2 or v ∈ V1 and u ∈ V2.

Clearly

9.1 Let G1 = (V1, w1) and G2 = (V1, w1) be two disjoint weighted digraphs. Then

G1(p)G2
p

= Ḡ1
p
+ Ḡ2

p
.

A digraph G is called decomposable if G can be obtained from some digraphs by a
serious of operations (p1), . . . (pk). A digraph G is called totally decomposable if G can
be obtained from one-vertex graphs by a serious of operations (p1), . . . (pk). Here each
pi ∈ Re.

A decomposable graph G can be naturally described [9, 11] by its decomposition
description D(G) = (T, s,B) where

(a1) T = T (G) is a ditree,
(a2) s = s(G) : V (T ) → Re is a function that assigns the label s(u) to every vertex u
of T ,
(a3) B = B(G) = {Ga : a ∈ L(T )} where L(T ) is the set of leaves (or sinks) of T .

Every vertex t of T (G) will correspond to a graph Ω(t).

Given a weighted digraph G, we can define D(G) = (T, s,B) and the function Ω
recursively as follows. If G is not decomposable then let T be the trivial ditree con-
sisting of one vertex r, s(r) = 0, B = {Gr = G}, and Ω(r) = G. Suppose that G is
p–decomposable, i.e. G = G1(p) . . . (p)Gk where each Gi is not p–decomposable. We
assume that D(Gi) = (Ti, si,Bi) and Ω(ri) = Gi (where ri is the root of Ti) are already
defined for every i ∈ Ik

1 . Then

(c1) T is obtained from the disjoint rooted ditrees Ti, i ∈ Ik
1 , by adding a new vertex

r, the root of T , and by connecting each root ri with r by the arc (ri, r),
(c2) s(r) = p and s(v) = si(v) if v ∈ V (Ti), and,
(c3) B = ∪{Bi : i ∈ Ik

1}, and
(c4) Ω(r) = G.

From the above description it follows that
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9.2 Let D(G) = (T, s,B) be the decomposition description of a weighted digraph G
and L(T ) the set of leaves of T . Then B = {Ω(t) : t ∈ L(T )}, and s(u) 6= s(v) if
(u, v) ∈ E(T ), and s(u) = 0 if u ∈ L(T ).

Note that the function Ω can be easily found from the description D(G) = (T, s,B).

If G is totally decomposable then clearly every member of B(G) is the one vertex
graph. So a totally decomposable graph can be described by a pair D(G) = (T, s).

Two decomposition descriptions D(G1) = (T1, s1,B1) and D(G2) = (T2, s2,B2)
are isomorphic if there exists an isomorphism α : V (T1) → V (T2) such that s1(v) =
s2(α(v)), v ∈ V (T1), and Ga ∈ B1 is isomorphic to Gα(a) ∈ B2 for every a ∈ S(T1).

It is easy to see that

9.3 Two graphs are isomorphic if and only if their decomposition descriptions are
isomorphic.

An s–ditree M is a pair (T, s) where T is a ditree and s : V (T ) → Re is a function
such that s(u) = 0 if u ∈ S(T ), and s(u) 6= s(v) if (u, v) ∈ E(T ).

Given an s–ditree T̂ = (T, s), we say that G is the M–aggregate of B = {Ga : a ∈ A},
written G = T̂ (B) = T̂ [Ga : a ∈ A], if D(G) = (T, s,B). The s–ditree T̂ is called the
frame and the graphs Ga, a ∈ V (G), are called the bricks of the T̂–aggregate.

Now we will describe another important construction called G–composition of
weighted digraphs.

Let G = (A, g) and Ga = (Ba, ga), a ∈ A, be disjoint weighted digraphs where
g : A2 → Re and ga : B2

a → Re are functions such that g(a, a) = 0 and ga(b, b) = 0 for
a ∈ A and b ∈ B, and Re is a commutative ring. As usual V (G) = A and V (Ga) = Ba.
Let B = ∪{Ba : a ∈ A}. Let La = {(a, b) : b ∈ Ba} and L = ∪{La : a ∈ A, and so
L = A× B.

The weighted digraph Γ = (V, γ) is called the G–composition of {Ga : a ∈ V (G)},
written Γ = G{Ga : a ∈ V (G)}, if V = V (Γ) = L and for two vertices v1 = a1b1 and
v2 = a2b2 of Γ, γ(v1, v2) = g(a1, a2) if a1 6= a2, and γ(v1, v2) = ga(b1, b2) if a1 = a2 = a.

The graph G in Γ = G{Ga : a ∈ V (G)} is called the frame and the graphs Ga,
a ∈ V (G), are called the bricks of the G–composition.

A graph–extension (or G–extension) considered in [15, 18] is a particular case of a
G–composition G{Ga : a ∈ V (G)} where every brick Ga is a graph having no edges.

It is easy to see that

9.4 T̂ [Gi{Gi
a : a ∈ V (G)} : i ∈ Ik

1 ] = T̂ [Gi : i ∈ Ik
1 ]{Gi

a : a ∈ V (G)}.
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10 Tree and forest volumes of decomposable graphs

We recall the notion of the p–operation on digraphs. Let G1 = (V1, g1) and G2 = (V1, g1)
be two disjoint weighted digraphs. Let G1(p)G2 denote a weighted digraph G = (V, g)
such that V = V1 ∪ V2, and g(u, v) = gi(u, v) if u, v ∈ Vi, i = 1, 2, and g(u, v) = p if
u ∈ V1 and v ∈ V2 or v ∈ V1 and u ∈ V2.

It is easy to see that

10.1 Let G1 and G2 be two disjoint weighted digraphs. Then

M(λ, G1 + G2, x1 ∪ x2) = M(λ, G1, x1)M(λ, G2, x2), and so

M̌(λ, G1 + G2, x1 ∪ x2) = λM̌(λ, G1, x1)M̌(λ, G2, x2).

From 9.1 and 10.1 we have:

10.2 Let G1 and G2 be two disjoint weighted digraphs. Let x = x1 ∪ x2. Then

M̌(λ, G1(p)G2, x) = (λ − px(G1(p)G2))M̌(λ − px(G2), G1, x1)M̌(λ − px(G1), G2, x2).

Proof (uses 9.1 and 10.1). Let G = G1(p)G2, ni = v(Gi), and n = n1 + n2.

M̌(λ, G1(p)G2, x) = M̌(λ, Ḡ1
p
+ Ḡ2

pp
, x) = (−1)n−1M̌(−λ + px(G), Ḡ1

p
+ Ḡ2

p
, x) =

(−1)n−1(−λ + px(G))M̌(−λ + px(G), Ḡ1
p
, x1)M̌(−λ + px(G), Ḡ2

p
, x2) =

(−1)n−2(λ − px(G))(−1)n1−1(−1)n2−1

M̌(px(G1) − px(G) + λ, G1, x1)M̌(px(G2) − px(G) + λ, G2, x2) =

(λ − px(G))M̌(λ − px(G2), G1, x1)M̌(λ − px(G1), G2, x2). 2
From 7.4 and 10.1 we have:

10.3 Let G1 and G2 be two disjoint weighted digraphs. Then

F(z, G1 + G2, x1 ∪ x2) = zF(z, G1, x1)F(z, G2, x2).

From 9.1, 8.3, and 10.3 we have:

10.4 Let G1 = (V1, w1) and G2 = (V1, w1) be two disjoint weighted digraphs. Let
x = x1 ∪ x2. Then

F (z, G1(p)G2, x) = (z + px(G1(p)G2))F(z + px(G2), G1, x1)F(z + px(G1), G1, x2).

Proof (uses 9.1, 8.3, and 10.3).

F(z, G1(p)G2, x) = F(z, Ḡ1
p
(0)Ḡ2

pp
, x) = (−1)n−1F(−z − px(G), Ḡ1

p
+ Ḡ2

p
, x) =

(−1)n−1(−z − px(G))F(−z − px(G), Ḡ1
p
, x)F(−z − px(G), Ḡ2

p
, x) =

(−1)n−2(z + px(G))

(−1)n1−1F(z + px(G) − px(G1), Ḡ1
p
, x)(−1)n2−1F(z + px(G) − px(G2), Ḡ2

p
, x) =
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(z + px(G))F(z + px(G2), G1, x1)F(z + px(G1), G1, x2). 2
The above results allow us to give an algorithm for finding the forest volumes of

decomposable graphs analogous to that for the Laplacian polynomials [9, 11].
Let D(G) = (T, s,B) be the decomposition description of G (see Section 9).
The algorithm (described by formulas (10.1) and (10.2 below) finds the forest vol-

ume F(z, G, x) for a decomposable weighted digraph G if the forest volumes of the
graphs in B are known.

As we mentioned in Section 9, we can easily find the graph Ω(t) for every vertex t
of T . We need only x(Ω(t)) =

∑

{x(v) : v ∈ V (Ω(t))}. Let x[t] = x(Ω(t)).
For a subgraph H of G, we write F(z, H, x) instead of F(z, H, x|H). Let δ(t) denote

the indegree of a vertex t in T (i.e. the number of arcs in T of the form (y, t)). Put

z(t, x) = z(t) = x[r]s(r) +
∑

{x[a](s(a)− s(b)) : ((b, a) ∈ E(rPt)} (10.1)

where rPt is a (unique) path in T from the root r to t. Let as above L(T ) denote the
set of leafs of T and L∗(T ) the set of leafs l of T such that Ω(l) is not the one vertex
graph (and so the graph Ω(l) is not decomposable).

The following theorem is analogous to that for the Laplacian polynomials [11]:

10.5 Let D(G) = (T, s,B) be the decomposition description of G. Then

F(z, G, x) =
∏

{(z + z(t))δ(t)−1 : t ∈ V ′(T )}×
∏

{F(z + z(t), Ω(t), x) : t ∈ V ∗(T )}, (10.2)

and

T (G, x) =
∏

{(z(t))δ(t)−1 : t ∈ V (T ) \ L(T )} ×
∏

{F(z(t), Ω(t), x) : t ∈ L∗(T )}, (10.3)

and so −z(t, x) is a root of the polynomial PG,x(z) = F(z, G, x) for every
t ∈ V (T ) \ L(T ).

Proof (uses 5.1 and 10.4). We prove the theorem by induction on |V (T )|. If
|V (T )| = 1 then the statement is obvious. Let r be the root of T . By the definition
of the decomposition tree, T is obtained from the list of decomposition trees Ti of
digraphs Gi, i ∈ Ik

1 so that G = G1(p) . . . (p)Gk , p = s(r), and p 6= s(ri) for every
i ∈ Ik

1 where ri is the root of Ti. Clearly |V (Ti)| < |V (T )|. Therefore by the induction
hypothesis,

F(z, Gi, x) =
∏

{(z + zi(t))
δ(t)−1 : t ∈ V (Ti) \ L(Ti)}×

∏

{F(z + zi(t), Ω(t), x) : t ∈ L∗(Ti)} (10.4)

for
zi(t) = x(Gi)s(r) +

∑

{x[a])(s(a)− s(b)) : ((b, a) ∈ E(riPt)} and i ∈ Ik
1 .
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Let Xi = X \ Xi. By using 10.4, it is easy to prove by induction on k that

F(z, G, x) = (z + px(G))k−1
∏

{F(z + px(G \ Gi), Gi, x) : i ∈ Ik
1}. (10.5)

By (10.4),

F(z + px(G \ Gi), Gi, Xi) =
∏

{(z + px(G \ Gi) + zi(t))δ(t)−1 : t ∈ V (Ti) \ L(Ti)}×

∏

{F(z + pσ(Xi) + zi(t), Ω(t), Xi(t)) : t ∈ L∗(Ti)}. (10.6)

Since p = s(r), x(G) = x[r], and x(Gi) = x[ri], we have from (10.1):

px(G \ Gi)) + zi(t) = px(G) − px(Gi) + zi(t) =

x[r]s(r)− x[ri]s(r) + x[ri]s(ri) +
∑

{x[a])(s(a)− s(b)) : ((b, a) ∈ E(riPt)} =

x[r]s(r) +
∑

{x[a])(s(a)− s(b)) : ((b, a) ∈ E(rPt)}.

Now (10.2) follows from (10.5) and (10.6) because k = δ(r), and (10.3) follows from
5.1 and (10.2). 2

From 10.5 we have, in particular:

10.6 Let G be a totally decomposable weighted digraph, and let D(G) = (T, s) be the
decomposition description of G. Then

F(z, G, x) =
∏

{(z + z(t))δ(t)−1 : t ∈ V (T ) \ L(T )}

and
T (G, x) =

∏

{(z(t))δ(t)−1 : t ∈ V (T ) \ L(T )}.

In particular, {−z(t, x) : t ∈ V (T ) \ L(T )} is the set of roots of the polynomial
PG,x(z) = F(z, G, x) implying that every root of PG,x(z) is of the form
∑

{aibi : i ∈ Ik
1} where ai ∈ Re and bi ∈ Rv.

11 Tree and forest volumes of graph–compositions

In this section we show that the forest volume of a graph–composition is uniquely
defined by the forest volumes of its frame and its bricks by establishing a relation
between these volumes (see 11.2).

We recall some notions and notation. Let G = (A, g) and Ga = (Ba, ga), a ∈ A,
be disjoint weighted digraphs where g : A2 → Re and ga : B2

a → Re are functions such
that g(a, a) = 0 and ga(b, b) = 0 for a ∈ A and b ∈ B, and Re is a commutative ring. As
usual V (G) = A and V (Ga) = Ba. Let B = ∪{Ba : a ∈ A}. Let La = {(a, b) : b ∈ Ba}
and L = ∪{La : a ∈ A, and so L = A × B.

The weighted digraph Γ = (V, γ) is called the G–composition of {Ga : a ∈ V (G)},
written Γ = G{Ga : a ∈ V (G)}, if V = V (Γ) = L and for two vertices v1 = a1b1 and
v2 = a2b2 of Γ, γ(v1, v2) = g(a1, a2) if a1 6= a2, and γ(v1, v2) = ga(b1, b2) if a1 = a2 = a.
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The graph G in Γ = G{Ga : a ∈ V (G)} is called the frame and the graphs Ga,
a ∈ V (G) are called the bricks of the G–composition.

A G–composition G{Ga : a ∈ V (G)} is called a G–extension if E(G̀a) = ∅ for every
a ∈ V (G).

Let x : L → Rv where Rv is a commutative ring. Put

xa = x|La
,

x(Ga) =
∑

{x(a, b) : b ∈ Ba},

x(Γ) =
∑

{x(a, b) : a ∈ A, b ∈ B},

s : A → Rv such that s(a) = x(Ga) for a ∈ A, and

da(G, s) =
∑

{s(c)γ(a, c) : c ∈ A \ a} for a ∈ A.

Suppose first that G{Ga : a ∈ V (G)} is a G–extension. Then it turns our that
the T –volume of the composition Γ = G{Ga : a ∈ V (G)} is uniquely defined by the
T –volumes of G and Ga’s, a ∈ V (G)}, of the composition, and by G (more precisely,
by G, {|V (Ga)| : a ∈ V (G)} and the T –volumes of G). Namely

11.1 [18] Let na = |V (Ga)|. Then

T (G{Ga : a ∈ V (G)}, x) = T (G, s) ×
∏

{(da(G, s))na−1 : a ∈ V (G)}.

Now suppose that E(G̀a) 6= ∅ for some a ∈ V (G). Then the T –volume of the
composition Γ = G{Ga : a ∈ V (G)} is no longer defined by the T –volumes of G
and Ga, a ∈ V (G)}, and G. But it turns out that the F–volume of the composition
Γ = G{Ga : a ∈ V (G)} is again uniquely defined by the F–volumes of the frame G
and all the bricks Ga, a ∈ V (G), of the composition. This relation is described by the
following theorem.

11.2 F(z, G{Ga : a ∈ V (G)}, x) = F(z, G, s) ×
∏

{F(z + da(G, s)), Ga, xa) : a ∈
V (G)}.

Proof (uses 5.2, 6.2, and 8.4).
(p1) Let Γ = G{Ga : a ∈ V (G)}. Let

R(z, Γ, x) = F(z, G, s)
∏

{F(z + da(G, s), Ga, xa) : a ∈ A} and

∆(z, Γ, x) = F(z, G{Ga : a ∈ A}, x)−R(z, Γ, x).

Put Qp(z, Γ, x) = (F(z, G, s) ×
∏

{F(z + da(G, s), Ga, xa) : a ∈ A \ p}.

Then

R(z, Γ, x) = Qp(z, Γ, x)F(z + dp(G, s), Gp, xp). (11.1)

Clearly

Qp(z, Γ, x ↓u
0) = Qp(z, Γ, x|u). (11.2)
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We will prove by induction on |V (Γ)| that ∆(z, Γ, x) ≡ 0. For |V (Γ)| = 1 the statement
is trivially true. Let us consider Γ with |V (Γ)| ≥ 2. Let u = (p, q) ∈ V (Γ).

(p2) Suppose that |V (Gp)| ≥ 2. Then Γ \ u = G{Gp \ q, Ga : a ∈ A \ p}.

By 6.2,

F(z + dp(G, s), Gp, xp)|x(u)=0 = F(dp(G, s) + z), Gp, xp ↓
u
0) =

(z + dp(G, s) + dq(Gp, xp))F(z + dp(G, s), Gp \ q, xp|
u). (11.3)

Clearly

dp(G, s) + dq(Gp, xp) =

∑

{x(Gc)γ(p, c) : c ∈ A \ p} +
∑

{x(v)w(q, v) : v ∈ Bp \ q} = du(Γ, x). (11.4)

Therefore by (11.1), (11.2), (11.3), and (11.4),

R(z, Γ, ↓u
0) = (z + du(Γ, x))R(z, Γ \ u, x|u). (11.5)

By 6.2,

F(z, Γ, ↓u
0) = (z + du(Γ, x))F(z, Γ \ u, x|u). (11.6)

Thus by (11.5) and (11.6), ∆(z, Γ, ↓u
0) = F(z, Γ, ↓u

0) −R(z, Γ, ↓u
0) =

(z + du(Γ, x))(F(z, Γ \ u, x|u) −R(z, Γ \ u, x|u) =

(z + du(Γ, x))∆(z, Γ \ u, x|u).

(p3) Now suppose that |V (Gp)| = 1. Then F(z + dp(G, s), Gp, xp) ≡ 1 and

Γ \ u = G′{Ga : a ∈ V (G′)} where G′ = (G \ p).

Therefore by (11.1), R(z, Γ, x) = Qp(z, Γ, x) and by (11.2), (11.5) and (11.6),

∆(z, Γ, ↓u
0) = (z + du(Γ, x))∆(z, Γ \ u, x|u).

(p4) In both cases by the induction hypothesis,

∆(z, Γ \ u, x|u) ≡ 0. Therefore ∆(z, Γ, ↓u
0) = 0 for every u ∈ V (Γ). By 5.2,

deg(F(z, Γ, x)) = |V (Γ)| − 1, deg(F(z, G, s)) = |V (G)| − 1, and

deg(F(z + da(G, s)), Ga, xa)) = |V (Ga)| − 1. Therefore

deg(R(z, Γ, x)) = |V (G)| − 1 +
∑

{|V (Ga)| − 1 : a ∈ A} = |V (Γ)| − 1.

Hence deg(∆(z, Γ, x)) ≤ |V (Γ)| − 1. Then by 8.4, ∆(z, Γ, x) ≡ 0. 2
From 5.1 and 11.2 we have

11.3 T (G{Ga : a ∈ V (G)}, x) = T (G, s) ×
∏

{F(da(G, s), Ga, xa) : a ∈ V (G)}.
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Clearly 11.1 is a particular case of 11.3. Let us consider another natural particular
case of 11.3 when all Ga’s are weighted complete digraphs.

From 11.3 and 12.1 below we have:

11.4 Suppose that Ga is a pa–complete graph for a ∈ V (G). Then

F(z, G{Ga : a ∈ V (G)}, x) = T (G, s) ×
∏

{(z + da(G, s) + pas(a))na−1 : a ∈ V (G)}

where na = |V (Ga)|.

Theorem 11.4 is a particular case of Corollary 2.1 in [15].

It is easy to show that the result of the p–operation on a set of digraphs {Gs : s ∈ In
1 }

(see Section 9) is the graph–composition Kp{Gs : s ∈ In
1 } where n is the number of

vertices of Kp.
We know (see Section 9) that every decomposable weighted digraph can be obtained

from a set of digraph–bricks {Gi : i ∈ In
1 } by a series of p–operations (p1), . . . , (pk).

Therefore every decomposable weighted digraph can be obtained by a series of Kpi–
compositions, i ∈ Ik

1 , starting from a set of digraph–bricks {Gs : s ∈ In
1 }. As to the

totally decomposable weighted graphs, they can be obtained from one vertex graphs
by a series of Kpi–compositions, i ∈ Ik

1 .
Therefore theorem 10.5 can also be proved by using 11.2. The relation 9.4 be-

tween the aggregation and composition constructions shows that theorem 10.5 can be
obtained from its specification 10.6 by using 11.4.

12 Forest volumes of some special graphs

In this section we find the forest volumes of some special weighted digraphs. We use
these results in Section 13.

It follows from 10.6 and it is easy to see directly that

12.1 Let |V (Kp)| = n. Then F(z, Kp, x) = (z + px(Kp))n−1.

It is easy to find the forest volume of an acyclic digraph. Let, as above, S(D)
denote the set of sources of a directed graph D.

12.2 Let G = (V, g) be a weighted digraph. Let dout(u, G, x) =
∑

{x(v)g(u, v) : v ∈
V \ u} and V (G) = {v1, . . . , vn}. Suppose that the skeleton G̀ of G is acyclic (i.e. G
has no directed cycles) and that vi ∈ S(G̀ \ {v1, . . . vi−1}) for every i ∈ In

1 . Then

F(z, G, x) = z−1
∏

{z + dout(u, G, x) : u ∈ V (G)}.

Proof (uses 7.4). By 7.4,

zF(z, G, x) = (−1)nM(−z, G, x) = det(zIn + Mx(G)). (12.1)
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Let Mx(G) = {mij}. Since G̀ is an acyclic, and vi ∈ S(G̀ \ {v1, . . . vi−1}) for every
i ∈ In

1 , we have for i, j ∈ In
1 : mij = 0 for i > j and mii = dout(vi, G, x). Therefore the

required formula follows from (12.1). 2
From 12.2 we have in particular:

12.3 Let T = (V, t) be a weighted ditree, E = E(T̀ ), and for e = (u, v) ∈ E let
y(e) = t(u, v)x(v). Then

F(z, T, x) = z−1
∏

{z + y(e) : e ∈ E}.

Now we can find the forest volume of a weighted cycle:

12.4 Let C = (V, c) be a weighted dicycle with n vertices, E = E(C̀), and for e =
(u, v) ∈ E let y(e) = c(u, v)x(v). Then

F(z, C, x) =
∑

{zk(n − k)/(k + 1)
∑

{y(B) : B ⊆ E, |B| = k} : k ∈ In−1
O }.

Proof (uses 6.3 and 12.3). By 6.3,

Φ(z, C, x) =
∫

∑

{Φ(z, C \ e, x) : e ∈ E(G)}dz. (12.2)

Clearly Qa = C \ a, a ∈ E, is a path and

Φ(z, C, x) = zF(z, C, x) and Φ(z, Qe, x) = F(z, Qe, x).

Therefore we can use 12.3:

Φ(z, Qa, x) =
∏

{z + y(e) : e ∈ Ea)} =
∑

{zk ∑

{y(B) : B ⊆ Ea, |B| = k} : k ∈ In−1
O }

where Ea = E(Q̀a). Now
∑

{Φ(z, Qe, x) : e ∈ E} =
∑

{
∑

{zk ∑

{y(B) : B ⊆ Ea, |B| = k} : k ∈ In−1
O } : a ∈ E} =

{
∑

{zk(n − k)
∑

{y(B) : B ⊆ E, |B| = k} : k ∈ In−1
O }.

Therefore we have from (12.2):

Φ(z, C, x) = zF(z, C, x) =
∫

∑

{Φ(z, Qe, x) : e ∈ E}dz =

{
∑

{zk+1(n − k)/(k + 1)
∑

{y(B) : B ⊆ E, |B| = k} : k ∈ In−1
O }. 2

Since T (z, C) = F(z, C, 1̄) we have from 12.4:

12.5 Let C be a dicycle. Then

zT (z, C) = (z + 1)n − 1.

Proof By 12.4,

zT (z, C) = {
∑

{zk+1(n − k)/(k + 1)(n
k)} : k ∈ In−1

O } =
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{
∑

{zi(n
i )} : i ∈ In

1 } = (z + 1)n − 1. 2
Let P{Gi : i ∈ In

1 } = G1(p) . . . , (p)Gn} and G(p)n = P{Gi : i ∈ In
1 } if every Gi = G.

From 10.5 we have:

12.6 Let Γ = P{g(pi)ni : i ∈ Ik
1} and x : V (Γ) → Rv. Let X = x(Γ), Xi = x(g(pi)ni),

and X̄i = X − Xi. Then

F(z, Γ, x) = (z + pX)k−1
∏

{(z + pX̄i + piXi)
ni−1 : i ∈ Ik

1}.

13 Combinatorial interpretation of Hurwitz’s iden-

tity

In the 19-th century, N. Abel found the following surprising generalization of the bi-
nomial formula [1] (see also [21]):

13.1 (x + y)n =
∑

{(n
k)x(x − kz)k−1(y + kz)n−k : k ∈ {0, . . . , n}}.

Abel’s theorem has been further generalized by A. Hurwitz as follows [8] (see also
[21]):

13.2 Let V be a finite set, and x = {(v, x(v)) : v ∈ V }. For a set A, let x(A) =
∑

{x(a) : a ∈ A}. Then

(z+y)(z+y+x(V ))|V |−1 =
∑

{z(z+x(A))|A|−1)·y(y+x(B))|B|−1) : A ⊆ V, B = V \A}.

In this section we show that relation 11.2 allows to give a natural combinatorial
prove and interpretation of Hurwitz’s identity in terms of the forest volume of a digraph.

13.3 Let G is a simple digraph with exactly two vertices u, v and exactly one arc
(v, u). Let Γ = G{Gu, Gv} where Gu is a graph consisting of one vertex u and no
edges, and Gv is the complete digraph with the vertex set V (where u 6∈ V ), and so Γ
is a an extension of G. Let x = {(v, x(v)) : v ∈ V }, t = (u, t(u)), and t(u) = y. For
C ⊆ V , let x(C) =

∑

{x(v) : v ∈ C}.
Then

(z + y)(z + y + x(V ))|V |−1 = F(z, Γ, x ∪ t) =
∑

{z(z + x(A))|A|−1y(z + x(B))|B|−1 : A ⊆ V, B = V \ A}.

Proof (uses 11.2 and 12.1). Clearly V (Γ) = {u} ∪ V . We will show that both
sides of Hurwitz’s identity are equal to F(z, Γ, x ∪ t). In order to do this, we will find
F(z, Γ, x ∪ t) in two different ways.

(p1) We first find F(z, Γ, x ∪ t), by using the forest volume relation 11.2.

By 11.2,

F(z, Γ, x ∪ t) = F(z, G, s)F(z + du(G, s), u, t)F(z + dv(G, s), Gv, x) (13.1)
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where s = {(u, s(u), (v, s(v)), s(u) = t(u) = y, and s(v) = x(V ). Since G has two
vertices u, v and exactly one arc (v, u), we have: F(z, G, s) = z + t(u) and dv(G, s) =
t(u) = y. Therefore F(z + dv(G, s)), Gv, x) = F(z + y), Gv, x). Since Gu = {u} has no
arcs, clearly F(z + du(G, s)), u, t) = 1. Since Gv is a complete digraph, we have from
(13.1) and 12.1:

F(z, Γ, x ∪ t) = (z + y)F(z + y, Gv, x) = (z + y)(z + y + x(V ))|V |−1. (13.2)

(p2) Now let us find F(z, Γ, x∪ t) in another way. Note that Γ is a simple digraph.
Let x ∪ t = h and h∗ = h ∪ {(∗, z)}.

If H ⊆ G and f is a function defined on V (G), we write F(z, H, f) and T (H, f)
instead of F(z, H, f |V (H)) and T (H, f |V (H), respectively.

By the definition of the forest volume of a digraph,

F(z, Γ, h) = T∗(Γ
∗, h∗) =

∑

{T∗(T, h∗) : T ∈ T∗(Γ
∗)} (13.3)

where T∗(T, h∗) =
∏

{h(v)d(v,T )−1 : v ∈ V (T )} for T ∈ T∗(Γ∗).

Since Γ has no arc (u, v) with v ∈ V , every spanning ditree of Γ∗ contains edge
(u, ∗). For a spanning ditree T of Γ∗, let T ′ = T \ (u, ∗). Clearly T ′ is a spanning
diforest of Γ∗ consisting of exactly two components Tu and T∗ such that u ∈ Tu and
∗ ∈ T∗. Since in Γ there is no edge going out of u, clearly u is a root of Tu. Then

T∗(T, h∗) = zy(u)Tu(Tu, h)T∗(T∗, h
∗). (13.4)

By (13.3),

F(z, Γ, h) =
∑

{T∗(T, h∗) : T ∈ T∗(Γ
∗)} =

∑

{S(Γ, h∗, B) : B ⊆ V }, (13.5)

where S(Γ, h∗, B) =
∑

{T∗(T, h∗) : T ∈ T∗(Γ∗), V (Tu \ u) = B}.

By (13.4),

S(Γ, h∗, B) =
∑

{T∗(T
∗, h∗)

∏

{zy(u)Tu(Tu, h) : T ∈ T∗(Γ
∗), V (Tu \ u) = B} =

(
∑

{T∗(T, h∗) : T ∈ T∗(Γ∗ − (B ∪ u))})
∏

{zy(u)
∑

{Tu(T, h) : T ∈ Tu(Γ∗ − (A ∪ ∗)}.

Thus by (13.3),

S(Γ, h∗, B) = zF(z, Γ∗ − (B ∪ {u, ∗}), x) y F(y, Γ∗ − (A ∪ {u, ∗}), x), (13.6)

where A ∪ B = V .
Since Gv is a complete digraph, its induced subgraphs Γ∗ − (B ∪ {u, ∗}) and

Γ∗ − (A ∪ {u, ∗}) are also complete digraphs. Therefore from (13.5), (13.6), and 12.1

it follows that

F(z, Γ, x ∪ t) =
∑

{z(z + x(A))|A|−1y(z + x(B))|B|−1 : A ⊆ V, B = V \ A}. 2
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In another paper we describe a mechanism that provides an infinite variety of iden-
tities that are generlizations of Huwitz’s identity.

The results of this paper were presented at several conferences and seminars, in
particular, at the Moscow Discrete Mathematics Seminar, February, 1989, and at the
Eighth Quadrennial International Conference on Graph Theory, Combinatorics, Algo-
rithms, and Applications, Kalamazoo, Michigan, June, 1996.
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[27] A. Rényi, Új módszerek és eredmények a kombinatorikus analizisben I, Madyar
Tud. akad. Mat. Fiz. Oszt. Kózl. 16 (1966), 77–105.
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