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We establish a connection between the expansion coefficient of the product replacement
graph Γk(G) and the minimal expansion coefficient of a Cayley graph of G with k gen-
erators. In particular, we show that the product replacement graphs Γk

(
PSL(2,p)

)
form

an expander family, under assumption that all Cayley graphs of PSL(2,p), with at most
k generators are expanders. This gives a new explanation of the outstanding performance
of the product replacement algorithm and supports the speculation that all product re-
placement graphs are expanders [42,52].

Introduction

Expanders are highly connected sparse graphs of great interest in computer
science, in areas ranging from parallel computation to complexity theory
and cryptography; recently they were also used as a key ingredient in con-
nection with the Baum–Connes conjecture [28] and in computational group
theory [42]. The explicit constructions of expander graphs (by Margulis [46,
47] and Lubotzky, Phillips, and Sarnak [43]) use deep tools (Kazhdan’s prop-
erty (T), Selberg’s Theorem, proved Ramanujan conjectures) to construct
families of Cayley graphs of finite groups. The fundamental problem, raised
by Lubotzky and Weiss [44], is whether being an expander family is a prop-
erty of the groups alone, independent of the choice of generators (Indepen-
dence Problem).

The product replacement algorithm is a commonly used heuristic to gen-
erate random group elements in a finite group. Let G be a finite group gen-
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erated by at most d elements. The product replacement graph Γk(G) is de-
fined to be a graph, with vertices corresponding to generating k-tuples in G,
and edges corresponding to Nielsen transformations. While Γk(G) is closely
related to Cayley graphs of G, these graphs can be defined as the Schreier
graphs of a special group automorphisms of a free group Aut+(Fk). Most re-
cently, graphs Γk(G) became a subject of an intense investigation, prompted
by the study of a commonly used ‘practical’ algorithm for generating random
elements in finite groups, designed Leedham-Green and Soicher [38]. This al-
gorithm, based on the random walk on product replacement graphs, showed
a remarkable performance, as reported in [12]. It was suggested in [42], and,
in fact, proved in several special cases, that the product replacement graphs
Γk(G) are expanders, for a fixed k, when |G|→∞.

The main result of this paper is a theorem, establishing the connection
between the expansion coefficient of the product replacement graph Γk(G)
and the minimal expansion coefficient of a Cayley graph of G with k genera-
tors. In particular, we show that if one assumes that all Cayley graphs with
at most four generators in PSL(2,p) have a universal lower bound on expan-
sion, then the product replacement graphs Γk(PSL(2,p)) form an expander
family, when k≥8 is fixed, and p→∞.

Let Γ be a k-regular (oriented) graph with an adjacency matrixA. For the
rest of the paper we assume that Γ is symmetric, i.e. that A=AT . Consider
a nearest neighbor random walk W=W(Γ ), with transition matrix P=A/k.
Denote by 1=λ0>λ1≥λ2≥ . . . the eigenvalues of P, and let β(Γ )=1−λ1 be
the eigenvalue gap of the graph Γ . We say that a sequence of k-regular graphs
{Γn} is an expander family, if for some ε>0, we have β(Γn)>ε, for all n≥1.
Among many properties of expanders are the bounds on the isoperimetric
constant (see below), diameter of the graph diam(Γn)≤C1 log |Γn|, and the
mixing time of the random walk mixW(Γn)≤C2 log |Γn|, for some universal
constants C1,C2>0.

Let G be a finite group, and let S be a generating set with k elements. We
will always assume that S is symmetric: S=S−1. Denote by C=C(G,S) the
corresponding Cayley graph on G. Consider a nearest neighbor random walk
W(G,S) =W(C). Denote by β(G,S) = β

(
C
)

the eigenvalue gap of C(G,S).
As in case of general graphs, we say that a family of Cayley graphs {Cn =
C(Gn,Sn)} is an expander, if there exist ε>0, such that β(Cn)>ε for all n.

For a fixed integerm, we say that a sequence of groups {Gn} has universal
expansion with m generators, if there exist ε>0, such that for every n and
every 〈S〉 = Gn, |S| ≤ m, we have β

(
C(Gn,Sn)

)
> ε. The positive answer

to the Independence Problem for PSL(2,p) is the main assumption in this
paper:
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1) Does the sequence of groups {PSL(2,p), p− prime} have universal
expansion with m=4 generators?1

An affirmative answer to problem 1 is supported by numerical experi-
ments [36,37] and some recent results [58,24]; see comments in section 6.

The product replacement graph Γk(G) introduced in [12] in connection
with computing in finite groups, is defined as follows. The vertices of Γk(G)
consist of all k-tuples of generators (g1, . . . ,gk) of the group G. For every
(i,j), 1≤ i, j ≤ k, i = j there is an edge corresponding to transformations
L±

i,j and R±
i,j:

R±
i,j : (g1, . . . , gi, . . . , gk) → (g1, . . . , gi · g±1

j , . . . , gk),

L±
i,j : (g1, . . . , gi, . . . , gk) → (g1, . . . , g±1

j · gi, . . . , gk).

The graphs Γk(G) are regular, of degree D=4k(k−1), possibly with loops
and multiple edges. Let {Gn} be a sequence of finite groups, generated by
at most d elements, and let k≥d be fixed. As before, we say that a sequence
{Γk(Gn)} is an expander family, if for some ε>0 we have β

(
Γk(Gn)

)
>ε for

all n. The main question of our study is the following open problem:
2) Does the sequence of graphs

{
Γk

(
PSL(2,p)

)
, p−prime

}
form an ex-

pander family, for any fixed k≥3?
We prove that a positive answer to question 1) implies a positive answer

to question 2), for all k≥8. In fact, we prove a general result, for every finite
group G. We show that, under certain conditions, the Cheeger constant of
Γk(G) is bounded from below by the minimal Cheeger constant of the Cay-
ley graph C(G,S), with |S|≤k. This idea is similar in spirit to the paper [21],
where the eigenvalue gap β(Γk(G)) was bounded in terms of maximal di-
ameter of C(G,S) (cf. [52]). For k=Ω(log |G|), the dependence on diameter
was later removed in [53].

Let us say a few words about the proof. The proof is combinatorial in
nature and is almost entirely self contained. At the end, we rely upon some
results on the group structure of PSL(2,p), which are known in the litera-
ture (see below). We use a novel combinatorial technique based on graph
decomposition, as opposed to path arguments used in previously in [14,20,
21,53]. It is easy to see that such a technique can never prove that a certain
family of graphs is an expander family (cf. [52]).

The rest of the paper is structured as follows. In section 1 we state the
main results of the paper. Preliminary observations and lemmas are pre-
sented in sections 2, and 3. These follow with the proof of main results

1 It can be shown, in fact, that if 1) holds, then {PSL(2,p)} has universal expansion for
every fixed m≥4 (cf. section 6.).
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(section 4) and proof of the lemmas (section 5). We conclude in section 6
with a collection of historical and mathematical remarks, and pointers to
the literature.

Throughout the paper, [n] will denote {1,2, . . . ,n}. We use G to denote
a finite group, and Γ to denote a connected regular graph.

1. Main results

Let G be a finite group, d=d(G) be the minimal number of generators of G.
We say that the set of generators S is minimal, if no proper subset of S
generates G. By m(G) denote the maximal size of the minimal generating
set of G. By �(G) denote the length of the maximal subgroup chain of G.
Clearly,

d(G) ≤ m(G) ≤ �(G) ≤ log2 |G|.
Let ϕk(G) denotes the probability that k random group elements generate G.
Let θε(G) be the smallest k such that ϕk(G) > 1− ε. It was shown in [50]
that θε(G)≤�(G)+C log(1/ε), for a universal constant C>0.

Let Γ be an (oriented, loops are allowed) graph. Denote by deg(Γ ) the
maximal in and out-degree of a vertex in Γ . We say that Γ is k-regular if
every vertex has in and out-degree k=deg(Γ ). Define (edge) expansion e(Γ )
as follows:

e(Γ ) = min

{∣∣EΓ (X,X)
∣∣

k|X| : X ⊂ Γ, 1 ≤ |X| ≤ |Γ |
2

}
,

where EΓ (X,Y )= {(x,y)∈Γ : x∈X,Y ∈Y } is the set of edges between X
and Y , and k=deg(Γ ). Note that 1>e(Γ )>0. The Cheeger–Buser inequality
(in this context, also known as conductance bound of Jerrum and Sinclair
[32]) gives:

e(Γ ) ≥ β(Γ ) ≥ e(Γ )2

8
.

Thus, a uniform lower bound on expansion e(Γn)>ε>0, for a family of k-
regular graphs {Γn}, is an equivalent definition of expanders [41, section 4.2].

Let C(G,S) be an (oriented) Cayley graph on G, with a generating set S.
Denote by ρk(G) the smallest expansion of the Cayley graph on G with at
most k generators:

ρk(G) = min
{
e
(
C(G,S)

)
: 〈S〉 = G, |S| ≤ k

}
.

Let Γk(G) be the product replacement graph, defined as in the introduc-
tion.
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Main Theorem. Let G be a finite group. For every k≥2m(G), there exist
ε=ε(k)>0, such that if k≥2θε(G), then

e
(
Γk(G)

)
> cρk(G),

where c=c(k) is a constant, which depends only on k, and not on G.

Note that the result in the theorem holds for every finite group G, not a
family of groups. Recall that for any sequence {Gn} of simple groups, with
|Gn|→∞, we have ϕ2(G)→1, as n→∞ (see section 2 below). Therefore, for
every such sequence {Gn}, and ε>0, we have θε(Gn)→2, as n→∞. Let D=
deg(Γk(G))=4k(k−1). The following corollaries follow from Main Theorem.

Corollary 1. Let {Gn} be a family of finite simple groups, such that |Gn|→
∞, as n→∞. Suppose also that m(Gn) ≤m, and ρm(Gn) ≥ ρ > 0, for all
n≥1. Let k≥2m, D=4k(k−1). Then a family of D-regular graphs

{
Γk(Gn)

}
is an expander family.

Corollary 2. Let k≥ 8 be a fixed integer, and let D=4k(k−1). Assume
that there exists ρ>0, such that ρ4(PSL(2,p))≥ρ, for all prime p≥5. Then
a family of D-regular graphs

{
Γk

(
PSL(2,p)

)}
is an expander family.

Corollary 3. Let {Gn} be a family of finite groups, such that �(Gn)≤ �,
for all n→∞. Suppose also that ρ
(Gn)≥ ρ> 0, for all n≥1. There exists
a universal constant C > 0, such that for all k ≥ 2�+C log �, the family of
4k(k−1)-regular graphs

{
Γk(Gn)

}
is an expander family.

The Main Theorem and the corollaries will be proved in section 4.

Remark 1. The product replacement graphs of simple groups, studied in
Corollary 1, seem to complement the set of graphs Γk(G) that are known to
be expanders. Indeed, the only other cases, when Γk(G) are shown to be ex-
panders, are the abelian groups and nilpotent groups of bounded nilpotency
class [42]. But in these cases the Cayley graphs have large diameter and can-
not be expanders (see [8] and section 6 below). Also, although Corollary 3
is stated in general terms, it can, in fact, be applied to variety of algebraic
groups (see section 2 below.)

2. Combinatorics and probability on finite groups

Let G be a finite group, and let

ϕk(G) = P(〈g1, . . . , gk〉 = G) =
|Γk(G)|
|G|k
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be the probability that k independent random elements in G generate the
whole group. A major recent result regarding this parameter was com-
pleted in a sequence of papers by Dixon [22] (see also [3]), Kantor and
Lubotzky [35], Liebeck and Shalev [39,40]. Together, these papers prove
that ϕ2(Gn)→ 1, for any sequence of finite simple groups {Gn}, such that
|Gn|→∞. While the overall result is based on classification of finite simple
groups, the special cases ϕ2

(
PSL(2,p)

)
→ 1 as p→∞, and ϕ2(An) → 1 as

n→∞, are completely elementary. In our notation, θε(PSL(2,p)=θε(An)=2
for all ε>0, and p, n large enough.

Note, that if θ1/2(G)< r (i.e. ϕr(G)> 1/2), we easily have ϕk(Gn)< ε,
for k>Cr log(1/ε), and for some universal constant C>0 (see [51]). In this
case |Γk(G)| > (1− ε)|G|k. It is also known that if � = �(G), then for all
k>�+C log(1/ε) we have ϕk(Gn)<ε, for some universal constant C [51].

While the bound m(G)≤ �(G) is often sharp, there are examples when
m(G) is much smaller than �(G) (see [62,63]). While the recent work
[63] calculates for a number of simple groups, we will use only result
m(PSL(2,p)) ≤ 4. There is little doubt that all our results can be gener-
alized to all series of bounded rank. Note that this condition is crucial, since
we trivially have m(PSL(n,p))≥n−1.

Let us note here that �(G) is bounded for a large number of algebraic
groups, which extends the Corollary 3 beyond simple groups. Indeed, for
a series of algebraic groups {G(p)} of the same rank, over Fp (such as
{PSL(n,p)}, when n is fixed), the order f(p) = ord(G(p)) is a polynomial
in p ≥ 3 of a fixed degree ≤ n2 [11]. Thus, the sieve methods in number
theory imply that f(p) has at most a bounded number of prime factors for
infinitely many primes p (see [29], chapter 8,9.) Therefore, �(Gp)<C for in-
finitely many prime p, where C=C(n) is a fixed constant. In particular, for
G(p)=PSL(2,p), we have f(p)=ord(G(p))= 1

2p(p−1)(p+1). It is believed
[49] that there are infinitely many primes q, such that 6q+1 and 12q+1 are
also primes. Taking p=12q+1, this gives f(p)=12p(6p+1)(12p+1), so that
�(PSL(2,p)) ≤ 6 for infinitely many primes p. On the other hand, one can
deduce from [29] that �(PSL(2,p))≤13 for infinitely many primes p.

We will need the following simple result, which we prove in section 5.

Lemma 1. Let 1>α>ε>0. Consider a finite group G, and let X⊂G, such
that 1≤|X|≤(1−α)|G|. Then

P
(∣∣gX −X

∣∣ > ε|X|
)
> 1 − 1 − α

1− ε ,

where g is uniform in G.
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3. Edge expansion of graphs

In this section we present some known and some new results on edge ex-
pansion of graphs. The lemmas are arranged so that the level of generality
roughly increases. Since at no point we need sharp bounds, we do not at-
tempt to optimize the constants. Instead, we present simple proofs of (some-
times, known) lemmas so that their generalization can be obtained with no
difficulty.

Let Γ =(V,E) be a finite (oriented) graph. A graph Γ ′=(V ′,E′) is called
a subgraph of Γ , if V ′⊂V and E′⊂E.

Let Γ be a k-regular graph, and let e(Γ ) be the (edge) expansion of Γ ,
defined as above. It is often convenient to work with the Cheeger constant
of Γ , defined to be h(Γ )=e(Γ )k.

Lemma 2. Let Γ = (V,E) be a finite k-regular graph, Γ1 = (V1,E1), . . . ,
Γn=(Vn,En) be the subgraphs of Γ , such that V =∪iVi, and |Vi|>(1−ε)|V |,
for some 0<ε< 1

5 and all i∈ [n]. Then

h(Γ ) ≥ 1
max{n, 5} min

{
h(Γi) : i ∈ [n]

}
.

This lemma is probably well known, although we were unable to locate
the precise reference. We postpone the proof until section 5.

Lemma 3. Let X⊂ [M ]× [N ], |X|≤ (MN/2). Denote Xi,∗=X∩{i}× [N ],
X∗,j =X∩ [M ]×{j}. Then, for some universal constants α,δ>0, we have:
(�)∣∣{(i, j) ∈ X : |Xi,∗| < (1 − α)N

}∣∣+ ∣∣{(i, j) ∈ X : |X∗,j | < (1 − α)M
}∣∣

> δ|X|.
Moreover, for all ε<δ we have:

( � �)
|{(i, j) ∈ X : |Xi,∗| < (1 − α)N, i ≤ (1 − ε)M}|

+ |{(i, j) ∈ X : |X∗,j | < (1 − α)M}| > (δ − ε) |X|.
Versions of the first part of Lemma 3 seem to be known, with roughly the

same elementary proof. Since we need the second part as well, we present the
proof of lemma for values α=1/10 and δ=31/90. While these are probably
not optimal, they suffice for our purposes.

For graphs Γ1 = (V1,E1) and Γ2 = (V2,E2), define the cartesian product
Γ =Γ1×Γ2 to be the graph Γ =(V,E), such that V =V1×V2 and

E =
{(

(v1, v2), (v′1, v
′
2)
)
∈ V 2 : (v1, v′1)∈E1, v2 = v′2 or (v2, v′2)∈E2, v1 = v′1

}
.

Let k1 =deg(Γ1) and k2 =deg(Γ2). Note that deg(Γ )=k1 +k2.



418 ALEXANDER GAMBURD, IGOR PAK

Proposition 1 ([15,31]). Let Γ = Γ1 × Γ2 be the product of graphs Γ1

and Γ2. Let h1 =h(Γ1), h2 =h(Γ2). Then

h(Γ ) ≥ 1
2

min
{
h1, h2

}
.

The proof is elementary, and follows from Lemma 3 (perhaps, with a
different constant). As we need an extension of the proposition, we include
a proof with a constant 1/27 instead of 1/2. Let us also quote, without a
proof, a known generalization of this result:

Proposition 2 ([15,31]). Let Γ =Γ1×·· ·×Γm be the product of graphs
Γ1, . . . ,Γm. Then

h(Γ ) ≥ 1
2
min

{
h(Γi) : i ∈ [m]

}
.

We say that Γ ′ = (V ′,E′) is a restriction of Γ = (V,E), if V ′ ⊂ V , and
(v1,v2)∈E, v1,v2∈V ′, implies that (v1,v2)∈E′.

Let Γ = ([M ]× [N ],E) be a k-regular graph. Define Γi,∗ =
(
Vi,∗,Ei,∗

)
,

Γ∗,j =
(
V∗,j ,E∗,j

)
, with Vi,∗ = {i}× [N ], V∗,j = [M ]×{j}, to be restrictions

of Γ .

Lemma 4. There exist constants α,δ > 0, such that for all 0 ≤ ε < δ the
following holds. Let Γ =([M ]×[N ],E), k=deg(Γ ). Consider restrictions Γi,∗
and Γ∗,j , defined as above. Define

h1 = min
{
h
(
Γ∗,j

)
: j ∈ [N ]

}
,

h2 = min
{
h
(
Γi,∗

)
: i ∈ [(1 − ε)M ]

}
.

Then h(Γ )≥αmin{h1,h2}.

In section 5 we deduce the lemma from our proof of (a weaker version
of) Proposition 1. Below we present a final extension of Lemma 4, tailored
to our needs.

Let
{
Γi = ([N ],E1), i ∈ [M ]

}
be a family of k-regular graphs on [N ].

We say that {Γi} has ε-uniform expansion with Cheeger constant ĥ, if for
all X ⊂ [N ], such that 1 ≤ |X| ≤ N/2, we have Ei(X,X) ≥ ĥ|X|, for at
least (1− ε)M different i∈ [M ]. Of course, if h(Γi)≥ ĥ for all i∈ [(1− ε)M ]
(cf. Lemma 4), then {Γi} has ε-uniform expansion with Cheeger constant ĥ.

Lemma 5. There exist constants α,δ > 0, such that for all 0 ≤ ε < δ the
following holds. Let Γ =([M ]×[N ],E), k=deg(Γ ). Consider restrictions Γi,∗
and Γ∗,j , defined as above. Define

h1 = min
{
h
(
Γ∗,j

)
: j ∈ [N ]

}
,
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and suppose
{
Γi,∗, i ∈ [M ]

}
is a family of k-regular graphs, which has ε-

uniform expansion with Cheeger constant ĥ2. Then h(Γ )≥αmin{h1, ĥ2}.

Remark 2. Let us note that in Lemmas 3, 4 and 5, we cannot weaken
the condition to have ε-error for both types of restrictions. For example, in
Lemma 3, we cannot let j ∈ [(1− ε)N ]. Similarly in Lemma 5 we cannot
allow to have ε-uniform expansion for a family

{
Γi,∗

}
as well. Indeed, in

these cases there can be very small sets X⊂Γ which lie in the intersection
of ‘bad’ directions.

This is the main reason why we cannot weaken our assumption 1) to
a weaker version of it, with all Cayley graphs of PSL(2,p) substituted by
random Cayley graphs.

4. Proof of the Main Theorem and Corollaries

Proof of Main Theorem. Fix 1/2>ε>0, and let n=max{m(G),θε(G)},
r=k−n. Since k≥2θε(G) and k≥2m(G), we obtain r≥max{θε(G),m(G)}.

Define an action of Sk on Γk(G) as follows: σ(g1, . . . ,gk)=(gσ(1), . . . ,gσ(k)),
for σ ∈ Sk. Consider a subgraph Γ ′ with vertices all generating k-tuples
(g1, . . . ,gk)∈Γ =Γk(G), such that 〈g1, . . . ,gn〉=G, and edges corresponding
to transformations R±

i,j, L
±
i,j, such that 1 ≤ j ≤ n < i ≤ k, or 1 ≤ i ≤ n <

j ≤ k. Consider also σΓ ′, defined as above, for each coset representative
σ∈Σ(k,n)=Sk/

(
Sn×Sr

)
. Clearly, σΓ ′�Γ ′ for all σ∈Sk.

We have |Γ ′|> (1− ε)|Γ |, since, by definition, n≥ θε(G). Also, for every
(g)=(g1, . . . ,gk)∈Γk(G), there exists σ′∈Σ(k,n), such that (g)∈σ′Γ ′ (this
follows from n≥m(G)). From Lemma 2, we obtain:

h(Γ ) ≥ 1(k
n

) min
{
h(σΓ ′) : σ ∈ Σ(k, n)

}
= Ch(Γ ′),

for some constant C=C(n,k).

Now let us prove that h(Γ ′) > cρn(G). Think of Γ ′ as a graph on
Γn(G)×Gr . For every fixed (g) = (g1, . . . ,gn) ∈ Γn(G), consider Γ ′

(g),∗ ⊂ Γ ′,
the subgraph of Γ ′ with vertices

(
(g),(h)

)
, where (h) ∈ Gr is any r-tuple

of elements. Define Γ ′
∗,(h) ⊂ Γ ′ analogously, for every (h) ∈ Gr. We have

k′=degΓ ′
∗,(h)=degΓ ′

(g),∗=4nr.
Define C(G,S) = C(G,S) ∪ C−1(G,S) to be a union of two isomorphic

Cayley graphs corresponding to multiplication on the left and on the right:
C =

{
(g,g s±1),(g,s±1 g) : g ∈ G, s ∈ S

}
. Clearly, h(C) = 2h(C). Now,
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by definition, Γ ′
(g),∗ = C

(
G,{g1, . . . ,gn}

)r, and by Proposition 2, we have
h
(
Γ ′

(g),∗
)
≥ 1

2h(C)>k′ρn(G).

We cannot prove that h
(
Γ ′
∗,(h)

)
> δ > 0 for two reasons. First, not all

elements (h) ∈ Gr are generating sets (although there are > (1− ε)|G|r of
them). The graphs Γ∗,(h) are disconnected when (h) /∈Γr(G). Thus, we can-
not conclude that Cayley graphs on these r-tuples are expanders. Second,
graphs Γ ′

(g),∗ = C
(
G,{g1, . . . ,gn}

)r, are not products of (union of) Cayley
graphs C, but their intersection with Γk(G). Thus we cannot use Proposi-
tion 2 to bound Cheeger constant. In fact, we cannot do this for any fixed
(h)∈Gr. Instead, we use Lemma 5 to establish ε-uniform expansion of the
family

{
Γ ′
∗,(h)

}
on Γn(G), for (h)∈Gr.

Indeed, consider first H =Gn and any subset X ⊂H, 1 ≤ |X| ≤ |H|/2.
Now apply Lemma 1 to the group H (taking α = 1/2 and ε = 1/4). We
obtain that the difference in the lemma is > |X|/4, for > |X|/3 differ-
ent g∈H. Now observe that for uniform (h) ∈Gr, the first n components
(h)′=(h1, . . . ,hn) in (h) are uniform in H. Multiplication of (g) by (h)′ is a
composition of transformations L1,n+1◦L2,n+2◦ · · · ◦Ln,2n. By the symmetry,
if the composition has expansion > α, at least one of the transformations
Li,n+i has expansion > α/n (cf. [4]). Since |Γn(G)| > (1− ε)|H|, this gives
|gX−X|∩ |Γn(G)|> (1/4n− ε)|X|= δ|X| for at least |X|/3 different g∈H.
This proves the 1/3-uniform expansion for the family of graphs

{
Γ ′
∗,(h)

}
,

with Cheeger constant >δ.
Now take ε = min{1/4 · 1/90,1/8n}, so as to satisfy the lemmas. From

Lemma 5 we conclude that h(Γ ′)>C(n,k)ρn(G). Now the theorem follows
from the observations above.

Proof of Corollary 1. Since ϕ2(Gn) → 1, and d(Gn) = 2, the second
condition k≥ 2θε(Gn)= 4 is trivial. The corollary now follows immediately
from the Main Theorem.

Proof of Corollary 2. This is a special case of Corollary 1. Recall that
m(PSL(2,p))≤4, and the result follows.

Proof of Corollary 3. Recall thatm(G)≤�(G), and ϕ
+t =1−O(1/2t) [51].
Finally, observe that ρk(G)≥(k/�)ρ
 (this follows by removing extra edges).
In the proof of Main Theorem we need to find k and ε, such that ϕ(k/2)≥
1− ε, and ε = O(1/k). Since �(Gn) is bounded, we can solve these two
equations by taking t=O(logk). We omit the easy calculation.
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5. Proofs of Lemmas

Proof of Lemma 1. Note that

E
(
|g X ∩X|

)
=

∑
x,x′∈X

P(gx = x′) = |X|2 · 1
|G| ≤ (1 − α)|X|.

Markov inequality gives

P
(
|g X −X| < ε|X|

)
= P

(
|g X ∩X| > (1 − ε)|X|

)
<

1 − α
1 − ε .

This implies the result.

Proof of Lemma 2. Let X ⊂ V , 1≤ |X| ≤ |V |/2. Consider subsets Xi =
X∩Vi. Denote Ei(X,Y )=EΓi(X,Y ), for X,Y ⊂Vi, and let ei =e(Γi). Also,
let ki = deg(Γi), k = deg(Γ ). Fix a constant δ = (1− ε)/2 > 0. Note that
2
5<δ<

1
2 .

There are two possible cases. Either |X| ≤ δ|V |, or |X|> δ|V |. We con-
sider them separately. In the first case, |Xi| < δ

1−ε |Vi| = |Vi|/2. Therefore
|Ei(Xi,Vi−Xi)|>ei|Xi|ki. Since X⊂∪iXi, there is always i∈ [n], such that
|Xi|≥|X|/n. Therefore, for this i we have:

EΓ (X,X) ≥ |Ei(Xi, Vi −Xi)| ≥ (eiki)
|X|
n
.

We conclude:

e(Γ ) = min
X: 1≤|X|≤|V |/2

EΓ (X,X)
k|X| ≥ 1

k n
min

i
eiki.

In the second case, we have:

|Xi| > (δ − ε)|V | ≥ (δ − ε)2|X| > 2
5
|X|,

|Xi| ≤ |X| ≤ 1
2
|V | < 1

2(1 − ε) |Vi| <
5
8
|Vi|,

and therefore |Vi−Xi|/|Xi|> 1−5/8
5/8 = 3

5 . For every i∈ [n], we have:

EΓ (X,X) ≥ Ei(Xi, Vi −Xi) ≥ eiki min{|Xi|, |Vi −Xi|}

>
3
5
eiki|Xi| >

3
5
eiki ·

2
5
|X| > 1

5
eiki|X|.

We conclude:

e(Γ ) = min
X: 1≤|X|≤|V |/2

EΓ (X,X)
k|X| ≥ 1

5k
min

i
eiki .

This completes the second case and proves Lemma 2.
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Proof of Lemma 3. Let α = 1/10 and δ = 31/90. Denote I =
{
i ∈ [M ] :

|Xi,∗|< 9
10N

}
, J=

{
j∈ [N ] : |X∗,j |< 9

10M
}
. Since |X|≤MN/2, we have

9
10
N · (M − |I|) < |X| ≤ M N

2
,

which gives |I|> 4
9M . Therefore, for every j ∈J , we have

|X∗,j − I × {j}| > 9
10
M − 5

9
M =

31
90
M ≥ 31

90
X∗,j .

Now

P =
∣∣∪i∈IXi,∗

∣∣+ ∣∣∪j∈JX∗,j
∣∣ ≥∑

j∈J

∣∣X∗,j
∣∣+∑

j /∈J

∣∣X∗,j − I × {j}
∣∣

> (1 − γ)|X| +
∑
j /∈J

31
90
∣∣X∗,j

∣∣ = (1 − γ)|X| + 31
90
γ|X| ≥ 31

90
|X|,

where P is equal to the l.h.s. of (�) in the lemma, and

γ =
∑

j /∈J |X∗,j |
|X| ≥ 0.

This proves the first part (�).
The second part follows verbatim, except for a substitution of I by I ′=

I∩[(1−ε)M ], and the constant 31/90 is replaced by (31/90−ε), as in (��).

Proof of Proposition 1. Recall that we prove only a weaker version of
the proposition, with constant 1/27 instead of 1/2, as in the claim.

Suppose Γ1=([M ],E1), Γ2 =([N ],E2). Let Γi,∗={i}×Γ2, Γ∗,j =Γ1×{j},
for all i∈ [M ], j∈ [N ].

Let X ⊂ Γ , 1≤ |X| ≤ |Γ |/2. As in Lemma 3, let Xi,∗ = Γi,∗∩X, X∗,j =
Γ∗,j ∩X. Consider

I =
{
i ∈ [M ] :

∣∣Xi,∗
∣∣ < 9

10
N

}
, J =

{
j ∈ [N ] :

∣∣X∗,j
∣∣ < 9

10
M

}
.

Also, let

Ei,∗ = E1
(
Xi,∗, Γi,∗ −Xi,∗

)
, E∗,j = E2

(
X∗,j , Γ∗,j −X∗,j

)
.

By definition of I and J , for all i∈I, j∈J we have:

min
{∣∣Xi,∗

∣∣, ∣∣Γi,∗ −Xi,∗
∣∣} > 1

9
∣∣Xi,∗

∣∣,
min

{∣∣X∗,j
∣∣, ∣∣Γ∗,j −X∗,j

∣∣} > 1
9
∣∣X∗,j

∣∣.
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By Lemma 3, we have:∣∣E(X,Γ −X)
∣∣ ≥∑

i∈I

∣∣Ei,∗
∣∣+∑

j∈J

∣∣E∗,j
∣∣

≥
∑
i∈I

e2k2

∣∣Xi,∗
∣∣

9
+
∑
j∈J

e1k1

∣∣X∗,j
∣∣

9

≥ min{e1k1, e2k2}
9

·
(∑

i∈I

∣∣Xi,∗
∣∣+∑

j∈J

∣∣X∗,j
∣∣)

≥ 1
9

min{e1k1, e2k2} ·
31
90

|X| ≥ |X|
27

min{e1k1, e2k2}.

We conclude:

e(Γ ) = min
X: 1≤|X|≤MN/2

∣∣E(X,Γ −X)
∣∣

k |X| ≥ 1
27 k

min{e1k1, e2k2}.

Proof of Lemma 4. Let α= 1/27, and δ = 1/90. Use the second part of
Lemma 3. Substitute ε = 1

90 to obtain that the r.h.s. of (��) is at least
31−1
90 = 1

3 . Now note that we never used in the proof of Proposition 1 the fact
that Γi,∗ (and, similarly, graphs Γ∗,j) are isomorphic to each other. Now the
proof of the lemma follows verbatim the proof of Proposition 1, with the
only difference that we use (��) instead of (�), with ε=1/90, as above.

Proof of Lemma 5. Follows verbatim the proof of Lemma 4. Indeed, notice
again that in the proof of Proposition 1 we never used the fact that i is always
in the same subset of size (1− ε)M in [M ]. Similarly, for every X⊂ [N ] we
never used the full expansion of Γi,∗, but rather Ei,∗=Ei(X,X). The rest of
the proof remains unchanged.

6. Final Remarks

Let us elaborate on the rich history of the problem and known results, related
to both questions 1) and 2) in the introduction.

It is well known that, in a certain precise sense, “random” k-regular
graphs are expanders. Only a much weaker result is known for Cayley graphs,
when k is allowed to grow with |G|. The best known bound for all finite group
is the case when k=Ω(log |G|) [2] (see also [50]). While this bound cannot
be improved for abelian groups, no better result is known for other classes
of groups (cf. [5]).

The first explicit constructions of expanders were found by Margulis [46],
who used Kazhdan’s property (T) from representation theory to prove the
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expansion. The next breakthrough came in papers [43,47], where the authors
used harmonic analysis and number theory to obtain the explicit construc-
tions of so called Ramanujan graphs, the expanders with the largest possible
eigenvalue gap (when k is fixed). Both approaches use Cayley graphs of lin-
ear groups, and neither of them is elementary, although an effort to simplify
the technique has been made (see [23,41,17].) Most recently, combinatorial
constructions of expanders has been introduced in [57]. One can think of our
results as of new approach to develop expanders.

In case of Cayley graphs, only very special generators has been used,
although recent improvements increase the variety of such sets (see [24,25,
58,59]). These results support an affirmative answer to the Independence
Problem 1) for PSL(2,p), i.e. that all Cayley graphs of PSL(2,p) form an ex-
pander family (see [44]). Further support is given by numerical evidence [36,
37]. Our results indicate the importance of this problem for computational
group theory.

Let us note Independence Problem remains open even for “random” gen-
erating sets [8,41], and there seem to be little hope of proving 1) with exist-
ing techniques. On the other hand, it was speculated in [44] that universal
expansion property must hold for all group sequences, which admit some
expanding family of Cayley graphs. If true, this would allow us to prove
expansion for a large family of product replacement graphs.

As we mentioned above, the product replacement graphs Γk(G) in this
form were introduced recently in connection with the ‘practical’ algorithm
for generating random elements [12]. On the other hand, a related family of
graphs Γ̃k(G) was studied back in the sixties by B. H. Neumann, M. Dun-
woody, and others, in connection with the so called T-systems (see [52]
for the references). Many basic questions about these graphs remain unan-
swered, such as the connectivity of Γk(G), for general finite groups G. In
our running example, it was proved by Gilman that graphs Γk(PSL(2,p))
are connected, for k≥3, and p≥5 [26]. In general, it is known that Γk(G) is
connected for all k>m(G)+d(G) [21,52].

Now, a rigorous study of convergence of random walks on the product
replacement graphs Γk(G), for general finite groups G and in special cases,
was undertaken in a number of recent papers [6,14,20,21,42,52]. In the
latest paper [53], the second author showed that the random walk mixes
in time polynomial in k and log |G|, for k = Ω∗(log |G|). Still, for small
k, the nature of the practical rapid mixing remains unclear. One possible
explanation came in [42], where the authors showed that Γk(G) are always
expanders, provided a known open problem 3) has positive solution:

3) Does group Aut(Fk) have Kazhdan’s property (T)?



EXPANSION OF PRODUCT REPLACEMENT GRAPHS 425

The problem 3) remains open; an indirect evidence in favor of a positive
solution is the fact proved in [16] that it has property (FA) of Serre. It is
also known that Aut(Fk) are hyperbolic and thus nonamenable [27]. There
are also some negative indications: Aut(F2) and Aut(F3) are shown not to
have (T) [48], and Aut(Fk) do not have bounded generation [61], a property
closely related to (T) [60]. Now, since the authors in [12] test the product
replacement algorithm on a number of simple and quasisimple groups, one
can think of this work as an alternative explanation of the algorithm per-
formance.

Let us mention here that it was proved (unconditionally) in [42], that
graphs Γk(G) are expanders, when G is nilpotent of class �, and both k and
� are fixed. It is entirely possible that any family of graphs

{
Γk(G)

}
, for a

fixed k, is an expander. While a counterexample to this claim would give a
negative answer to 3), a proof of this would not, however, imply 3). We refer
to an extensive survey article [52] for references and details.

Let us note that the main theorem is inapplicable to a family of alter-
nating groups {An}, where n≥5. Not all Cayley graphs of An are expanders
(see below), and also m(An)=n−2 [62], which contradicts the assumptions
in Corollary 1. Let us present here an important closely related open prob-
lem [8,41,44]:

4) Is there any sequence of Cayley graphs {C(Sn,Rn)
}
, which is an ex-

pander (for some generating sets 〈Rn〉=Sn)?

Not unlike question 1), question 4) remains difficult if not unapproach-
able. Only recently, a sequence of bounded generating sets 〈Rn〉 = Sn,
with diamC(Sn,Rn) = O(n logn), has been constructed [9,56]. It was
widely speculated that the answer to 4) is negative, i.e. that there are
no expanders on Sn [44]. At the moment, not even generating sets with
mixW = O(n logn) are known. The sets Rn, as above, come close with
mixW(Sn,Rn) = O(n log3n) [19]. To add to a confusion, let us mention
here a conjecture that all Cayley graphs on Sn have diameter at most
O(n2) [5,18], while for “random” Cayley graphs the diameter is believed
to be O(n logn) [33]. The best bounds in both cases are exp

(
O(

√
n)
)

and
exp

(
O(log2n)

)
, respectively [8,7]. It is easy to find a non-expanding fam-

ily in Sn, i.e. Rn ={(1,2);(1,2, . . . ,n)±1}, such that diamC(Sn,Rn)=Ω(n2)
(see [18,19,41]). Still, for all we know, “random” Cayley graphs on Sn can
be expanders [5,7].

Let us conclude with an interesting observation in [42], which connects
all questions 1)–4). First, consider a diagonal action of Aut(G), defined
as follows: α(g1, . . . ,gk) = (α(g1), . . . ,α(gk)), for α∈Aut(G). Define a graph
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Γ̃k(G) with vertices corresponding to orbits of action of Aut(G) and edges
corresponding to L±

i,j and R±
i,j (see [26,52]). Clearly, if Γk(G) is connected,

then Γ̃k(G) is also connected [52].
Now, let Fk be a free group on k generators. One can think of L±

i,j

and R±
i,j as of (special2) Nielsen generators in Aut(Fk). Let Aut+(Fk) =

〈L±
i,j,R

±
i,j〉 ⊂ Aut(Fk). It is easy to see that Aut+(Fk) is a subgroup of in-

dex 2 in Aut(Fk) [42,52].
One can think of graphs Γk(G) and Γ̃k(G) as of Schreier graphs of

Aut+(Fk). It was shown by Gilman [26] that Aut(Fk) acts on Γ̃k(G) as
AN or SN, where N= |Γ̃k(G)|, provided that graph Γk(G) is connected and
G is simple.

Consider the case G=PSL(2,p). It is known that Γk(PSL(2,p)) is con-
nected for k≥3 [26]. Now, if the question 1) above has a positive answer,
the Corollary 2 implies that {Γk(p) = Γk(PSL(2,p))} is an expander, for
k≥8. On the other hand, Gilman’s result (see above) shows that a quotient
graph Γ̃k(p)=Γk(p)/GL(2,p) is a Schreier graph of AN or SN, each of them
infinitely often. Therefore, if 4) has a negative answer, then {Γ̃k(p)} cannot
be an expander, which contradicts 1). In a different direction, since Aut(Fk)
is mapped onto SN , the positive answer to question 3) implies that for 4).

Finally, let us show here that if
{
Γ̂k(p) = Γk(PSL(2,p)N )/GL(2,p)N

}
,

where N =N(k,p)= |Γk(PSL(2,p)|/|GL(2,p)|, are expanders for some fixed
k ≥ 3, then the positive answer to 4) follows. This is a weaker condition
than 3) (see above). Indeed, Gilman’s result implies that Aut+(Fk) acts
transitively on Γ̂k(p) for infinitely many primes p. But in fact, Hall’s result
[30] (see also [35]) gives that vertices in Γ̂k(p) are exactly permutations of
all vertices in Γ̃k(p). Therefore, Γ̂k(p) is a Cayley graph of SN . This implies
the claim.
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