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Abstract. We discuss two problems in combinatorial geometry. First, given a geometric
polyhedral complex in R3 (a family of 3-polytopes attached face-to-face), can it always be
realized over Q? We give a negative answer to this question, by presenting an irrational

polyhedral complex with 1278 convex polyhedra. We then present a universality theorem

on the space of realizations of such complexes.
Second, given a pure d-dimensional topological polyhedral complex (embedded in Rd),

we ask when it can be realized geometrically (that is, rectilinearly embedded in Rd). We
present both positive and negative results in this direction.

1. Introduction

The notion of realizing topological configurations geometrically is illustrated elegantly
in Fáry’s theorem [F], which states that every planar graph can be drawn in the plane such
that each edge is a straight line segment. In two influential papers [T1, T2], Tutte first
showed necessary and sufficient conditions for realizing 2-connected planar graphs, with
all faces (non-strictly) convex. He then showed that for 3-connected planar graphs one
can make all faces strictly convex. Much of this paper was motivated by the possibility of
extending Tutte’s results to 3 and higher dimensions.

We begin with the classical Steinitz theorem (see e.g. [G, P, R, Z1]). It states that all
3-connected planar graphs can be realized as graphs of 3-polytopes. As a consequence of
the proof, all polytopes in R3 can be realized over Q (i.e. realized with rational vertex
coordinates) by applying small perturbations of the vertices which preserve combinatorial
structure (the faces of the polytope). There are several directions into which this result has
been shown to have negative analogues:

(1) In Rd, d ≥ 4, there exist irrational convex polytopes (see [R, RZ]),

(2) There exists an irrational 2-dim polyhedral complex immersed into R3 (see [Br, Z2]),

(3) There exists a 3-dim topological simplicial complex that is not geometrically realizable
(see [Ca, HZ, K]).

In light of Steinitz’s theorem, (1) and (2), it is natural to ask whether every 3-dim polyhedral
complex can be realized over Q. A 3-dim polyhedral complex is a natural generalization
of a Schlegel diagram of a 4-polytope, so this question occupies an intermediate position
between Steinitz’s theorem and (1). Our first result answers this question in the negative
(see below for definitions and notation).

Theorem 1.1 In R3, there exists an irrational 3-dim geometric polyhedral complex con-
sisting of 1278 convex polyhedra (one pentagonal pyramid and 1277 triangular prisms).

In other words, we show that there exists an arrangement of finitely many convex poly-
topes, attached face-to-face, and which cannot be realized over Q. In particular, in contrast
with a single polytope, one cannot perturb (in unison) the vertices of the polytopes to make
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them all rational. Our construction also shows that Brehm’s construction (2) presented
in [Z2] can be replaced with a polyhedral complex that is (convexly) embedded into R3. We
refer to Subsection 7.1 for discussion of a strongly related construction by Richter-Gebert.

The proof of Theorem 1.1 follows the same general approach as (1), going back to Per-
les’s first original construction of an irrational polytope in R8 (see [G]). We start with an
irrational point and line configuration in the plane, and then use polyhedral gadgets to con-
strain the realization space emulating the configuration. At the end, we explicitly construct
an irrational arrangement of 1278 polyhedra.

Later in the paper, we use a similar approach to prove two variations on the universality
theorem by Brehm [Br, Z2] and Richter-Gebert [R, §10]. Roughly speaking, we show that
every algebraic equation can be encoded by a combinatorics of polyhedral complexes. Since
these results are rather technical and their history is tumultuous, we postpone them until
Section 5, and their discussion until Subsection 7.2.

Our second result is a variation on (3). There are of course various topological ob-
structions to embedding an abstract simplicial complex into Rd. Furthermore, a geometric
embedding is even harder to obtain, even if we assume that we start with a topological poly-
hedral complex, i.e. a complex that is already embedding into Rd. The results in [HZ, K] (see
also [AB, Ca, Wi]) rely on topological triangulations whose 1-skeletons contain a nontrivial
knot with 5 or fewer edges (this creates an obstruction to a rectilinear embedding). By a
much simplified variation on a construction from the proof of Theorem 1.1, we show that if
one replaces “simplicial” with “polyhedral”, one obtains very small examples of complexes
which are not geometrically realizable, much smaller than those in [HZ, Wi].

Theorem 1.2 There exists a topological 3-dim polyhedral complex X in R3 with 8 vertices
and 3 polyhedra, that is not geometrically realizable.

In fact, it is easy to show that this is a minimal such example, i.e. two polyhedra are not
enough (see Remark 4.1. In a different direction, we may extend this polyhedral complex
to a polyhedral subdivision of a ball:

Theorem 1.3 There exists a topological 3-dim polyhedral complex X ′ in R3 consisting of
9 vertices and 9 polyhedra, such that X ′ is homeomorphic to a ball, and the complex X of
Theorem 1.2 is a subcomplex of X ′. In particular, X ′ is not geometrically realizable.

Heuristically, both (3) and Theorem 1.2 say that one cannot possibly extend the Fáry
and Tutte theorems into R3. To put both our results into one scheme, we have:

topological polyhedral complex ;thm 1.2 geometric polyhedral complex,

geometric polyhedral complex ;thm 1.1 rational polyhedral complex.

Our final result in a positive result complementing Theorems 1.1 and 1.2. Our actual result
in full generality is somewhat involved (see Section 6), so we state it here only for simplicial
complexes.

We restrict ourselves to simplicial complexes which are homeomorphic to a ball, and
which are vertex decomposable (see e.g. [BP, Wo]). This is a topological property that
implies shellability. A d-dim simplicial ball X is vertex decomposable if either it is a single
simplex, or recursively, it has a boundary vertex v ∈ ∂X such that the the deletion X r v
is also a vertex decomposable d-ball. We say that X is strongly vertex decomposable if in
addition, this vertex v is adjacent to exactly d boundary edges.
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Theorem 1.4 Let X be a topological d-dim simplicial complex in Rd that is homeomorphic
to a ball and strongly vertex decomposable. Then there is a geometric simplicial complex Y
in Rd such that Y is a realization of X.

This result may seem restrictive, but for d = 2 it is equivalent Fáry’s theorem. To see
this, note first that it suffices to prove Fáry’s theorem for triangulations (added edges can
be removed later). But in the plane, every triangulation X is vertex decomposable [BP]
(see also [FPP] for a short proof). But then, by definition, X is also strongly vertex
decomposable, and thus Theorem 1.4 is just Fáry’s theorem.

In the most interesting case of d = 3, we then extend our theorem to general polyhedral
complexes with triangular interior faces and any given boundary realization (Theorem 6.1).
This is a rare positive result in this direction. We use an inductive argument to construct
the desired realization. We postpone the (technical) statement and the discussion of this
result.

The rest of the paper is structured as follows. We begin with Definitions and Notations
in Section 2. We then discuss irrational polyhedral complexes in Section 3, but move some
figures to the Appendix. A short Section 4 contains proofs of theorems 1.2 and 1.3, based
on the same ideas. In the next, lengthy Section 5 we present two universality theorems.
Again, based on ideas in Section 3, it can be viewed as an advanced generalization of that
construction; this is the only section where our exposition is not self-contained. We then
turn to positive results in Section 6, proving Theorem 1.4 and a more technically involved
Theorem 6.1. We conclude with historical remarks and further discussion in Section ??.

2. Definitions and notation

Given A ⊆ Rn, let conv(A) and aff(A) denote the convex and affine hulls of A in Rn,
respectively. Given a set A ⊆ Rn, we write int(A) for the topological interior of A. If A is a
manifold then we write ∂A for the manifold boundary of A. Let Bd = {x ∈ Rd | ‖x‖ = 1}
denote the unit d-ball. If two topological spaces A, B are homeomorphic, we shall write
A ∼ B.

A polytope P is the convex hull of finitely many points x1, . . . , xk ∈ Rn. A polytope
P is a d-polytope if aff(P ) is a d-dimensional affine subspace of Rn. We call a poset X a
geometric d-polyhedron in Rn if X is the face poset of a d-polytope. By abuse of notation
we will sometimes refer to a geometric polyhedron as a polytope.

For a geometric d-polyhedron X, an element F ∈ X is a face of X. We shall call a 0-face
of X a vertex, a 1-face an edge, a (d− 1)-face a facet, and the d-face the cell. A polyhedron
is called simplicial if each of its facets is a (d− 1)-simplex.

A poset X, ordered by set inclusion, is a topological d-polyhedron (in Rn) if there exists
a geometric d-polyhedron Y in Rn and a poset isomorphism ϕ : X → Y such that for each
F ∈ X, F ⊆ Rn and F ∼ ϕ(F ). Note that every geometric polyhedron is a topological
polyhedron.

A topological d-polyhedral complex (in Rn) is a set X =
⋃n

i=1 Xi, where each Xi is a
topological d-polyhedron in Rn, and such that if A ∈ Xi and B ∈ Xj then A∩B ∈ Xi∩Xj.
We call X a geometric d-polyhedral complex (in Rn) if each Xi is a geometric d-polyhedron.
For brevity, we will write polyhedron instead of topological polyhedron and polyhedral complex
instead of topological polyhedral complex.

Note that every polyhedron is a polyhedral complex. If X =
⋃k

i=1Xi is a polyhedral
complex in Rn, we shall write PX = {X1, . . . ,Xk} and |X| = ⋃

F∈X F . Note that |X| ⊆ Rn.
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If F ∈ X, we define PX(F ) = {P ∈ PX | F ∈ P}. Let ∂X = {F ∈ X | F ⊆ ∂X}. Note
that ∂X is also a polyhedral complex. Two polyhedral complexes are isomorphic, written
X ≃ Y , if they are isomorphic as posets under inclusion.

A (geometric) realization of a polyhedral complex X is a geometric polyhedral complex
Y such that X ≃ Y . We say that Y (geometrically) realizes X. If a polyhedral complex
has a geometric realization, then we say that it is (geometrically) realizable.

3. An irrational polyhedral complex

In what follows we will work in real projective space RPd, and we extend the definitions
of convex hull and affine hull appropriately. We regard Rd ⊆ RPd under the standard
inclusion (p1, . . . , pd) 7→ [p1 : . . . : pd : 1]. We say that distinct points p1, . . . ,pn ∈ RPd

are collinear if they are contained in the same line. We say that distinct projective lines
ℓ1, . . . , ℓn are concurrent if ℓ1∩· · ·∩ℓn is non-empty. If e1, . . . , en are edges of a polytope and
the edge supporting lines aff(e1), . . . , aff(en) are concurrent, we say that the edges e1, . . . , en
are concurrent.

An (abstract) point and line configuration L = ([n], E) consists of a finite set [n] =
{1, . . . , n}, together with a set of (abstract) lines E = {e1, . . . , ek}, where each ei ⊆ [n].
We require that each point is contained in at least 2 lines, and each line contains at least
3 points. A realization of L is a set of points Λ = {p1, . . . ,pn} ⊆ RPd such that each
collection {pi1 , . . . ,pik} of 3 or more points is collinear if and only if {i1, . . . ik} ⊆ e for
some e ∈ E. A line ℓ ⊂ RPd is a line of Λ if ℓ ∩ Λ = {pi1 , . . . ,pik} and {i1, . . . , ik} ∈ E. A
point and line configuration L is said to be realizable over a field F if there is a realization
Λ of L such that each point of Λ has coordinates in F .

A realizable point and line configuration L is said to be irrational if it is not realizable
over Q. That is, for every realization Λ of L there is some point p ∈ Λ such that p has an
irrational coordinate. The following 9-point configuration due to Perles is irrational.

Lemma 3.1 (Perles, [G]) The point and line configuration depicted in Figure 1 is irrational.

8 9

75

1 2 3 4

6

Figure 1. The 9-point Perles configuration

We say that a geometric polyhedral complex X generates a realization Λ of a point and
line configuration L, if each point of Λ is the intersection of affine hulls of faces of X. We say
that a polyhedral complex X is realizable over a field F if there is a geometric realization
X ′ of X such that each vertex of X ′ has coordinates in F . Note that realizable over R
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is equivalent to realizable. A geometric polyhedral complex X is called irrational if it is
not realizable over Q. In this section we will construct a geometric polyhedral complex X
such that every realization of X generates the Perles configuration. This implies that X is
irrational.

In what follows we let T denote any geometric realization of a triangular prism in R3.
The edges of T not contained in the triangular facets of T are the lateral edges of T , and
the facets containing these edges (i.e. the tetragonal facets) are the lateral facets.

Lemma 3.2 In every geometric realization T of a triangular prism, the lateral edges of T
are concurrent.

Proof. Let ℓ1, ℓ2, ℓ3 denote the supporting lines of the lateral edges of T . These lines are
pairwise coplanar. Indeed, P1,2 = aff(ℓ1∪ℓ2), P1,3 = aff(ℓ1∪ℓ3) and P2,3 = aff(ℓ2∪ℓ3) are the
supporting planes of the lateral facets of T . Since ℓ1, ℓ2 are coplanar projective lines, they
intersect in a point p. Thus {p} = ℓ1∩ℓ2 ⊆ P1,3∩P2,3 = ℓ3. Therefore {p} = ℓ1∩ℓ2∩ℓ3. �

A belt is a polyhedral complex B consisting of triangular prisms T1, . . . , Tm attached
consecutively along their lateral facets (see Fig. 2). We introduce notation that will be
used in Lemma 3.3 below. Let B =

⋃m
i=1 Ti be a belt. For i = 1, . . . ,m and j = 1, 2, 3

let z(i,j) and z(i,j′) denote the adjacent vertices of Ti contained in opposite triangular
facets. For i = 1, . . . ,m and j = 1, 2 let F(i,j) denote the facet containing the vertices
z(i,1), z(i,1′), z(i,2), z(i,2′). Then each F(i,k) is a lateral facet of Ti. We assume that the prisms
are attached so that F(i,2) = F(i+1,1) for all i = 1, . . . ,m− 1.

Figure 2. A belt of 7 prisms

When attached to other polytopes, a belt forces concurrency of the edges along which it
is attached. This is ensured by the following lemma. It will be a crucial ingredient in the
proofs that follow.

Lemma 3.3 For every belt B =
⋃m

i=1 Tm, the set of all lateral edges of all prisms Ti is a
set of concurrent lines.

Proof. Let ℓ(i,j) = aff(z(i,j), z(i,j′)) denote the supporting line of the j
th lateral edge of Ti. For

each i = 1, . . . ,m, by Lemma 3.2 there is some pi ∈ R3 such that {pi} = ℓ(i,1)∩ ℓ(i,2)∩ ℓ(i,3).
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Let i ∈ {1, . . . ,m− 1}. Then {pi} = ℓ(i,1) ∩ ℓ(i,2) ∩ ℓ(i,3) = ℓ(i,1) ∩ ℓ(i,2) = ℓ(i+1,1) ∩ ℓ(i+1,2) =
ℓ(i+1,1) ∩ ℓ(i+1,2) ∩ ℓ(i+1,3) = {pi+1}. Thus

{p1} = · · · = {pm} =
⋂

1≤i≤m, 1≤j≤3

ℓ(i,j).

�

Proof of Theorem 1.1. For k = 1, . . . , 5, let

xk =

(

cos

(

2πk

5

)

, sin

(

2πk

5

)

, 0

)

and x′
k =

(

cos

(

2πk

5

)

, sin

(

2πk

5

)

, 2

)

.

Note that the convex hull of the xk and x′
k is a regular pentagonal prism, call it R. Let

a =

(

0, 0, 1 − 1√
5

)

and a′ =

(

0, 0, 1 +
1√
5

)

.

We subdivide R into 7 polytopes as follows. Let M denote the pentagonal pyramid with
base vertices xk and apex a, and M ′ the pentagonal pyramid with base vertices x′

k and
apex a′. For i = 1, . . . , 5, let Ti denote the triangular prism whose two triangular faces
Fi and F ′

i consist of the vertices a,xi,xi+1 and a′,x′
i,x

′
i+1, respectively, where addition is

modulo 5. Note that the prisms Ti all share the lateral edge conv(a,a′). Now remove the
“top” pentagonal pyramid M ′. The result is a geometric polyhedral complex K consisting
of 6 geometric polyhedra. We call K the core (see Fig. ??). It forms the centerpiece of our
construction.

For i = 1, . . . , 5, let ei = conv(xi,xi+1) denote the edges of the base of the pentagonal
prism M , let e′i = conv(x′

i,a
′) denote the edges on the top of K containing a′, and let

ℓi = aff(ei) and ℓ′i = aff(e′i). Let Pi = aff(Ti ∩ Ti−1), and let Pb = aff(x1, . . . ,x5) denote the
supporting plane of the base of the pentagonal pyramid M .

We define 9 points p1, . . .p9 in Pb as follows. Let p2 = x1, p3 = x5, p5 = x2, p7 = x4.
Define p1,p4,p8,p9 by

{p1} = ℓ2 ∩ ℓ5, {p4} = ℓ3 ∩ ℓ5, {p8} = ℓ1 ∩ ℓ3, {p9} = ℓ2 ∩ ℓ4.

Finally, let ℓc = aff(a,a′), and define p6 by {p6} = ℓc ∩ Pb.
One can directly check that the points p1, . . . ,p9 constitute a realization Λ of the Perles

configuration (in fact the points are labeled so that pi corresponds to vertex i in Figure 1).
Indeed, all collinearities are satisfied (see Fig. ??). For example, p1, . . . ,p2,p3,p4 are all
contained in the line ℓ5 by definition, and p3,p6,p8 are collinear by a direct calculation.
Furthermore, it is clear from the definitions that in any geometric realization of K, the
collinearities {2, 5, 8}, {1, 5, 9}, {4, 7, 8}, {3, 7, 9}, {1, 2, 3, 4} are satisfied, since they corre-
spond to the lines ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, respectively. However, the collinearities {2, 6, 9}, {4, 5, 6},
{1, 6, 7}, {3, 6, 8} may fail. To obtain a geometric polyhedral complex X such that these
last four collinearities hold in any realization of X, we attach four belts to K, one for each
collinearity.

In order forX to be a polyhedral complex, when we attach four belts toK we must ensure
that they don’t intersect. To achieve this, the belts we use are long thin arcs consisting of
hundreds of triangular prisms. We have produced an explicit construction on the computer,
of which we give an overview here. The full details and code can be found on the website
listed in Appendix A.

We force the collinearity {2, 6, 9} to hold in any realization by attaching a belt B1 to
K as follows. Draw two simple arcs ϕ1, ϕ

′
1, which intersect K in at most their endpoints,
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and such that ϕ1(0) = ϕ′
1(0) = x3, ϕ1(1) = a′, and ϕ′

1(1) is a point lying in the plane P1,
above the edge e′1 and close to but not directly above a′. Place a large number N of points
roughly equidistantly along each arc, and label these points z1, . . . , zN and z′1, . . . , z

′
N ,

respectively. We demand that z1 = z′1 = x3, zN = a′, and z′N = ϕ′
1(1). These points

determine a collection of triangles ∆i = conv(zi, zi+1, z
′
i+1), for i = 1, . . . , N − 1 and ∆′

i =
conv(zi, z

′
i, z

′
i+1) for i = 2, . . . , N − 1.

For each triangle ∆i, we obtain a triangular prism with triangular facet ∆i by letting the
lateral edges be segments of the lines passing through p9 and one of zi, zi+1, z

′
i+1. Similarly

for the triangles ∆′
i. We demand in particular that the lateral edge containing z1 = x3 is

the edge e2, and that the lateral edge containing zN is the edge e′1. We are free to choose
the length of the remaining lateral edges. By choosing this length to be very short for all
lateral edges save for those containing points close to z1 and zN , we make it possible to
attach other belts while avoiding intersections.

Concretely, let m ∈ Z+ and let fm : [0, 1] → [0, 1] be defined by

fm(t) = (1− t)m + tm.

Let L(e) denote the length of the edge e of K, and let g(t) = (1− t)L(e2)+ tL(e′1). Define a
function hm by hm(t) = fm(t)g(t). Let Ei denote the lateral edge containing zi and E′

i the

lateral edge containing z′i. Then we choose the length of Ei to be hm( i−1
N−1 ) and the length

of E′
i to be hm( i−1

N
). Taking m large, we may ensure that the lengths of the lateral edges

of each prism are very short except near the edges e2 and e′1. In our explicit construction
we take m = 80.

The collection of the resulting triangular prisms forms a belt B′
1. Reflect B′

1 across the
plane P1, and call the result B′′

1 . Then B1 = B′
1 ∪ B′′

1 is the desired belt. It intersects K
in the three edges e2, e4, and e′1 (see Fig. 3). In our explicit construction we take N = 80,
so that B′

1 and B′′
1 each consist of 2(80 − 1) + 1 = 159 prisms, for a total of 2(159) = 318

prisms in the belt B1.
We now show that in any realization of the geometric polyhedral complex K ∪ B1, the

collinearity {2, 6, 9} is satisfied. Let Z denote any geometric realization of K∪B. Let pi, ℓi,

ℓ′i and P1, Pb denote the points, lines, and planes of Z corresponding to pi, ℓi, ℓ
′
i, and P1, Pb.

Since the belt B is attached to K along the three edges e2, e4, and e′1, the lines ℓ2, ℓ4, and

ℓ′1 must be concurrent by Lemma 3.3, and their point of intersection is {p9} = ℓ2 ∩ ℓ4. So

in particular, p9 ∈ ℓ′1. Clearly p9 ∈ Pb and ℓ′1 ⊆ P1, so we have p9 ∈ ℓ′1 ∩Pb ⊆ P1 ∩Pb. But

P1 ∩ Pb is a line containing p2 and p6. Thus p2, p6, p9 a are collinear.
We may force the remaining three collinearities to hold in any realization by attaching

three more belts to K. The construction of these remaining belts is analogous to the
construction of B1. In particular, attaching a belt B2 to the edges e3, e5, and e′2 forces the
collinearity {4, 5, 6}, attaching a belt B3 to the edges e5, e2, and e′4 forces the collinearity
{1, 6, 7}, and attaching a belt B4 to the edges e1, e3, and e′5 forces the collinearity {3, 6, 8}.
Let X denote the resulting geometric polyhedral complex with all 4 belts attached (see
Fig. 3). Choosing the arcs which define these belts to curve in the appropriate way, we
may ensure that the belts do not intersect. In our explicit construction, each of these four
belts consists of 318 triangular prisms. There are 5 triangular prisms in K, for a total of
4(318) + 5 = 1277 triangular prisms in X. Together with the pentagonal pyramid M , we
have a grand total of 1278 polytopes comprising X. For more pictures and further details
see Appendix A.
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Figure 3. Left: Attaching one belt in the construction of Theorem 1.1.
Right: The complete irrational complex with all four belts attached.

Thus in every geometric realization Y of X, the points corresponding to p1, . . . ,p9 form
a realization ΛP of LP , which is irrational by Lemma 1. Thus Y must have an irrational
vertex coordinate. Otherwise, the supporting planes of Y would be the defined by equations
with rational coefficients, whence the points of ΛP would be the solutions of systems of linear
equations with rational coefficients, hence rational, a contradiction. �

4. An unrealizable polyhedral complex

Proof of Theorem 1.2. Let A be a 3-simplex in R3, with vertices labeled x1,x2,x3,x4. Let
ei,j = conv(xi,xj), i 6= j, denote the edges of A. Attach a topological belt B consisting of 2
triangular prisms to the two edges x1x2 and x3x4 as shown in Figure 4. Call the resulting
topological polyhedral configuration X.

Suppose that X has a geometric realization Y , with vertices yi corresponding to xi. Since
the edges e1,2 and e3,4 both belong to the belt B, the corresponding edges of Y must be
concurrent by Lemma 3.3. But then the vertices y1,y2,y3,y4 are all coplanar. Hence they
do not determine a 3-simplex, a contradiction. �

Proof of Theorem 1.3. Let X denote the polyhedral complex of Theorem 1.2. As shown
in Figure 4, the vertices x1,x3,a1 and the edges between them determine a topological 2-
simplex, call it ∆1. Similarly, the vertices x2,x4,a2 and the edges between them determine
a topological 2-simplex ∆2. That is, ∆1 and ∆2 are topological 2-polyhedral complexes.
We define S = X ∪ {∆1,∆2}.
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x1

x4

x2x3

a1

a2

Figure 4. The unrealizable topological polyhedral complex of Theorem 1.2.

Note that S is not a 3-polyhedral complex by our definition, because it contains facets
∆1 and ∆2 which are not contained in any cell of S. However, we may create a polyhedral
complex from S as follows. Let R denote the bounded component of the complement of S
(i.e. R is the region surrounded by S). Let c ∈ R, and for each facet F in the boundary of
R, add to S the topological cone with apex c and base F . In other words, cone from the
point c. Let X ′ denote the resulting 3-polyhedral complex.

Then clearly X is a subcomplex of X ′, and |X ′| ∼ B3. Furthermore, X ′ has exactly 9
vertices, 24 edges, 25 facets, and 9 cells. The cells of X ′ are comprised of 5 tetrahedra, 2
triangular prisms, and 2 tetragonal pyramids. �

Remark 4.1 It is worth noting that the unrealizable complex of Theorem 1.2 is minimal,
in the sense that any topological 3-polyhedral complex consisting of two polyhedra is geo-
metrically realizable. To see this, let X be a topological 3-polyhedral complex consisting of
two 3-polyhedra Q1 and Q2. If Q1 and Q2 share less than a 2-face, the result is immediate.
So suppose that Q1 and Q2 share a 2-face F . Let P1 and P2 be polytopes isomorphic to
Q1 and Q2, respectively. Let F1 and F2 denote the facets of P1 and P2, respectively, that
correspond to F . Barnette and Grünbaum [BG] proved that the shape of one facet of a
3-polytope may be arbitrarily prescribed. Therefore we may choose P1 and P2 so that F1

and F2 are congruent. Apply an affine transformation that identifies F1 with F2. The result
is a geometric 3-polyhedral complex isomorphic to X.

5. Universality theorems

Let us first note that the first irrational polytope result of Perles was later extended
by Mnëv to a general universality theorem [Mn], and then further extended to all 4-
polytopes [R]. Similarly, Brehm’s result gives a universality theorem for self-intersecting
2-surfaces in R3 (see Subsection 7.2).

In what follows, we extend Theorem 1.1 to a similar universality result. Using belts, we
can in fact mimic the constructions of Theorem 1.1 for any point and line configuration. In
particular, for a point and line configuration L, we can construct a geometric 3-polyhedral
complex X(L) such that every realization of X(L) generates a realization of L. The univer-
sality theorem for point and line configurations (see e.g. [P]) then implies, in particular, that
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Figure 5. Left: A point and line configuration L that may have non-planar
realizations in RP3. Right: The resulting planar configuration L as con-
structed in Lemma 5.1.

for any proper subfield K of the algebraic closure of Q, there is a geometric 3-polyhedral
complex that cannot be realized with all vertex coordinates in K.

Technically, the universality theorem for point and line configurations assumes that the
realizations of a configuration are restricted to the projective plane RP2. If we allow realiza-
tions in RPd for d > 2, some realizations may not lie entirely in a single plane. A point and
line configuration L is said to be planar if every realization of L in RPd lies in a (projective)
2-plane. If a point and line configuration is not planar, there is a straightforward way to
extend it to a planar configuration, which we describe in the following lemma.

Lemma 5.1 Let L = ([n], E) be a point and line configuration. There is a point and line
configuration L = ([3n + 1], E) such that E ⊆ E, and the points of L are coplanar in any
realization of L in RPd. Furthermore, a planar realization of L contains a planar realization
of L.

Proof. Let L = ([n], E). For each point i ∈ [n], we add two points wi = n+2i−1, w′
i = n+2i

and the line ei = {i, wi, w
′
i}. Then we add a new point a = 3n + 1, together with two lines

l = {a,w1, . . . , wn} and l′ = {a,w′
1, . . . , w

′
n}. See Figure 5. Let L = ([3n+1], E) denote the

resulting point and line configuration. Clearly, in every realization of L in RPd, each point
p must lie in the plane determined by the two intersecting lines L and L′ corresponding to
l and l′.

Finally, let Λ denote a realization of L. Since X ⊆ X and E ⊆ E, there is a subset Λ ⊆ Λ
and a map f : X → Λ such that f is a bijection, and a collection of points {f(xi)}i∈I is
collinear if I ⊆ E. To see that a collection of points {f(xi)}i∈I is collinear only if I ⊆ E, note
that each abstract line ei = i, wi, w

′
i contains only one point of L, namely i. Furthermore,

the two lines L and L′ contain no points of L. So the lines added to E to form E do not
enforce any new concurrencies among the points of L. �

We call the configuration L, constructed in Lemma 5.1, the planar extension of L.
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p

A B

C

p1

p2

T

Figure 6. (Belts are shown schematically in purple) Left: A belt Bp which
ensures that the three lines spanned by the red edges are concurrent in any
realization of X. Right: Two belts B and C, attached to the tetrahedron A
along the green edges, which ensure that the three lines spanned by the red
edges are not concurrent in any realization of X (so that p1 6= p2). Note
that B and C share the red edge of the tetrahedron T , but they do not share
a 2-face.

Theorem 5.2 (Weak Universality Theorem) Let L be a point and line configuration, and
let K be a proper subfield of the algebraic closure of Q. There exists a geometric 3-polyhedral
complex X(L) such that if X(L) has a realization over K then L has a planar realization
over K. Moreover, the complex X(L) may be constructed using only triangular prisms.

Proof. We provide a sketch of the construction. By Lemma 5.1, we may assume that L is a
planar configuration (if L is not planar, replace it with its planar extension). Let Λ denote
a realization of L in RP3. For each line ℓ of Λ, place a tetrahedron with a marked edge e,
such that ℓ = aff(e).

For each point p ∈ Λ, let Lp denote the set of lines of Λ containing p. For each such set
Lp, add a belt Bp such that for each line ℓi ∈ Lp, the edge ei is identified with a lateral
edge of Bp. See Figure 6 (left).

Finally, for each collection of 3 lines ℓi, ℓj , ℓk which are not concurrent in the realization
Λ, place a tetrahedron Aijk with vertices labeled x1,x2,x3,x4. Add a belt Bijk such that
each of the 3 edges ei, ej , and x1x2 is identified with a lateral edge of Bijk. Add another
belt Cijk such that each of the 3 edges ej , ek, and x3x4 is attached along a lateral edge of
Cijk. See Figure 6 (right). Call the resulting geometric 3-polyhedral complex X(L).
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Let X ′ be a geometric realization of X(L). The belts Bp ensure that the concurrencies
present among the edges ei of X(L) hold among the corresponding edges e′i of X ′. The
points of intersection of the edges e′i of X

′ constitute a set of points Λ′. To show that Λ′ is
a realization of L, it remains to show that no further concurrencies hold among the edges
e′i. That is, we wish to show that Λ′ is not a degenerate realization of L. But this is ensured
by the tetrahedra Aijk and the corresponding pairs of belts Bijk and Cijk.

To see this, let ℓi, ℓj, ℓk be distinct lines of Λ which are not concurrent, and let ei, ej , ek
denote the corresponding edges of X(L). Then X(L) contains the tetrahedron Aijk and
belts Bijk, Cijk as described above. Let A′

ijk, B
′
ijk, C

′
ijk denote the corresponding prisms

and belts of X ′, where the vertices of A′
ijk are labeled x′

1,x
′
2,x

′
3,x

′
4. The belt B′

ijk ensures

that the edges e′i, e
′
j and x′

1x
′
2 are concurrent, and the belt C ′

ijk ensures that the edges e′j , e
′
k

and x′
3x

′
4 are concurrent. Suppose that the edges e′i, e

′
j , e

′
k of X ′ are concurrent. From the

concurrencies forced by the belts, this implies that the edges x′
1x

′
2 and x′

3x
′
4 are concurrent.

Thus the vertices x′
1,x

′
2,x

′
2,x

′
3 are coplanar, so they do not determine a tetrahedron, a

contradiction.
Now let K be a proper subfield of the algebraic closure of Q, and suppose that X(L) is

realizable over K. Let X ′ be a realization of X(L) having all vertex coordinates in K, and
let Λ be the realization of L generated by X ′. Then the affine hulls of the faces of X ′ are
defined by linear equations with coefficients in K. The points of Λ are the intersection of
these affine hulls, hence they are solutions of a system of linear equations with coefficients
in K. Thus the points of Λ have all coordinates in K. That is, L is realizable over K.

To prove the last claim of the theorem, note that each tetrahedron used in the above
construction may be replaced in with a triangular prism. In fact, the tetrahedra whose
marked edges generate the lines of Λ may be removed, as the edges of the attached belts
suffice to define these lines. The tetrahedra Aijk may be replaced with triangular prisms
in the obvious way, by attaching the corresponding belts along two skew edges of the
triangular prism, in the same way in which they were attached along two skew edges of the
tetrahedron. �

Theorem 5.2 is a weak universality theorem, in the sense that it does not imply that the
realization spaces of X(L) and L are stably equivalent. We would now like to investigate
whether it is possible to obtain this latter type of result. We will find that by modifying our
previous definitions slightly, we can in fact obtain a stronger and more general universality
theorem. To this end, we adopt the definition of stable equivalence given in [R], and we
define the realization spaces of X(L) and L as follows.

For a point and line configuration L = ([n], E), we define the (Euclidean) realization
space of L (in R3) to be the set

R(L) = {(p1, . . . ,pn) ∈ R3n | Λ = {p1, . . . ,pn} is a realization of L}.

In particular, we only allow realizations Λ in R3, rather than RP3 (that is, we do not allow
points at infinity). This will be important for our final universality result. Notice that the
coordinates of the realization space come with a particular order, induced by the natural
order on [n]. That is, for each i ∈ [n], if (p1, . . . ,pn) ∈ R(L) then pi must be the point
corresponding to i. For a geometric 3-polyhedral complex X with N vertices, then the
realization space of X is the set

R(X) = {(v 1, . . . , vN ) ∈ R3N | v 1, . . . , vN are the vertices of a realization X ′ of X}.
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Consider the natural map f : R(X(L)) → R(L) that assigns to each realization X ′

of X(L) the realization of L generated by X ′. The following informal argument shows
that f will not be a stable equivalence in general. Suppose that X(L) is constructed so
that its belts consist of a very large number of prisms. Let Λ be a realization of L, and
consider the fiber A = f−1(Λ). Since the belts of X(L) consist of a large number of prisms,
for a given pair of belts B1 and B2 of X(L), we may construct a realization X ′ ∈ A in
which the corresponding belts are knotted, and a realization Y ′ ∈ A in which they are
not knotted. Since we forbid the possibility that the belts B1 and B2 may intersect one
another arbitrarily, the knot in X ′ is non-trivial. That is, there is no continuous path from
X ′ to Y ′ in R(X(L)) ⊂ R3N . Therefore A is not path-connected. But all fibers of a stable
equivalence must be path-connected.

By modifying our definition of polyhedral complex slightly, we can eliminate the problem
encountered in the previous paragraph. The idea is to preserve the face identifications in
the complex, but allow polytopes to self-intersect (so in particular we will allow belts to
intersect one another arbitrarily).

We define a geometric d-polyhedral arrangement X = (X,A) to consist of a set X =
⋃n

i=1Xi, where each Xi is a (face lattice of a) polytope, together with a set A ⊂ X of
distinguished common faces, such that any face F ∈ A belongs to at least two polytopes,
and any two polytopes have at most one common face that is contained in A. That is, if
F ∈ A and F ∈ Xi ∩Xj , then G /∈ A for all other G ∈ Xi ∩Xj .

A geometric polyhedral arrangement Y = (Y,B) is a realization of X = (X,A) if there is a
bijection f : X → Y such thatXi ≃ f(Xi), and the face poset isomorphisms gi : Xi → f(Xi)
satisfy

F ∈ A if and only if gi(F ) ∈ B.

The realization space R(X ) of a polyhedral arrangement X is defined in the obvious way.
Note that any two polytopes in X may intersect in more than a common face of both, but

they can only have one common face distinguished by membership in A. That is, only the
common face F ∈ A is required to be a common face of both polytopes in every realization,
although the intersection of the polytopes may consist of much more.

Given a geometric d-polyhedral complex X =
⋃n

i=1Xi, we may construct a corresponding
geometric d-polyhedral arrangement X by taking

A = {F ∈ X | F ∈ Xi ∩Xj for some i 6= j}
and X = (X,A). The only difference between X and X is that in realizations of X , we
allow the polytopes to self-intersect arbitrarily. However, the intersections corresponding
to the faces in A are required to hold in all realizations of X . For this reason, Theorem 5.2
holds if we replace “polyhedral complex” with “polyhedral arrangement”, and the proof is
identical. With this understanding, we may prove the desired universality results.

Theorem 5.3 Let L be a point and line configuration. Then there is a polyhedral arrange-
ment X (L) such that R(X (L)) is stably equivalent to R(L).

Proof. Let L be a point and line configuration, with realization Λ ⊂ R3. Let Z(L) denote
the corresponding geometric 3-polyhedral complex constructed from Λ as in Theorem 5.2.
Let Z(L) be the polyhedral arrangement corresponding to Z(L). We begin by constructing
a polyhedral arrangement X = X (L) by adding additional polytopes to Z(L). The purpose
of adding these polytopes is simply to force the realizations of L generated by realizations
of X to lie in R3 (rather than RP3), hence in R(L).
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p

T

Figure 7. A belt, shown schematically in purple, attached to the four in-
dicated edges of the tetrahedra. This belt forces the point p to be a vertex
of the tetrahedron T in every realization of X .

Let pi ∈ Λ, and place a tetrahedron (or triangular prism) Ti such that pi is a vertex of
Ti. Let e1 and e2 denote two of the edges of Ti containing pi. Let B denote a belt of Z(L)
whose lateral edges are concurrent at pi. Let e3 and e4 denote two of the lateral edges of B.
Now construct a new belt Ci that is attached along four of its lateral edges to the four edges
e1, e2, e3, e4. See Figure 7. Adding Ti and Ci to Z(L) for each i ∈ [n] yields the polyhedral
arrangement X = X (L).

Consider a realization X ′ of X , and let Λ′ be the realization of Λ generated by X ′. For
a point p′ ∈ Λ′, let e′1, e

′
2, e

′
3, e

′
4 be the edges corresponding to e1, e2, e3, e4 in the above

construction. Since they are the lateral edges of a belt, these edges will be concurrent, at
p′. Since the point of concurrency of e′1 and e′2 is a vertex of X ′, we have that p′ is a vertex
of X ′. Thus, for any realization X ′ of X , the realization Λ′ of L generated by X ′ consists
entirely of vertices of X ′. In particular, Λ′ does not contain points at infinity.

We will now define a map F : R(X ) → R(L) such that F assigns to each realization
X ′ of X the corresponding realization of L generated by X ′. We show that F is a sta-
ble equivalence, by showing that it is the composition of stable projections and rational
homeomorphisms.

Let n denote the number of points of L and N the number of vertices of X . Then we
have R(L) ⊂ R3n, and R(X ) ⊂ R3N . From the construction of X(L) in Theorem 5.2, we
see that each point i of L corresponds to a belt Bi of X . In particular, we choose Bi to be
one of the belts such that the lateral edges of Bi are concurrent at the point pi ∈ Λ.

For each belt Bi, fix an ordering of the its vertices v i1, v i2, . . . , v isi , such that the first
four vertices are the (cyclically ordered) vertices of a lateral facet fi of Bi, and such that
v i1v i2 and v i3v i4 are the two lateral edges of fi. Let w1, . . . ,w r denote the remaining
vertices of X . Let f1 : R

3N → R3N be a map that permutes the coordinates, in such a way
that

f1(x) = (x11,x12,x13,x14,x21,x22,x23,x24, . . . ,xn1,xn2,xn3,xn4 | x15, . . . ,xnsn ,y1, . . . ,yr),
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a1

a2

a3

a4

gi(a1,a2,a3,a4)

hi(a1,a2,a3,a4)

b2

b4

b1

b3

a1

a3

Figure 8. The map si (left) and its inverse (right). Encircled points indicate
points obtained as the intersection of a red and blue line.

where each xij,yi ∈ R3, and X is obtained by letting xij and yi take on the values v ij and
w i, respectively. That is, each quadruple xi1,xi2,xi3,xi4 appears first in the ordering of
the coordinates determined by f1. We may choose any one of the many such maps f1, since
we do not care how the remaining coordinates (to the right of the bar) are permuted. Let

f2 : R
3N → R3(4n) denote the standard projection onto the first 4n triples of coordinates.

Consider a realization X ′ of X , and let Λ = {p1, . . . ,pn} ⊆ R3 be the realization of L
generated by X ′. Note that each point pi is the point of intersection of the lateral edges of
the belt B′

i of X ′ corresponding to the belt Bi of X . Let v ′
ij and w ′

i denote the corresponding

vertices of X ′

Note that v ′
i2v

′
i3 and v ′

i1v
′
i4 are the non-lateral edges of fi. Let ℓ1 = aff(v ′

i1, v
′
i2), ℓ2 =

aff(v ′
i3, v

′
i4), ℓ3 = aff(v ′

i2, v
′
i3), ℓ4 = aff(v ′

i1, v
′
i4) denote the lines spanned by these edges.

By definition of Bi, the lines ℓ1 and ℓ2 intersect at pi. Thus the coordinates of pi can be
solved for in terms of those of the v ij . That is, pi = gi(v

′
i1, v

′
i2, v

′
i3, v

′
i4) for some rational

function gi with coefficients in Q. Similarly, the lines ℓ3 and ℓ4 intersect in a point q i, so
q i = hi(v

′
i1, v

′
i2, v

′
i3, v

′
i4) for some rational function hi with coefficients in Q.

Let A ⊂ R3(4) denote the space of coplanar 4-tuples (x1,x2,x3,x4), xj ∈ R3, such that
no three are collinear. For each i, we define a map si : A → A by

si(xi1,xi2,xi3,xi4) = (gi(xi1,xi2,xi3,xi4),xi2, hi(xi1,xi2,xi3,x4),xi4).

From the definitions of gi and hi, we see that given a point in b = (b1, b2, b3, b4) ∈ A, we
may reconstruct the unique point a = (a1,a2,a3,a4) ∈ A for which si(a) = b . Namely,
a2 = b2, a4 = b4, a1 is the intersection of the lines aff(b1, b2) and aff(b3, b4), and a3 is
the intersection of the lines aff(b1, b4) and aff(b2, b3). See Figure 8. Thus si is a bijection,
and clearly si and s−1

i are continuous. Hence si is a homeomorphism. Since gi and hi are
rational functions with coefficients in Q, si is a rational homeomorphism.

It follows that the map f3 : A
n → An defined by

f3(x11,x12,x13,x14, . . . ,xn1,xn2,xn3,xn4) = (s1(x11,x12,x13,x14), . . . , sn(xn1,xn2,xn3,xn4))

Is a rational homeomorphism. Let f4 : R3(4n) → R3(4n) be the coordinate permutation
defined by

f4(x11,x12,x13,x14, . . . ,xn1,xn2,xn3,xn4) = (x11, . . . ,xn1,x12, . . . ,xn2,x13, . . . ,xn3,x14, . . . ,xn4).
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Let f5 : R
3(4n) → R3n denote the standard projection onto the first n triples of coordinates.

Then note that

f5◦f4◦f3(x11,x12,x13,x14, . . . ,xn1,xn2,xn3,xn4) = (g1(x11,x12,x13,x14), . . . , gn(xn1,xn2,xn3,xn4)),

so in particular

f5 ◦ f4 ◦ f3(v ′
11, v

′
12, v

′
13, v

′
14, . . . , v

′
n1, v

′
n2, v

′
n3, v

′
n4) = (p1,p2, . . . ,pn).

Let f ′
1 denote the restriction of f1 to R(X ), and recursively, for i > 1 let f ′

i denote the
restriction of fi to the range of fi−1. We define F = f ′

5 ◦ f ′
4 ◦ f ′

3 ◦ f ′
2 ◦ f ′

1. Then from the
definition of the functions f ′

i we see that F : R(X ) → R(L) and F is a surjection. We
demonstrated above that f3 is a rational homeomorphism, and the functions f1 and f4 are
simply permutations of the coordinates, hence rational homeomorphisms. It follows that
f ′
1, f

′
3, f

′
4 are rational homeomorphisms.

Furthermore, note that the functions f2 and f4 are standard coordinate projections. Since
realizations of X allow for self-intersection of polytopes, the only constraints on R(X ) are
those which require each vertex to be contained in the appropriate polytopes. Thus each
fiber of f ′

2 is the intersection of half spaces (in particular, no unions are taken over half
spaces), hence each fiber is a convex polyhedron. Similarly for f ′

4. It follows that f
′
2 and f ′

4

are stable projections. Thus F is a stable equivalence. �

While the above result shows that the realization space of a polyhedral arrangement is
stably equivalent to the underlying point and line configuration, we would like a stronger
result, which states that realization spaces of polyhedral arrangements can be stably equiva-
lent to arbitrary semialgebraic sets. For this, we will need to add an additional structure to
our point and line configurations, to obtain an oriented matroid. We provide an equivalent
definition of an oriented matroid, which will prove convenient for our purposes.

A line L ⊂ Rd has two possible orientations, each of which induces a linear order on the
points x ∈ L. Let L = (X,E) be a planar point and line configuration, such that every
two abstract lines e1, e2 ∈ E share a point of X (that is, e1 ∩ e2 6= ∅). Let Λ ⊂ Rd be a
realization of L. For each e ∈ E, let L be the line of Λ realizing e, and choose an orientation
γ of L. Write e = {i1, . . . , ik}, where (pi1 ,pi2 , · · ·pik) is the order of the pj ∈ L induced
by γ. We define the oriented line e′ to be the ordered tuple (i1, . . . , ik). Let E

′ denote the
resulting set of oriented lines e′. Then M = (X,E′) is an oriented matroid. One can readily
check that this definition is equivalent to those given elsewhere (see e.g. [R]). In particular,
the fact that we require every two lines of M to intersect in a point of M means that all
realizations of M (which will agree on the order of the points) will agree on the set of half
planes in which a given point lies.

If M = (X,E′) is an oriented matroid, let E be the set obtained by replacing each tuple
(i1, . . . , ik) ∈ E′ with the set {i1, . . . , ik}. Then we say that L(M) = (X,E) is the point and
line configuration corresponding to M. A realization of M is a set Λ = {p1, . . . ,pn} ⊂ Rd

such that Λ is a realization of L(M), and such that if L is a line of Λ corresponding to
e′ = (i1, . . . , ik), then there is an orientation γ of L such that (pi1 ,pi2 , · · ·pik) is the order
of the pj ∈ L induced by γ. In other words, a realization of M is a realization of the
underlying point and line configuration in which the points of each line have a prescribed
order, up to reversing the orientation of the line.

Theorem 5.4 Let M be an oriented matroid. Then there is a polyhedral arrangement
Y(M) such that R(Y(M)) is stably equivalent to R(M).
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z

Figure 9. The arrangement Iijk, with the two prisms T1 and T2 shown in
blue and the belt Hijk shown schematically in purple. The diagonals of the
facet f of T1 are shown in red.

Proof. Let M be an oriented matroid, and let Λ ⊂ R3 be a realization of L(M). Let
X (L(M)) be the polyhedral arrangement constructed from Λ as in Theorem 5.3. We write
X = X (L(M)). We introduce a new polyhedral gadget which, when added to X , will yield a
polyhedral arrangement Y = Y(M) such that every realization of Y generates a realization
of M. That is, every realization of Y generates a realization of L(M) in which the points
occur on each line in the order prescribed by M. The proof of stable equivalence is then
identical to the proof of Theorem 5.3.

Let pi,pj ,pk denote three points of Λ which appear consecutively on a line L of Λ. We
construct a belt Gijk consisting of two triangular prisms, call them T1 and T2, as follows.
Let v1, v 2, v 3, v 4 denote the vertices of a lateral facet f of T1 labeled cyclically, where
e1 = v 1v 4 and e2 = v2v3 are the lateral edges of f . We may choose the vertices xi so that
if ℓ1 = aff(v 1, v 2), ℓ2 = aff(v 1, v 3), and ℓ3 = aff(v 1, v 4), then pi ∈ ℓ1, pj ∈ ℓ2, and pk ∈ ℓ3.
Note that ℓ2 is the line spanned by the diagonal v1v3 of the facet f . Let z denote the
point of intersection of the diagonals v 1v 3 and v2v4. We attach T2 to T1 along the unique
lateral facet g of T1 that contains the edge e2 and does not contain e1. Let e3 denote the
non-lateral edge of T2 containing the vertex v3, and not contained in g. We may choose the
vertices of T2 such that e3 ⊂ ℓ2.

Attach a beltHijk toGijk along the edges e1, e2, e3 ofGijk. Call the resulting arrangement
Iijk (see Figure 9). Then in every realization of Iijk, the edges e1, e2, e3 will be concurrent.
Thus the vertex v 1 will be contained in aff(e3). Since v 3 ∈ e3 by construction, this implies
that ℓ2 = aff(e3). That is, the diagonal v1v3 will be collinear with the line spanned by e3.
If Ba denotes a belt of X with all lateral edges concurrent at pa, then attach a lateral edge
of the belt Bi to the edge e1 of Iijk, a lateral edge of Bk to e2, and a lateral edge of Bj to
e3. Let Y denote the arrangement obtained by adding Iijk to X for each such consecutive
collinear triple of points pi,pj ,pk, and performing the belt attachments just described.

Now suppose pi,pj ,pk are three consecutive collinear points of Λ, contained in a line L of
Λ. Let Y ′ be a realization of Y, and for each point, edge, line, or facet a of Y, let a′ denote
the corresponding object of Y ′. Then z′ must lie between v ′

2 and v ′
4 on the line aff(v ′

2, v
′
4),

since z′ is the intersection of the diagonals v ′
1v

′
3 and v ′

2v
′
4 of f ′, and f ′ is convex. From
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the attachment of the belts Bi, Bj, Bk to Iijk, we see that pi ∈ ℓ′1, pj ∈ aff(e′3) = ℓ′2, and
pk ∈ ℓ′3. Thus the point p′

j must lie between the points p′
i and p′

k on the line L′ containing
them.

It follows that in every realization Y ′ of Y, the realization Λ′ of L(M) generated by Y ′

has the property that all points occur along each line in the order prescribed by M. That
is, Λ′ is a realization of M. �

From Theorem 5.4, together with the universality theorem for oriented matroids (see [R]),
we obtain the following universality theorem for polyhedral arrangements.

Corollary 5.5 (Strong Universality Theorem) Let V ⊆ Rm be a basic primary semialge-
braic set, defined over Z. Then there is a polyhedral arrangement X such that R(X ) is
stably equivalent to V .

6. Geometrically realizing a class of polyhedral complexes

In this section we prove two positive results. The first result is Theorem 1.4, which
tells us that we may geometrically realize a certain class of simplicial complexes in arbitrary
dimension. The second is an analogous result for general polyhedral complexes, and holds
only for d ≤ 3. Before we present the statement of these theorems and their proofs we will
need to introduce some relevant definitions. Some of these definitions (such as star, link,
and vertex decomposable) are standard, while others (such as strongly vertex decomposable
and vertex truncatable) are not.

6.1. Strongly vertex decomposable simplicial complexes. Let X be a polyhedral
complex and let F be a face of X. The star of F in X is the set stX(F ) = {A ∈ X | F ⊆ A}.
Let cstX(F ) = {A ∈ X | A ⊆ B ∈ stX(F )} denote the closed star of F . Note that
cstX(F ) is a polyhedral complex, while stX(F ) may not be (since it may not be closed
under taking subfaces). If F ∈ X, let X r F = X − stX(F ) denote the deletion of F from
X, which is clearly a polyhedral complex. The link of F in X is the polyhedral complex
lkX(F ) = cstX(F )r F .

Let X be a topological d-polyhedral complex such that |X| ∼ Bd, and let v be a boundary
vertex of X. We say that v is boundary minimal if v is contained in exactly d boundary
facets, each of which is a (d− 1)-simplex. We call v a shedding vertex of X if |X r v| ∼ Bd,
and a strong shedding vertex if in addition v is boundary minimal. We say that X is
strongly vertex decomposable if either X is a single polyhedron, or recursively, X has a
strong shedding vertex v such that X r v is strongly vertex decomposable. A boundary
vertex w of X is a solitary vertex if there is exactly one polyhedron Pw ∈ PX such that
w ∈ Pw, and a strong solitary vertex if in addition w it is boundary minimal.

If we restrict ourselves to simplicial complexes, then we find that in any dimension d,
a strongly vertex decomposable simplicial d-ball is always geometrically realizable. This is
the statement of Theorem 1.4, and the proof is straightforward.

Proof of Theorem 1.4. Let X denote a d-simplicial complex, such that |X| ∼ Bd and X is
strongly vertex decomposable and. We proceed by induction on n, the number of vertices
of X. If n = d + 1, then X consists of a single d-simplex, which is obviously realizable. If
n > d+ 1, let v be a strong shedding vertex of X, and let X ′ = X r v. Then by definition
X ′ is a strongly vertex decomposable d-ball. Since X ′ has one fewer vertex than X, by the
induction hypothesis X ′ has a geometric realization Y ′. Since v is a strong shedding vertex,
it is adjacent to exactly d boundary vertices of X, call them w1, . . . wd. Then lk∂X(v) (the
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link of v in the complex ∂X) has exactly d faces of maximal dimension, call them F1, . . . , Fd,
each of which is a (d− 2)-face of X. Each face Fi is contained in exactly one facet τi of X

′.
Let Hi = aff(τi) and let H ′ = aff(w1, . . . , wd).

Since d hyperplanes in RPd always intersect in a point, we may let x denote the point of
intersection of the hyperplanes Hi. If x is a point at infinity, or x lies on the same side of
the hyperplane H ′ as |Y ′|, then apply a projective transformation so that x is a finite point
and x and |Y ′| lie on different sides of H ′. Now let u be a point contained in conv(Y ′ ∪ v)
such that u is very close to v. Add straight line segments between u and all vertices of
|Y ′| that correspond to neighbors of v in X. By taking u arbitrarily close to v, we may
ensure that these added line segments intersect |Y ′| only in the desired vertices. These
line segments, together with u and its neighbors, determine a collection of k-simplices for
2 ≤ k ≤ d. Adding these simplices to Y ′ yields a geometric d-simplicial complex Y such
that X ∼ Y . �

6.2. Vertex truncatable polyhedral complexes. Now we consider the general case that
X is a d-polyhedral complex. We will need to develop some more involved definitions in
order to prove a result analogous to Theorem 1.4.

Suppose X1 and X2 are two d-polyhedra that share exactly one facet Q. Then let
X1#QX2 denote the polyhedron obtained from X1 ∪X2 by replacing the two cells |X1| and
|X2| by the single cell |X1| ∪ |X2| and removing the facet Q.

We now define a construction called subdivision by facet. Let X be a polyhedral complex,
let v be a boundary vertex ofX, and let P ∈ PX(v). Let τ(v, P ) ⊆ |P | denote a (topological)
(d−1)-ball such that τ(v, P )∩|lk∂P (v)| = ∂τ(v, P ). In particular, the vertices ofX contained
in τ(v, P ) are exactly the neighbors of v in ∂X. We may construct a new polyhedral complex
X⊕τ(v, P ), called the subdivision of X at v and P , as follows. If X already contains a facet
F ⊆ P such that F ∩ |lk∂P (v)| = ∂F , then take X ⊕ τ(v, P ) = X. If X contains no such
facet, then X ⊕ τ(v, P ) is obtained by adding the facet τ(v, P ) and replacing P ∈ X with
two new cells σ1, σ2 such that σ1 ∪ σ2 = P and σ1 ∩ σ2 = τ(v, P ). Note that subdivision by
facet has no effect on simplicial complexes.

For a boundary vertex v of X we define the full subdivision of X at v by

X∗(v) = X
⊕

P∈PX(v)

τ(v, P ).

That is, X∗(v) is obtained from X by repeatedly doing subdivision by facet, in effect
subdividing X at v and P for each P ∈ PX(v) (see Fig. 10).

We say that X is vertex truncatable if |X| ∼ Bd and at least one of the following holds:
(a) X is a d-simplex.

(b) X has a strong shedding vertex v such that X∗(v)r v is vertex truncatable.

(c) X has a strong solitary vertex v such that X∗(v)r v is vertex truncatable.

Note that if |X| ∼ Bd and v is a strong shedding vertex of X, then v is clearly a strong shed-
ding vertex of X∗(v). Thus |X∗(v)r v| ∼ Bd. It follows that strongly vertex decomposable
implies vertex truncatable.

Two k-faces F1, F2 ∈ X are said to be strongly adjacent if dim(F1 ∩F2) = k− 1. If X1 is
a polyhedron of X and F1, F2 ∈ X1 are strongly adjacent facets, then we define α(F1, F2)
to be the interior angle of X1 formed between F1 and F2. More precisely, α(F1, F2) is the
angle between the normal vectors to the hyperplanes aff(F1) and aff(F2), with sign chosen
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Figure 10. A 2-polyhedral complex with vertex v encircled, and the result-
ing complex X∗(v) with the added facets τ(v, P ) shown in red.

so that the angle is interior to X1. If d = 2 then α(F1, F2) is a vertex angle, and if d = 3
then α(F1, F2) is a dihedral angle.

Given a d-polyhedron X in Rn and a facet F ∈ X, the Schlegel set of X with respect to
F , which we denote by ξ(X,F ), is the closed convex set bounded by the hyperplanes aff(F )
and aff(Gi) for each facet Gi strongly adjacent to F . That is, if G1, . . . , Gk ∈ X denote
the facets strongly adjacent to F , HGi

denotes the closed halfspace bounded by aff(Gi) and
meeting the interior of X, and HF denotes the closed halfspace bounded by aff(F ) and

not meeting the interior of X, then ξ(X,F ) = HF ∩⋂k
i=1HGi

. A Schlegel point is a point
y ∈ int(ξ(X,F )).

If the facet F is a (d−1)-simplex, the hyperplanes aff(Gi) intersect in a (possibly infinite)
point, which we call the apex of ξ(X,F ). If the apex x is a finite point, then x ∈ ξ(X,F )
if and only if x and X lie on opposite sides of the hyperplane aff(F ). If x is a finite point
and x ∈ ξ(X,F ), then ξ(X,F ) is just the cone with base F and apex x.

Theorem 6.1 Let d ≤ 3 and let X be a topological d-polyhedral complex in Rd such that
|X| ∼ Bd and all interior facets F ∈ X−∂X are simplices. If X is vertex truncatable, then
there is a geometric polyhedral complex Y in Rd such that X ≃ Y . Furthermore, we may
choose Y to have all vertices rational.

We prove in fact a stringer result, that such as embedding exists for every given embed-
ding of ∂X. It is important to emphasize that this is a much stronger property, which does
not extend to conditions of Theorem 1.4 (see Subsection ??).

Proof. To prove the theorem, we strengthen it, which in turn strengthens our induction
hypothesis. Namely, we claim that if such a Y exists, then furthermore:

(i) For any polytope Z such that ∂Z ≃ ∂X, we may choose Y such that |Y | = |Z|.
(ii) Let ǫ > 0. Let X1, . . . Xk ∈ PX such that Xi ∩ Xj ⊆ ∂X and Xi ∩ ∂X is a facet

of X, call it Fi. Let Yi ∈ PY be the polyhedron corresponding to Xi and let Gi ∈ ∂Y be
the face corresponding to Fi ∈ ∂X. Then we may choose Y such that α(Hj , Gi) < ǫ for all
i = 1, . . . , k and every face Hj ∈ Yi strongly adjacent to Gi.

If d ≤ 1 the theorem is trivial, so assume d ∈ {2, 3}. Suppose that X is a vertex
collapsible d-polyhedral complex with simplicial interior facets. We proceed by induction
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on the number n of vertices of X. In the base case X has d+ 1 vertices, and we may take
Y to be any geometric d-simplex in Rd. Now suppose n > d+ 1.

Since X is vertex truncatable, choose a boundary vertex w0 satisfying either condition
(b) or (c) of the definition. Let X ′ = X∗(w0)rw0. By definition, X ′ is vertex truncatable,
so in particular |X ′| ∼ Bd. Furthermore, all interior facets of X ′ are clearly simplices.

Let Z be a polytope such that ∂Z ≃ ∂X. If d = 3, such a polytope Z exists by Steinitz’s
Theorem. If d = 2 then Z may be any strictly convex polygon with the same number of
boundary vertices as X. Since w0 is boundary minimal, it has d neighbors w1, . . . , wd in
∂X. Let v0 denote the vertex of Z corresponding to w0. For each i = 1, . . . , d, the vertex
wi corresponds to a vertex vi of Z, where vi is a neighbor of v0. The vertices vi lie on a
hyperplane H = aff(v1, . . . , vd). The hyperplane H splits Z into two polytopes Q1, Q2,
each defined by taking all faces of Z lying on a given side of H, which includes the facet
TZ = conv(v1, . . . , vd) in both cases. One of these two polytopes, say Q1, contains v0. Then
note that Q1 is a d-simplex.

Clearly |lkX∗(w0)(w0)| is homeomorphic to a (d − 1)-ball. So if d = 3 then lkX∗(w0)(w0)
is isomorphic to the Schlegel diagram of some 3-polytope by Steinitz’s theorem. Call this
polytope A. If d = 2 then we may simply take A to be a convex polygon with one more
edge than lkX∗(w0)(w0). Let u1, . . . , ud be the vertices of A corresponding to the vertices
v1, . . . , vd of lkX∗(w0)(w0), and let TA = conv(u1, . . . , ud). Note that TA is a (d−1)-simplex,
and a facet of A. Apply an affine transformation to |A| so that TA = TZ . If A is not a
simplex, apply a projective transformation to |A| that fixes TA and takes the apex x of
ξ(A,TA) to a finite point on the side of the hyperplane aff(TA) not containing |A|.

For a set S ⊆ Rd, let (S, 1) = {(x, 1) ∈ Rd × R | x ∈ S}. Form the (d + 1)-cone C with
base (|A|, 1) and apex a ∈ Rd+1, ad+1 6= 1. Let FC denote the (clearly simplicial) d-face of
C containing a and (TA, 1). Let W denote the Schegel projection of C onto its facet FC ,
with respect to a Schlegel point y. Then W is a geometric polyhedral complex. Clearly W
contains a subcomplex B such that B ≃ A. Since (TA, 1) ⊆ FC , the (d − 1)-face (TA, 1) is
fixed by the Schlegel projection, so in fact (TA, 1) ∈ B is the face of B corresponding to
TA ∈ A. Apply an affine transformation to |W | that maps (TA, 1) to TA = TZ and maps
a to v0. This transforms |B| accordingly. In particular, we now have |W | = |Q1|. Thus
Z ′ = B#TZ

Q2 is a polytope such that ∂Z ′ ≃ ∂X ′.
By the induction hypothesis and (i), since X ′ contains one fewer vertex than X, there is

a geometric polyhedral complex Y ′ such that X ′ ≃ Y ′ and |Y ′| = |Z ′|. Let Y ∗ = Y ′ ∪W .
Then clearly X∗(w0) ≃ Y ∗. Removing the facets of Y ∗ corresponding to the facets τ(w0, P )
of X∗(w0), we obtain a polyhedral complex Y such that X ≃ Y and |Y | = |Z|. This
establishes (i), provided that each cell of Y is convex. We now show that this is the case.

Let X ′
1, . . . ,X

′
k ∈ PX′ denote the d-polyhedra of X ′ such that |X ′

i| ⊆ |X| for some
X ∈ PX(w0). We will let Xi denote the unique d-polyhedron of X such that |X ′

i| ⊆ |Xi|.
For all i, j = 1, . . . , k, since w0 ∈ Xi ∩ Xj and X is a polyhedral complex, we must have
X ′

i ∩X ′
j ⊆ ∂X ′, for otherwise Xi and Xj would intersect in more than a unique common

face. If w0 is a strong solitary vertex of X, then k = 1. Thus the single polyhedron Y1 ∈ PY

corresponding to X1 is clearly convex from the above construction.
Now suppose that w0 is a strong shedding vertex of X. Note that any shedding vertex

w0 of X must satisfy cstX(w0) ∩ ∂X = cst∂X(w0), for otherwise |X r w0| would not be
homeomorphic to Bd. Thus we must have X ′

i ∩ ∂X ′ = τ(w0,Xi). So X ′
1, . . . X

′
k satisfy

the hypotheses of (ii). Let Y ′
i ∈ PY ′ be the polyhedron corresponding to X ′

i and Gi ∈ Y ′

the facet corresponding to τ(w0,Xi). Let Yi ∈ PY be the unique polyhedron such that
|Y ′

i | ⊆ |Yi|. Since our induction hypothesis is enhanced by (ii), we may assume that the
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angles α(Hj , Gi) are arbitrarily small for each i and each face Hj ∈ Y ′
i strongly adjacent to

Gi. Since the cells |Y ′
i | are convex by induction and form arbitrarily small angles with Gi,

we may ensure that on removing Gi the resulting cell |Yi| ∈ Y is convex. Finally, if σ ∈ Y
is a cell not having any of the |Y ′

i | as a subset, then either σ is a d-simplex (hence convex)
or σ ∈ Y ′. In the latter case σ is convex because Y ′ is a geometric polyhedral complex.

Now we must show that (ii) holds. Let X1, . . . ,Xℓ ∈ PX be a collection of polytopes
satisfying the hypotheses of (ii), and let Y1, . . . Yℓ ∈ PY denote the corresponding polytopes
of Y . If Yi ∈ PY ′ then we obtain the conclusion of (ii) from the induction hypothesis.
Now suppose Yi /∈ PY ′ . Then Yi ∈ PW . If the A in the above construction is a simplex,
then ℓ = 1. Let v be the vertex of A not contained in TA. Then we may clearly choose
v arbitrarily close to the facet Yi ∩ ∂Y . If A is not a simplex, then because the point x
is finite and lies on the side of aff(TA) opposite to that of A, x ∈ ξ(C,FC). In particular
ξ(C,FC ) is a cone with base FC and apex x ∈ Rd+1. By choosing the Schlegel point y in
the above construction arbitrarily close to x, we may ensure that all such angles α(Fi, Fj)
in the projection W are arbitrarily small.

Finally, that Y may be chosen to be rational is an immediate consequence of the methods
of the proof. Broadly speaking, we obtained Y by first using Steinitz’s theorem to produce
polytopes Z and A, and then manipulating these polytopes using projective transformations.
But from the proof of Steinitz’s theorem, we may take both Z and A to be rational. By
then using only rational affine and projective transformations in the above constructions,
we may in fact obtain a rational geometric polyhedral complex Y such that X ≃ Y . �

It is straightforward to show that all 2-polyhedral complexes are vertex truncatable. Thus
Theorem 6.1 implies that all 2-polyhedral complexes are geometrically realizable. Note that
every 2-polyhedral complex is a 2-connected plane graph. However, the converse is not true.
In fact, if a 2-connected plane graph is not a polyhedral complex (i.e. if the intersection of
two faces is more than a unique common edge or vertex of both), then it clearly does not
admit an embedding such that all faces are strictly convex.

Therefore we obtain necessary and sufficient conditions for a 2-connected plane graph G
to admit an isotopic embedding G′ such that all faces of G′ are strictly convex. Specifically,
a 2-connected plane graph G has a strictly convex isotopic embedding if and only if G is a
2-polyhedral complex. From this we recover Tutte’s theorem [T1].

Finally, we note that the condition d ≤ 3 in the statement of Theorem 6.1 plays a crucial
role. Namely, it allows us to invoke Steinitz’s theorem (for d = 3). For example, by Steinitz’s
theorem a simplicial 2-sphere is always isomorphic to the boundary of a 3-polytope. In
higher dimensions the analogous statement is not true (see [GS]).

7. Further discussion

7.1. It is perhaps not obvious why Theorem 1.1 does not follow from existence of irrational
4-polytopes. Indeed, one can take a Schlegel diagram Q of an irrational 4-polytope P and
conjecture that this is the desired irrational polyhedral complex. The logical fallacy here
is that the implications go the other way. If the Schlegel diagram of P is irrational, then
indeed P must be an irrational polytope. However, the converse is not true. There is no
reason why all realizations of the Schegel diagram Q must have irrational coordinates, even
if P is irrational. In fact, after computing degrees of freedom one should expect additional
realizations of Q. Similarly, it is only in R3 that one can have (and does have) the Maxwell-
Cremona theorem [R]; in R4 and higher dimensions it easily fails in full generality (cf. ??).
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On the other hand, it was noted by Richter-Gebert [?, §10] that the polytope operations
used in the construction of irrational polytopes can be emulated in R3 by an analogous op-
erations on the level of Schegel diagram.1 Richter-Gebert briefly outlined both an irrational
construction and a universality type theorem. If completed, the former construction would
prove smaller than out 1278 polytope construction in Theorem 1.1, but each polytope is
more complicated. The latter (universality result), is of a different nature from Theorem 5.5
as no intersections are allowed. As stated, it would imply only the first part of Theorem 5.2
(and only if the outside face is a tetrahedron), since we allow only triangular prisms as our
polyhedra.

7.2. Let us here address a delicate issue of Brehm’s universality theorem, as outlined in [Br,
Z2]. Our Theorem 5.5 is clearly a variation on Brehm’s announced result. In fact, the proof
ideas do not seem very far from ours, even if different on a technical level. Unfortunately,
the Brehm’s complete proof has never appeared, and from our experience with universality
type theorems these details are occasionally delicate and important. Thus, one can view our
work as either an application of our tools to re-derive Brehm’s results, or the first complete
proof of a theorem of this type. Since in fact our construction has further properties is an
unexpected bonus.

Let us mention that allowing intersections in our proof of Theorem 5.5 as the belts can
get linked and knotted in a non-trivial way, a possibility we cannot account without further
sub-triangulating the construction.

7.3. There is a rather simple reason why Tutte’s theorems are delicate and unlikely to
allow a direct extension to higher dimensions, even ignoring the topological obstructions
as in the paper. Consider the first two graphs as in Figure 11 below. The smaller of the
two has a non-strict convex realization, while the bigger does not. Tutte’s result is “if and
only if”, and he explains that the difference between the two is a combinatorial rather than
geometric or topological reason. Now of course, neither have a (strict) convex realization.
This can be explained from the fact that this graph is not 3-connected and thus its spring
embedding collapses. But in R3 if one replaces the middle square with an octahedron, the
connectivity obstacle disappears.

Figure 11. Examples and counterexamples.

1We learned about this work only after the results in this paper were completed.
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7.4. The vertex truncatability condition in Theorem 1.4 is somewhat restrictive already
in R3. For example, it cannot apply to any triangulation of the octahedron or the icosahe-
dron since their boundaries have no vertices of degree three.

Recall now that the inductive assumption in the proof of Theorem 1.4 implied that the
boundary can be prescribed in advance. Now the study of triangulations of the octahedron
shows that vertex truncatability is critical for the result. Consider an octahedron Q =
(11′22′33′) with topological triangulation (122′3), (122′3′), (1′233′), (1′2′33′), and (22′33′).
In this triangulation, the triangles (122′) and (1′33′) are not linked (topologically). But this
is false for some realizations of Q. This means that Theorem 1.4, at least a stronger version
where the boundary is prescribed, cannot possibly be extended to triangulations as simple
as this one.

Interestingly, one can easily see why the “linked triangle obstacles” never appears in our
situation. That is because the vertex truncatability condition forbids all diagonals, defined
as inner edges connecting two boundary vertices. This follows easily by induction.

Finally, let us mention that we do not believe that Theorem 1.4 extends to d ≥ 4. It
would be interesting to find such a counterexample.

7.5. It is obvious that the triangulation produced in Theorem 1.4 can be made rational:
simply perturb all the vertices. In particular, this explains why we must use non-simplicial
polytopes in the proof of Theorem 1.1.

It is perhaps less obvious that all geometric realizations produced in Theorem 6.1 are
rational. Although the resulting polyhedral complex must have simplicial interior faces, the
boundary faces can be arbitrary. Here rationality is a corollary resulting from the nature
of the proof: all steps, in particular all projective transformations can be done over Q.

7.6. Recently, two new explicit examples of simplicial balls with further properties were
announced in [BL]. They have 12 and 15 vertices, respectively. This can be contrasted with
the 9 vertices of the topological polyhedral ball X ′ we construct in the proof of Theorem 1.3.
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Appendix A. Belt construction in figures and numbers

It follows from Theorem 1.1 that the belts cannot be given by explicit (integer) coor-
dinates. We give the explicit description of the belts by specifying the arcs on which the
triangular facets of the prisms lie, as well as a function describing their lateral lengths
(see Figure 12). Note that the prism lengths are made small except at the boundary to
ensure that the belts do not intersect. Furthermore, we must ensure that the arcs bend
sufficiently to avoid each other at the top of the core. To create the arcs we start with a
family of circles, and then apply a parametrized family of rotations to stretch them. The
Mathematica code describing the explicit details of the construction, and used to gen-
erate the complete irrational complex and the 3D graphics in this paper, can be found at
http://www.math.ucla.edu/~stedmanw/research/.
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Figure 12. Left: Circles used in the first stage of the design of each belt.
Right: The prism length function fm for m = 80, described in the proof of
Theorem 1.1.

Figure 13. Left: The shape of one belt, obtained by stretching the circles
of Fig. 12. Right: Belts do not intersect at the top of the core.

In each belt, our construction uses 318 triangular prisms, exactly 2(80 − 1) + 1 = 159
prisms per semi-belt. The core consists of 5 triangular prisms and 1 pentagonal pyramid.
The complete irrational complex thus consists of a total of 4 · 318 + 5 = 1277 triangular
prisms and 1 pentagonal pyramid, as in the theorem.
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Since the belts come close to intersecting near the boundary of the core, some checking
is necessary. In Figure 13 we show how the belts near-miss each other due to their shape.
We conclude with a rotated view of the irrational polyhedral complex.

Figure 14. A rotated view of the irrational complex.
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