
WHY IS π < 2φ ?

Abstract. We give a proof of the inequality in the title in terms of Fibonacci numbers
and Euler numbers via a combinatorial argument and asymptotics for these numbers.
The result is motivated by Sidorenko’s theorem on the number of linear extensions of
a partially ordered set and its complement. We conclude with some open problems.
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1. Introduction

We start with the inequality

(∗) π < 2φ, where φ =
1 +
√

5

2

is the golden ratio. The question in the title may seem rather innocent. Of course,
π ≈ 3.141593 < 2φ ≈ 3.236068. How deep can this be? Inequality (∗) has a conceptual
proof in terms of two classical combinatorial sequences. Let us set this up first.

Our first sequence {Fn} is the Fibonacci numbers, defined by F0 = F1 = 1, Fn+1 =
Fn + Fn−1 for n ≥ 1. This is perhaps one best known integer sequence which begins

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

See [K] and [OEIS, A000045] for a trove of information about this wonderful sequence.
Our second sequence {En} is the sequence of Euler numbers. This is a sequence

which begins

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . .

Our favorite definition of the sequence is via the Seidel–Entringer triangle of Seidel
[Se]:

1

0 → 1

1 ← 1 ← 0

0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0

0 → 5 → 10 → 14 → 16 → 16

Here one alternates direction, following the ox-plowing and boustrophedon order, start
the row with zero, and each new number equal to the previous number plus the number
above. For example, 14 = 10 + 4 as in the last row of the triangle above. The numbers
in this triangle are called Entringer numbers. The nonzero first and last number in
each row are the Euler numbers. We refer to [S2] for an extensive survey and to [OEIS,
A000111] for numerous result and further references.

Theorem 1. For all n ≥ 1, we have:

En · Fn ≥ n!

For example, F3 ·E3 = 2 ·3 = 3!, F4 ·E4 = 5 ·5 = 25 > 4! = 24, F5 ·E5 = 8 ·16 = 128 >
5! = 120, etc. To understand the connection, recall the classical generating functions
for each sequence:

F(t) =
∞∑
n=0

Fn t
n =

1

1− t− t2 and

E(t) =
∞∑
n=0

En
tn

n!
= tan(t) + sec(t) =

1 + sin(t)

cos(t)
.

http://oeis.org/A000045
http://oeis.org/A000111
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See [S2, Thm. 1.1], [GJ, §3.2.22], [Me] for different proofs of the statement about E(t).
These formulas imply the following (also classical) asymptotics of the numbers

Fn ∼
1√
5
φn+1 and

En

n!
∼ 4

π

(
2

π

)n

.

Here we use an ∼ bn as a notation for an/bn → 1 as n→∞.
In fact, we only need the base of the exponent and not the leading constants. Here

φ is the smallest root of 1 − t − t2 = 0. Similarly, π/2 is the smallest (in absolute
value) solution of cos(t) = 0. While the formula for Fibonacci numbers is written in
most combinatorics textbooks, the asymptotic formula for Euler numbers is not as well
known. We refer to a marvelous monograph [FlS, p. 269] where this is one of the main
examples and to the survey [S2, Eq. 1.10].

Now, the theorem and the asymptotics above give

1 ≤ Fn · En

n!
∼ 4φ√

5π

(
2φ

π

)n

.

This implies inequality (∗). See below why the inequality has to be strict.

The rest of the paper is structured as follows. First, we give a combinatorial proof
of the theorem in the next section. We then discuss the origin of the theorem, state
exercises that provide details for our proofs, and give some curious open problems
(Section 3).

2. Combinatorial proof of Theorem 1

We start with classical combinatorial interpretations of Euler and Fibonacci numbers.
These will be used to obtain a combinatorial proof of Theorem 1.

First, consider words in the symbols {�, ⊂, ⊃}, where each open bracket “⊂” is
followed by a closed bracket “⊃”. Denote by Bn the set of such sequences of length n.
For example,

B4 =
{
� � � �, � �⊂⊃, �⊂⊃�, ⊂⊃��, ⊂⊃⊂⊃

}
Proposition 2. We have |Bn| = Fn, for all n ≥ 1.

Let Sn denote the set of all permutations of {1, 2, . . . , n}, so |Sn| = n!. A permutation
σ ∈ Sn is called alternating if σ(1) < σ(2) > σ(3) < σ(4) > . . . Let An be the set of
alternating permutations in Sn.

Proposition 3. We have |An| = En, for all n ≥ 1.

These results are well known. The proof of Proposition 2 is an easy exercise in
induction. Proposition 3 follows as a corollary of Exercise 5 below using the Seidel–
Entringer triangle.

We can now reformulate Theorem 1 as:∣∣An

∣∣ · ∣∣Bn∣∣ ≥ ∣∣Sn

∣∣.
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Consider now the map Φ : An×Bn → Sn defined as follows: Φ(σ,w) = ω, where ω is a
permutation obtained from σ ∈ An by swapping numbers in the positions of a pair of
consecutive brackets “⊂⊃ ” in w ∈ Bn. For example,

Φ
(
(3, 6, 2, 5, 4, 7, 1, 8), � �⊂⊃�⊂⊃�

)
= (3, 6, 5, 2, 4, 1, 7, 8).

The theorem now follows from the following lemma.

Lemma 4. The map Φ : An × Bn → Sn is a surjection.

Proof. We need to show that for every ω ∈ Sn there exist σ ∈ An and w ∈ Bn such
that ω = Φ(σ,w). Denote by J = {ω(2), ω(4), . . .} the set of entries in even positions,
and let b = ω(i) be the smallest entry in J . Locally, permutation ω looks as follows:

ω = (. . . , x, a, b, c, y . . .).

Now, if b > a, c, do nothing. Since x, y > b, locally we have the desired inequalities
x > a < b > c < y. Then repeat the procedure by induction for sub-permutations
σ1 = (. . . , x, a) and σ2 = (c, y, . . .).

If b < max{a, c}, swap b with the largest of these elements. Say this is a. Again,
locally we have the desired inequalities x > b < a > c. Make the word w have a pair
of brackets ⊂⊃ indicating that a and b are swapped. Then repeat the procedure by
induction for sub-permutations σ1 = (. . . , x) and σ2 = (c, y, . . .). In the case when
max{a, c} = c, proceed symmetrically with permutations σ1 = (. . . , x, a) and σ2 =
(b, y, . . .). Let σ denote the resulting permutation at the end of the process.

Observe that elements that move (b and possibly a/c) move at most once, so the
bracket sequence w is well defined. Note also that at every move elements at even
positions could only increase and at odd – decrease, and that the parity of positions
translates to σ1 and σ2.

By induction, we obtain alternating inequalities for both σ1 and σ2; the last element
of σ1 increases if the last position of σ1 is even, and decreases if odd; similarly the first
element of σ2 is followed by an increase if its position in w is odd, and is followed by a
decrease if even. The last element of σ1 and the first element of σ2 are also smaller or
larger than the elements adjacent to them in the middle (b and possibly a and c) with
inequalities matching the parity of the position (increase if odd and decrease if even).
Thus σ is alternating, as desired. Finally, note that Φ(σ,w) = ω, by construction. This
completes the proof. �

Exercise 5. Denote by En,k = |An+1,k| for n = 0, 1, . . . and k = 0, . . . , n, where
An,k = {σ ∈ An, σ(1) = k} is the set of alternating permutations σ ∈ Sm such that
σ(1) = k. Note that En,n = En. Place these numbers in the Seidel–Entringer triangle
in the ox-plowing order and prove that they satisfy equations as in the triangle. Deduce
Proposition 3.

Exercise 6. The goal of this exercise is to use the Seidel–Entringer triangle to show
that the generating function E(t) =

∑∞
n=0Enx

n/n! equals tan(t) + sec(t), see e.g. [A]
and [KGP, Ex. 6.75].
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(a) Consider a triangular array of integers

a00
a10 a11

a20 a11 a22
· · ·

satisfying aij = aij−1+ai−1,j−1, i.e. each entry, except those on the left diagonal,
is a sum of the entry to its left and the entry above it to its left. Show that

ann =
n∑

k=0

(
n

k

)
ak0 and

∞∑
n=0

ann
tn

n!
= et

∞∑
n=0

an0
tn

n!
.

(b) Change the signs of the Seidel–Entringer triangle so that we have two positive
rows, two negative rows, two positive rows, etc.:

1
0 1

−1 −1 0
0 −1 −2 −2

5 5 4 2 0
0 5 10 14 16 16

Let u(t) and v(t) be the exponential generating functions for the left and right
diagonals of this signed Seidel–Entringer triangle. Deduce that v(t) = etu(t).

(c) For u(t) and v(t) as defined above show that −v(t) + 2 = e−tu(t).
(d) Show that u(t) = cosh(t), v(t) = 1 + tanh(t) and that E(t) = tan(t) + sec(t).

Exercise 7. Find a pair of permutations σ, σ′ ∈ S4 such that Φ(σ) = Φ(σ′). Use the
proof above to show that En · Fn > n!(1 + ε)n for some explicit ε > 0.

Exercise 8. Denote by g(σ) the number of times σ ∈ Sn appears as the image of Φ.
Give an explicit combinatorial interpretation of g(σ). Find σ ∈ Sn for which g(σ) is
maximal.

3. Linear extensions of partially ordered sets

We denote by P a partially ordered set, or poset for short, on a set X of n = |X|
elements, its order relation is denoted by �. Let e(P) be the number of linear extensions
of P , defined as bijections f : X → {1, . . . , n} such that f(u) < f(v) for all u, v ∈ X
with u � v. For example, if the poset P forms a single n-chain (every two elements
are comparable), we have e(P) = 1. On the other hand, if the poset P forms a single
n-antichain (no two elements are comparable), we have e(P) = n!. We refer to [T1],
[T2, Ch. 8] and [S1, Ch. 3] for standard definitions and notation.

The following geometric construction is our main source of examples. Let S ⊂ R2

be a finite set of points. Define an ordering (x1, y1) 4 (x2, y2) when x1 ≤ x2 and
y1 ≤ y2. The resulting poset PS is called two-dimensional. For example a poset Hp,q

with p+ q+1 elements forming a hook (two incomparable chains with p and q elements
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with an extra minimal element) has
(
p+q
p

)
linear extensions. Similarly, poset Un forming

a zigzag pattern with n points as in in Figure 1, has Euler number e(Un) = En of linear
extensions.

Another notable example is the poset Ck with 2× k elements forming a grid. It has
Catalan number of linear extensions:

e(Ck) =
1

k + 1

(
2k

k

)
(see e.g. [S1, S3] and [OEIS, A000108]).

H4,5 C6 U7

1

2

3

1

2

3

4

U7

Figure 1. Two-dimensional posets H4,5, C6, U7 and a complement of U7.

For a poset P on set S, denote by C(P) the comparability graph of P , that is the
graph with vertices P and edges {x, y} if x and y are comparable in the poset. A poset
P on S is called a complement if its comparability graph C(P) is the complement
of C(P). Note that a poset can have more than one complement.

Proposition 9. Every two-dimensional poset P has a complement poset P.

We leave the proof of the proposition to the reader with a hint given in Figure 2.

Example 10. A complement poset Un is described as follows: elements X = X1 ∪X2

where X1 = {1, . . . , bn/2c} and X2 = {1′, . . . , dn/2e′}, and relations i � j and i′ � j′

if i < j, i � j′ if j − i > 1, and i′ � j if j − i > 0. See Figure 1 for an example.
Next, we use induction to prove that e(Un) = Fn. First note that e(U0) = e(U1) =

1. For n ≥ 1, the minimal elements of Un+1 are 1 and 1′, the minimal elements of
Un+1−{1′} are 1 and 2′, and the minimal element of Un+1−{1} is 1′. Thus, the linear
extensions of Un+1 either start with 1′ or with both 11′. Thus

e(Un+1) = e(Un+1 − {1′}) + e(Un+1 − {1, 1′}).
Since Un+1−{1′} and Un+1−{1, 1′} are isomorphic to Un and Un−1 respectively, then
we obtain that e(Un+1) satisfies the Fibonacci recurrence.

Exercise 11. Describe the complement poset Hp,q. Show that e(Hp,q) = (p+q+1)p!q!.

Exercise 12. Describe the complement poset Ck. Prove that Qk := e(Ck) is the number
of permutations (a1, . . . , ak, b1, . . . , bk) ∈ S2k such that ai < bj for all 1 ≤ i < j ≤ k.

http://oeis.org/A000108
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Remark 13. The problem of computing e(P) is known to be #P-complete [BW], and
is difficult even in some seemingly simple cases (see e.g. [ERZ, MPP]).

P P P

Figure 2. The Hasse diagram of a two-dimensional poset P , its com-
plement P as a set of points in R2 , and the Hasse diagram of P .

We are now getting to the heart of the motivation behind Theorem 1.

Theorem 14 (Sidorenko [Si]). Let P be a two-dimensional poset with n elements, and
let P be a complement of P. We have

e(P) e(P) ≥ n!

Clearly, when P is an n-chain, we have P is an n-antichain, and the inequality is
tight. Similarly, by Exercise 11, we have e(Hp,q)e(Hp,q) = n! since n = |Hp,q| = p+q+1
in this case, so the inequality is tight again.

Observe that Exercise 10 and Sidorenko’s theorem immediately imply Theorem 1.
Note that the proof of Sidorenko’s theorem is non-bijective and uses Stanley’s interpre-
tation of e(P) as volumes of certain polytopes. The following exercise gives an idea of
this connection.

Exercise 15. Consider a polytope Pn ⊂ Rn defined by the following inequalities:

xi ≥ 0, for all 1 ≤ i ≤ n,

xi + xi+1 ≤ 1, for all 1 ≤ i ≤ n− 1.

Describe P3. Prove that Pn has Fn+1 has vertices. Prove that vol(Pn) = En/n!.

Our proof of Theorem 1 suggests that there might be a direct combinatorial proof
for all two-dimensional posets. If this is too much to hope for, perhaps the following
problem can be resolved.

Open Problem 16. Give a combinatorial proof that QkCk ≥ (2k)!, where Qk = e(Ck).
A direct computation shows that the sequence {Qk} starts with 2, 12, 150, 3192, 106290,
etc. Find the generating function

Q(t) = 1 +
∞∑
k=1

Qk
tk

k!

and exact asymptotics for Qk. Note that by Sidorenko’s theorem and Exercise 12, we
have Qk ≥ (2k)!/4k.
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Remark 17. We should mention that Sidorenko’s theorem can be reduced to a special
case of the Mahler conjecture, see [BBS]. This leads to a counterpart to Sidorenko’s
theorem, giving the following upper bound:

e(P) e(P) ≤ n!
(π

2

)n (
1 + o(1)

)
.

The proof uses Santaló’s inequality for polar polytopes, which is sharp for convex bodies.
The authors of [BBS] suggest that this bound can be further improved, although not
by much.

Open Problem 18. Denote by Rk the poset corresponding to [k× k] square of points
in the grid. It is known that

log e(Rk) =
1

2
n log n +

(
1

2
− 2 log 2

)
n + O

(√
n log n

)
.

where n = k2 (see e.g. [MPP] and [OEIS, A039622]). Find the asymptotics of e(Rk).

Note that since e(Rk) ≤
√
n!, we have e(Rk) ≥

√
n!. Note also that by the the remark

above we have:

log e(Rk) =
1

2
n log n + Θ(n).
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