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ABSTRACT OF THE DISSERTATION
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by
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Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Igor Pak, Chair

This dissertation investigates the difficulty of counting two classes of combinatorial objects,

linear extensions of posets and contingency tables. For linear extensions of posets, we prove

a number of hardness results. We show that computing the parity of the number of linear

extensions of dimension two is ⊕P-complete. We extend this result to show that counting

linear extensions of dimension two posets is #P-complete, answering a question posed by

Möhring[Möh89] and by Felsner and Wernisch [FW97]. We also show that counting linear

extensions of height two posets is #P-complete, resolving a conjecture of Brightwell and

Winkler [BW91]. We extend this result to show that counting linear extensions of incidence

posets is #P-complete.

For the results about posets of dimension two we employed a computer search to construct

families of permutations that behave as logic gates in a certain setting. The results about

height two posets and incidence posets rely instead on gadgets that were constructed by

hand.

For contingency tables, we work from the opposite direction, proving results about the

feasibility of approximately counting and sampling tables. We give a new algorithm for

approximating the number of contingency tables with fixed margins, which we call the SHM

algorithm. We prove that the SHM algorithm is a fully polynomial random approximation

scheme (FPRAS) for the number of tables for certain families of sparse margins. We then

ii



use this result to establish a polynomial mixing time for the Diaconis-Gangolli chain with

sparse margins.

Using our SHM algorithm and techniques in discrete probability, we present experimental

and theoretical evidence in support of answers to a number of questions Barvinok posed about

the distribution of individual entries in contingency tables [Bar10b]. In particular, we show

that for a certain set of margins considered by Barvinok, and under certain assumptions

about weak independence of entries, the distribution of the corner table entry exhibits a

phase transition in mean and distribution.
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CHAPTER 1

Introduction

1.1 Linear Extensions

Counting linear extensions (#LE) of a finite poset is a fundamental problem in both Com-

binatorics and Computer Science, with connections and applications ranging from Statistics

to Optimization, to Social Choice Theory. It is primarily motivated by the following basic

question: given partial information about preferences between various objects, what are the

chances of other comparisons?

In 1991, Brightwell and Winkler showed that #LE is #P-complete [BW91]. This re-

solved the 1986 conjecture by Linial [Lin86]. The #P-completeness of the following natural

extension was first posed in 1988 by Möhring [Möh89, p. 163], and then again in 1997 by

Felsner and Wernisch [FW97] motivated by different applications.

#D2LE (Number of linear extensions of dimension-2 posets)

Input: A partially ordered set P of dimension two.

Output: The number e(P ) of linear extensions of P .

Here the poset P is said to have dimension two if it can be represented by a finite set of

points
{

(x1, y1), . . . , (xn, yn)
}
⊂ R2, with the inequalities (xi, yi) 4 (xj, yj) if xi ≤ xj and

yi ≤ yj, i 6= j. Equivalently, poset P has dimension two if and only if its comparability

graph Γ(P ) has complement Γ(P ) ' Γ(P ∗), for a dual poset P ∗ (see e.g. [Tro92]).

In Chapter 3, we prove:

Theorem 1.1.1. #D2LE is #P-complete.
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We also consider the parity of e(P ).

⊕D2LE (Parity of linear extensions of dimension-2 posets)

Input: A partially ordered set P of dimension two.

Output: The parity of the number e(P ) of linear extensions of P .

In Chapter 2, we prove:

Theorem 1.1.2. ⊕D2LE is ⊕P-complete.

Remark 1.1.3. This result is independent of Theorem 1.1.1, though the arguments are

closely related. The proof of Theorem 1.1.1 relies on mod p reductions, for a collection of

primes p whose size depends on the number of clauses in the corresponding 3SAT formula.

The complexity of computing #D2LE mod p for any prime greater than 2 remains open.

We conjecture that the #D2LE mod p problem is mod p-complete for every prime p.

As a motivation, Felsner and Wernisch [FW97] show that #D2LE is equivalent to the

following problem on the number of possible bubble sorted permutations τ from a given

σ ∈ Sn (see also [BjW91, Reu96]).

#Bruhat (Size of principal ideal in the weak Bruhat order)

Input: A permutation σ ∈ Sn.

Output: The number e(σ) of permutations τ ∈ Sn with τ ≤ σ.

Here we write τ ≤ σ if τ can be obtained from σ by a bubble sorting : repeated application

of adjacent transpositions which the minimal possible number of inversions:

σ = τ · (i1, i1 + 1) · · · (i`, i` + 1), where inv(σ) = inv(τ) + `.

The weak Bruhat order Bn is defined to be (Sn,≤). In #Bruhat, we consider the principal

ideal Pσ = Bn ∩ {ω ≤ σ}, so in the notation above e(σ) = e(Pσ). Note that #Bruhat is

3



in #P. Because the reduction is parsimonious, it likewise implies that ⊕Bruhat is equivalent

to ⊕D2LE.

We include a quick proof of the reduction of #D2LE to #Bruhat in §2.1.2, both for

completeness and to introduce the framework for the proof of the main result.

Theorem 1.1.4. #Bruhat is #P-complete.

The proof of Theorem 1.1.4 is presented in two stages. First, we will describe a combi-

natorial problem #RigidCircuit. In Lemma 2.1.3 we give a parsimonious reduction from

#3SAT, which is #P-complete, to #RigidCircuits. Then, in Lemma 3.1.2, we use a more

complicated set of reductions from #RigidCircuits to #Bruhat to show that #Bruhat

is #P-complete.

Let us emphasize that the proof of Lemma 3.1.2 is computer assisted, i.e. it has gates

found by computer, but which in principle can be checked directly. See §3.4.1 for a detailed

discussion of computational aspects of the proof.

Remark 1.1.5. The proof in [BW91] uses a modulo p argument and the Chinese Remainder

Theorem, which we also employ for our result (cf. §3.4.2). In fact, this approach is one of

the few applicable for these problems, since the existence of FPRAS (see below) strongly

suggests the impossibility of a parsimonious reduction of #3SAT and its relatives.

Brightwell and Winkler’s proof that #LE is #P-complete [BW91] showed further that

counting linear extensions for posets of height 3 is #P-complete. They conjectured that the

following problem is #P-complete:

#H2LE (Number of linear extensions of height-2 posets)

Input: A partially ordered set P of height 2.

Output: The number e(P ) of linear extensions.

Here height two means that P has two levels, i.e. no chains of length 3. This problem has

been open for 27 years, most recently reiterated in [Hub14, LS17]. We resolve it in Chapter 4.
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Theorem 1.1.6. #H2LE is #P-complete.

Our next result in Chapter 4 is an extension of Theorem 1.1.6. It was proposed recently

by Lee and Skipper in [LS17], motivated by the optimization of nonlinear functions over the

much-studied correlation polytope (see e.g. [DL97, LSS18]).

#IPLE (Number of linear extensions of incidence posets)

Input: A graph G = (V,E).

Output: The number e(IG) of linear extensions of the incidence poset IG.

Here the incidence poset IG is defined as a height 2 posets with vertices V on one level,

edges E on another level, and the inequalities defined by adjacencies in G.

Theorem 1.1.7. #IPLE is #P-complete.

Theorem 1.1.7 implies Theorem 1.1.6, of course. Formally, the proofs of both results

are independent, but use the same technical ideas of using number theory to to obtain

targeted reductions modulo primes. Since the proof Theorem 1.1.6 is both technically and

conceptually simpler, we chose to include both proofs.

Historical review

The notion of #P-completeness was introduced by Valiant [Val79] a way to characterize the

class of computationally hard counting problems; see [MM11, Pap94] for a modern treatment.

The #LE problem is related to the problem counting order ideals in a poset, known to be

#P-complete [PB83]. In contrast with the latter problem, #LE has FPRAS which allows

(1 + ε)-approximation of e(P ), see e.g. [KK91, Mat91].

There are several classes of posets for which the counting is known to be polynomial:

the dimension-2 posets given by Young diagrams of skew shape (see e.g. [MPP18, Sta97]),

the series-parallel posets (also dimension 2, see [Möh89, §2.4]), a larger class of posets with

bounded decomposition diameter [Möh89, §4.2], sparse posets [EGKO16, KHNK16], posets
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whose covering graphs have disjoint cycles (see [Atk89]), and N-free posets with bounded

width and spread [FM14].

The study of posets of a given dimension is an important area, and the dimension 2 is both

the first interesting dimension and special due to the duality property. See monograph [Tro92]

for a comprehensive treatment. Posets of dimension 2 have a sufficiently rigid combinatorial

structure to make various computational problems tractable. For example, the decision

problem whether a poset has dimension 2 is in P (see e.g. [Tro95]), as is the above mentioned

problem of counting ideals of dimension-2 posets, see [Möh89, p. 163].

The weak Bruhat order is a fundamental object in both Representation Theory and

Algebraic Combinatorics, well studied in much greater generality, see e.g. [BjB05, MS05,

Sta97]. In fact, it plays a key role in several areas such as Schubert calculus (see e.g. [Mac91,

Man01]), and Kazhdan–Lusztig theory (see e.g. [BjB05, Lus03]). In the context of bubble

sorting, counting Bruhat order sizes is discussed by Knuth [Knu98, §5.2.1], among others. As

we mentioned above, the connection between #D2LE and #Bruhat has been rediscovered

a number of times in varying degree of generality, see [BjW91, FW97, Reu96].

The height-2 posets is an important and well studied class of posets. Brightwell and

Winkler write: “We strongly suspect that Linear Extension Count for posets of height 2 is

still #P-complete, but it seems that an entirely different construction is required to prove

this” [BW91]. Incidence posets have also been studied quite intensely. We refer to recent

papers [LS17, TW14] for an overview of the area and further references.

The correlation polytopes were introduced by Padberg [Pad89] and studied intensely in a

number of papers (see e.g. [DL97, Pit91]). The connection to linear extensions of incidence

posets was given in [LS17] based on [Sta86] and other related earlier work (see [LSS18] for a

detailed overview).

Proof structure

Chapters 2 and 3 contain a highly technical proof of theorems 1.1.1 and 1.1.4. We begin

with basic definition and notation in Section 1.2. In sections 2.1 and 2.2 we present the
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construction. In Section 3.3 we gives proofs of technical lemmas. The list systems of algebraic

equations defining parameters of the logical gates is in Section 3.5. We conclude this portion

of the discussion with final remarks and open problems in Section 3.4.

1.2 Basic definitions and notation

1.2.1 Posets

We assume the reader is familiar with basic definitions on posets, see e.g. [Tro95] and [Sta97,

Ch. 3]. We describe a linear extension of a poset P = (X,<) on a set X with n elements as an

assignment of the values {1, 2, . . . , n} to X, or as a labeling of X by the values {1, 2, . . . , n}.

Let ` : X → {1, 2, . . . , n} be a linear extension of P , and let X be given a default ordering,

say X = {x1, . . . , xn}. Then the function i 7→ `(xi) is a permutation in Sn. We call this the

permutation induced by the linear extension.

1.2.2 Permutations

For the technical constructions in Section 3.2 we express all permutations in one-line notation,

in other words as a sequence where the integers from 1 to n occur exactly once. For several

of these constructions, we wish to generalize permutations by either omitting or repeating

numbers. We can treat an arbitrary sequence of n integers as a permutation in Sn by

relabeling the elements from 1 to n, from smallest to largest, and, when a number is repeated,

from left to right. For example, we would relabel the sequence

(7, 7, 5, 3, 3, 5)

by replacing the two 3’s with a 1 and a 2, the two 5’s with a 3 and a 4, and the two 7’s with

a 5 and 6, giving the permutation

(5, 6, 3, 1, 2, 4).

We will describe this relabeling explicitly where it helps to clarify the presentation, and talk

about shifting elements up or down.
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We use the term block exclusively to refer to a sequence of consecutive integers in consec-

utive position, and write it by replacing the sequence with an integer encased in a box: 3 .

1.2.3 Other notation

We write N = {0, 1, 2, . . .} for the set of nonnegative integers, and Fq to denote the finite

field with q elements. Let [n] = {1, 2, . . . , n} and
(
[n]
k

)
to denote k-subsets of [n]. To make

our notation more readable, when writing vectors in Fdq , we omit parentheses and commas,

so that (0, 1) becomes 01.

We refer to [MM11, Pap94] for notation, basic definitions and results in computational

complexity. We use φ for logical gates. We introduce a new notation φ o (v1, v2) to be a

result of a certain operation corresponding to (v1, v2) applied to φ, see §2.2.2.

1.3 Contingency tables

1.3.1 Counting sparse contingency tables

Random generation and approximate counting contingency tables is a classical problem in

statistics, discrete probability, combinatorics and theoretical computer science (see below).

The MCMC algorithms have been introduced over 20 years ago and are known to work in

case of dense tables (i.e. with large margins). The MCMC approach in this chapter is the

first that provably works for sparse tables.

Formally, let a = (a1, . . . , am), a1 ≥ . . . ≥ am > 0, and b = (b1, . . . , bn), b1 ≥ . . . ≥ bn > 0,

be two integer sequences with equal sum:

m∑

i=1

ai =
n∑

j=1

bj = N.

A contingency table with margins (a,b) is an m× n matrix of non-negative integers whose

i-th row sums to ai and whose j-th column sums to bj. We denote by T (a, b) the set of all

such matrices, and let T(a,b) := |T (a, b)|.

In this chapter we give a new polynomial time algorithm for approximating T(a,b) for
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sparse matrices. More precisely, we prove FPRAS in the following two cases:

(1) for small margins a1, b1 = O(nα), α < 1/4, and m = Θ(n),

(2) for smooth margins a1, b1 = O(n1−ε), ε > 0, s.t. a1/am, b1/bn = O(1), and m = Θ(n).

These results are new, conjectured for 20 years, and have been long sought in both theory

and practice.

1.3.2 Brief summary of prior work

Since the literature is large and diverse, below we give a brief summary of several approaches

to approximating T(a,b). More details and precise references are given later in the intro-

duction.

◦ Exact counting in polynomial time for bounded m and n, via Barvinok’s algorithm.

◦ Exact counting in polynomial time for bounded a1 or b1 via dynamic programming.

◦ Exact counting is #P-complete even for m = 2 or n = 2.

◦ Approximate counting is self-reducible.

◦ Exact asymptotic formulas in the uniform case a1 = . . . = am, b1 = . . . = bn.

◦ Estimates in the non-uniform case whose quality depends on a1/am and b1/bn.

◦ Lower and upper bounds for smooth margins, i.e. for bounded a1/am, b1/bn and m =

Θ(n).

◦ Quasi-poly time algorithm for approximate counting for a1/am, b1/bn < 1.6 and m =

Θ(n).

◦ MCMC based FPRAS for bounded height m or width n.

◦ MCMC based FPRAS for large margins am = Ω(n3/2m logm), bn = Ω(m3/2n log n).

It is obvious but still worth mentioning, that even in the best studied uniform case the

exact asymptotic estimates do not give FPRAS since the error terms depend on parameters
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a1, b1,m and n.

Magic squares are n×n contingency tables with uniform margins equal to K. This is an

especially attractive example because of applications to many different areas (see below). Our

results give the f irst FPRAS for the number t(n,K) of such magic squares for K = O(n1−ε),

ε > 0. In contrast, the case of K = Ω(n2.5 log n) was done earlier. This leaves unresolved

the intermediate cases K = nα, 1 ≤ α ≤ 2.5, a curious open problem.

1.3.3 Complexity background

Counting contingency tables is #P-complete and feasibility of certain 3-dim contingency

tables is NP-complete, see [DO04, DKM97, IJ94]. Note that the exact counting is conjectured

to be strongly #P-complete (see [DO04, PP86]), but this requires the matrices to have

unbounded dimensions m,n = ω(1).

Barvinok’s algorithm [Bar93] allows the exact counting in polynomial time when the

table dimensions m,n are fixed. For fixed margins a1, b1 = O(1), the exact counting can be

done by a dynamic programming (see e.g. [GM77]).

The first rigorous MCMC approach was given in [DG95] based on the Markov chain

which chooses random 2× 2 submatrix and performs the following one of the following two

changes with equal probability (stay put if the change is impossible):

+1 −1

−1 +1

or
−1 +1

+1 −1

(1.3.1)

This Diaconis–Gangolli Markov chain was first rigorously studied by Diaconis and Saloff–

Coste [DS95] for fixed row and column sums, but their bounds are exponential in mn.

Dyer, Kannan and Mount [DKM97] gave a polynomial time bound is obtained for margins

am = Ω(n2m) and bn = Ω(m2n), see also [Mou95]. These bounds were later improved by

Morris [Mor02] to am = Ω(n3/2m logm) and bn = Ω(m3/2n log n). See also [CGY96] for a

somewhat weaker earlier bound for a different but related chain.
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When the number of rows m is bounded, a polynomial time algorithm was given by

Cryan and Dyer [CD03] with no constraints on the margins. See also [C+06] for sharper

bounds and a natural MCMC approach in the same setting.

The self-reducibility of approximate counting T(a,b) is standard and described in a

number of sources (see e.g. [DG95, DKM97]). This follows from the fact that the number

of contingency tables X = (xij) ∈ T (a, b) have entry x11 > s is equal to the number of

contingency tables T(a,b) with a1 ← a1 − s, b1 ← b1 − s. As a consequence, a polynomial

mixing time of a Markov chain with uniform distribution on a self-reducibility closed class

of matrices implies the FPRAS for that class.

A completely different approach was developed by Barvinok, Luria, Samorodnitsky and

Yong in [BLSY10]; they gave a quasi-polynomial algorithm for “smooth margins” s.t. a1/am,

b1/bn < φ, where φ = (1 +
√

5)/2 is the golden ratio. This approach was later extended

in [BH12] to an asymptotic bound in some cases.

1.3.4 Statistical background

The problem of sampling contingency tables is fundamental in statistics and applications

to natural sciences, see e.g. [Eve92, FLL17, Kat14]. Both general and binary (0-1) tables

are studied. The latter are somewhat easier to sample in cases of practical interest (see

e.g. [DS98, MH13]).

Many authors at different times lamented the difficulty of sampling contingency tables

from the uniform distribution, notably Diaconis and Efron [DE85] (see also [Kat14, MH13]).

Instead, the hypergeometric (Fisher−Yates) distribution is commonly used as it is easy to

sample (see e.g. [DG95, Kat14]), or a variety of ad hoc approaches (especially in the binary

case). This is understood to be a major problem in the area. Notably, the authors in [MH13]

present a case study of how a biased distribution used in [PA86] gave an apparently wrong

conclusion (by several orders of magnitude).

There are various practical sampling algorithms in the literature with different levels of

rigor and proven efficiency. Beside the MCMC approach discussed earlier, let us mention
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the sequential importance sampling [CDHL05] (cf. [BSSV12]), the algebraic approach (see

e.g. [DS98, DF03, Sul18+]), and various divide-and-conquer approaches (see e.g. [Mou95,

DZ15+]).

1.3.5 Combinatorial background

Contingency tables naturally correspond to adjacency matrices of bipartite multigraphs;

sampling such graphs with given degree vectors is important in combinatorics and network

analysis (see e.g. [DG95, Wor18]). Exact asymptotic formulas are known in a few cases,

notably for general and binary relatively small degrees (see e.g. [Bar09, BC78, GM13]).

Note that [BBK72] requires bounded row and column sums, while the more recent [GM13]

requires a1b1 = o(N2/3). General lower and upper bounds are given in [Bar10a, Bar12]; note

that these bounds are off by an exponential factor.

Contingency tables are also integer points of the transportation polytopes which play an

important role in combinatorial optimization (see e.g. [DK14]). They are a special case (for

a bipartite graph) of a more general integer network flow problem, see e.g. [BDV04, Bar09,

CDR10].

For m = n and equal margins (the uniform case) the transportation polytope is the

(scaled) Birkhoff polytope Bn ⊂ Rn2
of bistochastic matrices. This polytope is of interest in

Combinatorics, Optimization, Probability and other areas (see e.g. [DK14, DG04, Pak00]).

The integer points in K · Bn are called magic squares ; they are n × n contingency tables

with row and column sums equal to K. The number t(n,K) of such magic squares is the

evaluation of the Ehrhart polynomial, intensely studied both combinatorially, empirically and

asymptotically, see [BP03, CM09, CV16]. It is not known, e.g., if
{
t(n, n)

}
or
{

vol(Bn)
}

can be computed in poly(n) time; see [Pak18] for the context on computability of sequences.
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1.3.6 Random graphs and contingency tables

There is a thematic connection between questions about contingency tables and questions

about random graph. For sparse simple graphs the classical questions going back to Erdős

and Rényi, intensely studied in the last several decades [Bo01, 4] have been: How many

graphs are there with given degrees? What do random graphs look like? How do their

properties change when the parameters change? The case of fixed degrees is fundamental in

the network and internet sciences, as large scale real-world networks have a power-law degree

distribution [Ba99, 1, 5]. The asymptotics, MCMC random generation and approximate

counting are obtained under various degree constraints [Wor18], [3, §11].

Binary (0-1) and general contingency tables are adjacency matrices of bipartite graphs

and multi-graphs, respectively; they are also standard models in network theory [2]. Like

sparse simple graphs with fixed degrees, sparse contingency tables with sublinear o(n) mar-

gins have easier structure when it comes to asymptotic counting [GM13] and random gen-

eration [DP19+d]. For the linear margins Θ(n), the existing techniques for the number of

contingency tables either do not apply, or produce bounds which are off by an exponential

factor [Bar12, BLSY10].

This background motivates Chapter 6. We explore random models for contingency tables

and demonstrate in Theorem 6.4.2 the existence of a phase transition in individual entry

distribution under certain assumptions of weak independence.
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CHAPTER 2

⊕D2LE is ⊕P-complete

2.1 The setup for #D2LE, ⊕D2LE, #Bruhat and ⊕Bruhat

2.1.1 #D2LE and ⊕D2LE

This chapter is devoted to a proof of Theorem 1.1.2. There is a substantial area of overlap

between this proof and the proof of Theorem 1.1.1. Both rely on the equivalence between

#Bruhat and #D2LE, and both use the same notion of rigid circuits. Both proofs also

encode rigid circuits in permutations in an almost identical fashion. One unfortunate dif-

ference is that the permutations representing True and False in the two constructions are

opposite of each other.

Other noteworthy differences are in the technical constructions to initialize and test wires

(§ 2.2.4 vs § 3.2.3) and the construction of parameterized gates introduced in § 3.2.4. We

will defer the proof of some of the more technical lemmas to the next chapter whenever

translating the general argument mod p to the mod 2 case would be unenlightening.

2.1.2 Linear extensions and the Bruhat order

We begin with a known result that #D2LE is equivalent to #Bruhat.

Lemma 2.1.1 ([FW97]). For every σ ∈ Sn, there exists a poset Pσ of dimension two with n

elements such that e(Pσ) = e(σ). Conversely, for every poset P of dimension two with n

elements, there exists σ ∈ Sn such that e(P ) = e(σ).

Proof. Given a permutation σ ∈ Sn, we form a poset Pσ of dimension 2 by taking the
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points pi = (i, σ−1(i)) ∈ R2, with the standard product ordering. A linear extension of Pσ

is a function from the pi’s to {1, 2, . . . , n}, which induces a permutation τ as described in

Section 1.2. Then τ is a linear extension of Pσ if and only if τ(i) < τ(j) whenever i < j

and σ−1(i) < σ−1(j). When this holds, for ω = τ−1 we have ω ≤ σ in the weak Bruhat

order, so that e(Pσ) = e(σ).

Conversely, given a poset P of dimension two, it can be represented as a collection of

points pi ∈ R2 with the product ordering. We translate the points of pi so that they are

all in the first quadrant, and then, for some sufficiently small ε > 0, perform the affine

transformation:

pi 7→




1 ε

ε 1



pi.

This transformation ensures that no two points are in the same row or column without

changing the ordering on P . Label the points from 1 to n, reading from left to right, and

replace the x-coordinates with these labels. Similarly, replace the y-coordinates with the

labels 1 through n, read from bottom to top. The points now represent the poset Pσ, for

some σ ∈ Sn. We thus have e(P ) = e(Pσ) = e(σ).

2.1.3 Rigid circuits

In this subsection, we define rigid circuits, which will be the principal gadget in this proof

and the proof of Theorem 1.1.4. Visually, a rigid circuit consists of a collection of wires laid

out in the plane. The wires run horizontally, from left to right. They carry a binary signal,

with a 1 representing True, and a 0 representing False. Adjacent wires can feed into logic

gates, where they interact in some way; wires can only cross by using a certain logic gate

called a Swap gate1.

At the far left of the picture, the wires represent binary inputs. The bottom wire at the

1Note that the construction we give here is a little different from the usual definition of Boolean circuits
(see e.g. [Vol99]). In particular, the TestEq and TestNeq gates are relations but not functions. We call
our circuits rigid to emphasize that wires are ordered and only adjacent wires can interact.
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far right is the output wire. The circuit is satisfied by a choice of inputs if the output wire

reads true. Formally, we give the following definitions:

A circuit state with k wires is a vector v ∈ Fk2. A general rigid circuit with m circuit

states2 and k wires is a sequence of m circuit states (v1, . . . , vm), each with k wires, together

with a list of relations (L1, . . . , Lm−1) on Fk2, such that (vi, vi+1) ∈ Li, for 1 ≤ i ≤ m − 1.

The relations Li we call logic gates.

We next define specialized rigid circuits, which are the circuits we will use throughout the

paper, by restricting our choice of logic gates. We define five simple logic gates as follows.

Identity gate L1: The identity function from F2 → F2.

Swap gate L2: A function from F2
2 → F2

2 that sends ab→ ba, for a, b ∈ F2.

AndOr gate L3: A function from F2
2 → F2

2 that sends ab→ (a and b)(a or b),

where and and or are bitwise operations, for a, b ∈ F2.

TestEq gate L4: A relation on F2
2 that contains

{
(11, 11), (00, 00)

}
.

TestNeq gate L5: A relation on F2
2 that contains

{
(10, 10), (01, 01)

}
.

Note that the TestEq gate merely copies the signal when both wires share the same truth

value. If the wires contain different truth values, there is no acceptable next circuit state. In

this case, we say the circuit shorts out. Likewise the TestNeq gate copies the signal when

two two wires have different truth values, and otherwise shorts out.

For #D2LE we use gates L1 through L4, while for ⊕D2LE we use gates L1, L2, L3

and L5. This difference between the two constructions is a consequence of the relative ease

of constructing a TestEq gate versus a TestNeq gate in the two settings. We note that,

in the usual language of computer science, gates L1, L2, L3 and L5 are functionally complete

because the TestNeq gate could be used as a Not gate, while gates L1 through L4 are not

complete. We address this by grouping the input wires into pairs and requiring exactly one

wire in each pair to be True. This construction plays the role of a Not gate. We state this

requirement formally below and prove a notion of completeness in Lemma 2.1.3.

2In the usual language of circuit complexity, a circuit with m circuit states has depth m− 1.
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¬a3
a3

¬a2
a2

¬a1
a1

Output wire

AndOr

AndOr

TestEq

Figure 2.1: A specialized rigid circuit C with e(C) = 4. We force ¬a2 = ¬a3, and the output

wire carries the value of the clause (a1 ∨ a2 ∨ ¬a2).

We also observe that if we instead adopted the convention that a 1 represented False,

and a 0 represented True, each gate would have the same behavior except for L3, which

would become an OrAnd gate. This flexibility is part of our motivation for using this set

of gates.

Let v and v′ be circuit states with k and k′ wires, respectively. We define the coupling of

v and v′, which we write as v ∧ v′, by concatenating the entries of v and v′ to give a circuit

state with k + k′ wires. Let L and L′ be logic gates on k and k′ wires, respectively. We

define the coupling of L and L′, which we write as L ∧ L′, to be the relation on Fk+k′2 where

(v1 ∧ v′1, v2 ∧ v′2) ∈ L ∧ L′ precisely when (v1, v2) ∈ L and (v′1, v
′
2) ∈ L′. A compound logic

gate is a logic gate made by coupling together copies of the four simple logic gates.

Note that a compound logic gate on (vi, vi+1) determines vi+1 from vi as long as the

circuit does not short out. In our construction, it is sufficient to use compound logic gates

where all but one of the gates coupled together are Identity gates. By abuse of notation,

we still generally refer to such a compound logic gate by the one simple gate in the coupling

that is not an Identity gate. So, for example, a compound logic gate that swaps the wires

in positions i and i+1 and otherwise is made up of Identity gates we will call a Swap gate.

A specialized rigid circuit is a general rigid circuit with m circuit states and 2k wires, such

that each logic gate is a compound logic gate and the initial circuit state v1 = (a1, . . . , a2k)

has exactly one of each pair a2i−1, a2i set to true. We therefore relabel the entries of v1

as (a1,¬a1, . . . , ak,¬ak), where ¬ denotes bitwise not. A satisfying assignment of a circuit

C is a choice of v1 such that the circuit does not short out and the last term of vm is set to
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true.

We refer to circuits by the capital letter C, and call the number of satisfying assign-

ments e(C). We can now state the following:

⊕RigidCircuit

Input: A specialized rigid circuit C.

Output: The parity of the number e(C) of satisfying assignments of C.

Throughout this paper, we will refer to specialized rigid circuits simply as rigid circuits

or as circuits when our meaning is clear. Before moving on, we observe the following:

Lemma 2.1.2. For every rigid circuit C with a satisfying assignment v1, there will be ex-

actly k wires set to true in each circuit tate.

Proof. There must be k wires set to true in v1. We note that none of the five simple gates

can change the number of true wires, which completes the proof.

Our reduction in both chapters relies on the following.

Lemma 2.1.3. There is a parsimonious reduction from #3SAT to #RigidCircuit.

Proof. Let I be an instance of #3SAT with u variables and v clauses. We form a rigid circuit

with 6v wires, so that there is one pair of wires for each time a variable or its negation appears

in a clause.

We label these 6v wires as (a1,¬a1, a2,¬a2, . . . , a3v,¬a3v). We want some of these wires

to represent multiple instances of the same variable. To force ai = aj, we can use Swap

gates to move ai and aj next to each other, and then run them through a TestEq gate.

Equivalently, we can move ai and ¬aj next to each other and then run them through a

TestNeq gate. The circuit will then short out unless both ai = aj and ¬ai = ¬aj.

We then use Swap gates to re-arrange the variables so that the order of variables in the

first 3v wires match the clauses of I. We use two AndOr gates on each clause to produce

the desired disjunctions. At this point in the construction, the 3i-th wire carries the value of
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the i-th clause, for i between 1 and k. Now, we use more Swap gates to move these k wires

to the far left of the circuit state, and use (k− 1) AndOr gates to compute the conjunction

of all of the clauses, which ends up in the first wire. Finally, we swap the first wire into the

last position of our circuit state.

It takes O(v) uses of Swap gates to move any two wires adjacent to each other, so this

entire process requires m = O(v2) circuit states.

In Section 2.2 we will prove the following:

Main Lemma 2.1.4. For every rigid circuit C with m circuit states and 2k wires, k > 7,

there is n = O(mk10), and σ ∈ Sn, such that e(C) ≡ e(σ) mod 2.

We then have:

Proof of Theorem 1.1.2. We construct a polynomial time reduction from #3SAT to⊕D2LE.

Given a problem in #3SAT, we first apply Lemma 2.1.3 to obtain a rigid circuit C with m

circuit states and 2k wires. We next apply Lemma 2.1.4 to find some choice of n and σ ∈ Sn

with e(C) ≡ e(σ) mod 2. Then, by Lemma 2.1.1, we can compute ⊕D2LE, as desired.

2.2 Circuit constructions

2.2.1 Bruhat circuits

To prove Lemma 2.1.4, we produce a permutation σ that emulates the design in §2.1.3. We

build a Bruhat circuit, with Bruhat circuit states, simple Bruhat logic gates, and compound

Bruhat logic gates.

We need to modify our circuits as follows. Whenever a TestEq or AndOr gate acts

on a pair of wires, we use Swap gates to move those wires to the first two positions of the

circuit state vector. We perform the desired TestEq or AndOr operation, and then use

Swap gates to put the wires back in their previous positions. We make this modification

because of the technical requirement of Lemma 2.2.3.
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A Bruhat circuit framework is a permutation σ ∈ Sn together with a classification of the

elements in {1, 2, . . . , n} into one of three categories.

The separators are a list of elements s1 < s2 < · · · < sm with σ−1(s1) < · · · < σ−1(sm).

By convention we let s0 = σ−1(s0) = 0 and sm+1 = σ−1(sm+1) = n + 1 where needed. For

each remaining element x, there is some i, with 0 ≤ i ≤ m, such that

σ−1(si) < σ−1(x) < σ−1(si+1).

We require either

si < x < si+1,

in which case we call x a stable element, or

si−1 < x < si,

in which case we call x a variable.

We label the N variables satisfying σ−1(si) < σ−1(x) < σ−1(si+1) as xi1 > xi2 > · · · >

xiN . We require further that σ−1(xi1) < σ−1(xi2) < · · · < σ−1(xiN).

We now make the following essential observations. Let τ ∈ Sn be chosen with τ ≤ σ.

Let x be a stable element and xij be a variable satisfying

σ−1(si) < σ−1(x), σ−1(xij) < σ−1(si+1).

Then:

τ−1(s1) < · · · < τ−1(sm) and τ−1(si) < τ−1(x) < τ−1(si+1),

and either

τ−1(si) < τ−1(xij) < τ−1(si+1) or τ−1(si−1) < τ−1(xij) < τ−1(si).

Given a Bruhat circuit framework σ and some τ ≤ σ, for 1 ≤ i ≤ m we assign to τ a

Bruhat circuit state vi ∈ FN2 as follows. Write vi = (ai1, ai2, . . . , aiN), with aij ∈ F2. Then

take aij = 0 if τ−1(si) < τ−1(xij) < τ−1(si+1), and aij = 1 otherwise. Note that we will

adopt the opposite convention in the next chapter.
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Since the yij’s are arranged in strictly decreasing order, they can be re-arranged arbi-

trarily in τ , so that every possible circuit state can be realized as a Bruhat circuit state. In

particular, for every possible circuit assignment (v1, . . . , vm), there is a unique permutation τ

with Bruhat circuit state equal to (v1, . . . , vm) maximal in the Bruhat order. It is obtained by

moving each variable which takes the value false in circuit state vi immediately to the left

of si, keeping those false variables in descending order. Call this permutation τ |v1, . . . , vm.

In summary, we have:

e(σ) =
∑

(v1,...,vm)

e(τ |v1, . . . , vm), (2.2.1)

where the sum is taken over every possible set of circuit states (v1, . . . , vm). In the next four

subsections, we will show how to control the value of e(τ |v1, . . . , vm) to encode the logic of

our circuit.

2.2.2 Bruhat logic gates

A Bruhat logic gate with k wires is a sequence φ of distinct integers such that the smallest k

terms are in decreasing order, the last k terms are in decreasing order, and these two sets

do not overlap. We refer to these elements as the input and output variables, respectively,

of the logic gate.

For technical reasons, we also require that immediately preceding the last k terms is

a stable element less than the last k terms. We refer to this element as the penultimate

element.

If |φ| = `, we do not require φ to take values strictly in the set {1, . . . , `}, but we still

treat φ as a member of S`, as described in Section 1.2.

The evaluation of a Bruhat logic gate φ with k wires at some pair of circuit states (v1, v2) ∈

Fk2 is given by deleting from φ each of the input variables corresponding to a 0 in v1 and

each of the output variables corresponding to a 1 in v2. We write this as φo (v1, v2).

Given a Bruhat circuit framework σ, we write down a collection of sequences (σ1, . . . , σm+1)

as follows. For σi, write down all the elements of σ (taken in one line notation) between si−1
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and si, and then write down only the variables that occur between si and si+1.

Note that, for all i satisfying 2 ≤ i ≤ m, the sequence σi is a Bruhat logic gate with N

wires. Also note that the choice of (σ1, . . . , σm+1) determines our original Bruhat circuit

framework σ uniquely.

For a given set of circuit states (v1, . . . , vm), we similarly define the sequence (τ1, . . . , τm+1),

by writing τ |v1, . . . , vm in one-line notation and breaking it apart at each separator si. Note

that τi = σi o (vi−1, vi), for 2 ≤ i ≤ m. By abuse of notation, we set v0 = vm+1 = ∅, and

let σ1 o (v0, v1) = τ1 and σm+1 o (vm, vm+1) = τm+1.

Though the sequences τi are not permutations, we can treat them as permutations as

described in Section 1.2, and so compute e(τi). We can now rewrite (2.2.1) as

e(σ) =
∑

(v1,...,vm)

m+1∏

i=1

e(τi) =
∑

(v1,...,vm)

m+1∏

i=1

e
(
σi o (vi−1, vi)

)
, (2.2.2)

where the sum is taken over every possible set of circuit states (v1, . . . , vm).

We must have this product take the value 0 modulo 2 whenever (v1, . . . , vm) is not a

satisfying assignment of C, and to take the value 1 otherwise.

As with rigid circuits, we say that a Bruhat circuit φ shorts out at v if, for every choice

of v′, we have

e
(
φo (v, v′)

)
≡ 0 mod 2.

2.2.3 Bruhat compound logic gates

In this subsection, we explain how to couple two Bruhat logic gates φ with k wires and φ′

with k′ wires to produce a new Bruhat logic gate φ ∧ φ′ with k + k′ wires, emulating the

behavior of coupled logic gates defined in §2.1.3. First, we give a technical construction.

Given a Bruhat logic gate φ with k wires, we say φ is parity balanced if |φ| − k ≡ 0 mod 2.

To construct the restriction of φ, which we write φ◦, we append to the beginning of φ the

element max(φ) + 1. We have:
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Lemma 2.2.1. For a Bruhat logic gate φ that is parity balanced, we have

e (φ◦ o (v, v′)) ≡ 0 mod 2

when v and v′ do not have the same parity of the number of wires carrying the value true.

When v and v′ do have an equal number of wires carrying the value true, we have

e (φ◦ o (v, v′)) ≡ e (φo (v, v′)) mod 2.

Proof. The leading element max(φ) + 1 in φ◦ can be rearranged freely, so we have

e (φ◦ o (v, v′)) ≡ (|φ| − k + 1 + |v| − |v′|) e (φo (v, v′)) mod 2.

The desired result follows immediately.

We restrict to the case where φ is one of our simple Bruhat gates, and where φ′ is a compound

gate made up of Identity and Swap gates, since the construction in §2.2.1 requires us to

place every TestNeq or AndOr gate at the top of our circuit. We require further that φ

and φ′ be parity balanced.

The construction of φ∧ φ′ involves inserting φ′◦ in place of the penultimate element of φ,

shifting elements appropriately. To explain these shifts, we replace each of the elements of

φ and φ′◦ with ordered pairs of integers.

Let y be the penultimate element of φ. Replace each of the elements x in φ with the

ordered pair (x, 0). Replace the input variables x of φ′◦ with (0, x), and all other elements x

of φ′◦ with (y, x). Then delete the penultimate block of φ and insert the relabeled φ′◦ in its

place.

Now relabel the entries from 1 to |φ| + |φ′|, going in order from smallest to largest with

respect to the lexicographical order on Z2. Call the result φ∧φ′. Note that φ∧φ′ is a Bruhat

logic gate with k + 1 wires when φ is the Identity gate, and k + 2 wires otherwise, and

that φ ∧ φ′ is parity balanced.

We define the following operations on logic gates:
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Definition 2.2.2. Left insertion, middle insertion and right insertion, denoted L(φ), M(φ)

and R(φ), respectively, are operators on Bruhat logic gates defined as follows. The terms

left, middle and right are all oriented with respect to the penultimate block. Left insertion

inserts the element 1 into φ immediately to the left of the penultimate block, and shifts all

other elements up by 1. Middle insertion increases the length of the penultimate block by 1.

Right insertion inserts an element one larger than the largest element in the penultimate

block to the very end of φ, and shifts all larger elements up by 1.

Also, let M−1(φ) denote the inverse operation to M where we decrease the length of

the penultimate block by 1. Note that we will not use middle insertion until the following

chapter.

The following lemma gives the set of conditions required for the coupling of logic gates

to behave as desired.

Lemma 2.2.3. Given φ and φ′ as above, if φ is not the identity gate, (φ ∧ φ′)◦ behaves as

the coupling of the logic gates associated to φ◦ and φ′◦ when the following six equations are

satisfied:

|φ| ≡ 0 mod 2, (1)

e
(
L(φ◦) o (10, 11)

)
+ e

(
R(φ◦) o (10, 11)

)
≡ 0 mod 2, (2)

e
(
L(φ◦) o (01, 11)

)
+ e

(
R(φ◦) o (01, 11)

)
≡ 0 mod 2, (3)

e
(
L(φ◦) o (00, 01)

)
+ e

(
R(φ◦) o (00, 01)

)
≡ 0 mod 2, (4)

e
(
L(φ◦) o (00, 10)

)
+ e

(
R(φ◦) o (00, 10)

)
≡ 0 mod 2, (5)

When φ is the identity gate, we need two equations to be satisfied:

|φ| − 1 ≡ 0 mod 2, (7)

e
(
L(φ◦) o (0, 1)

)
+ e
(
R(φ◦) o (0, 1)

)
≡ 0 mod 2. (8)

Proof. This is immediate from the more general Lemma 3.2.2. Note that, while the statement
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of Lemma 2.2.1 is slightly weaker than that of Lemma 3.2.1, the fact that we are working

mod 2 means we do not have to be concerned about `(τ ′) > 1 or r(τ ′) > 1 in § 3.3.2.

2.2.4 Initializing and testing wires

We now give explicitly the construction of σ1 and σm+1, to initialize wires at the beginning

of our circuit and test the value of the output wire at the end.

For σ1, we begin with ψ, a compound Bruhat logic gate consisting of N/2 copies of the

identity wire, and then take σ1 = ψo (~0,~0), where ~0 represents a circuit state with all wires

set to false. The identity gate construction given in Lemma 3.2.6 is simple enough that we

can state what σ1 looks like explicitly. It contains a sequence of N/2 + 1 terms, followed by

the variables. The blocks themselves decrease by 2 with each block step, and the variables

fill in the missing terms.

For example, when N = 4, σ1 has 2 wires, and we have

σ1 = 5 3 1 4 2.

We then modify σ1 by duplicating each of the N/2 variables at the end, in their respective

positions. Our example above becomes

σ1 = 5 3 1 4 4 2 2.

Finally, we shift all elements of σ1 up so that all of the elements are distinct and the final

sequence is in strictly decreasing order. Our example now reads

σ1 = 7 4 1 6 5 3 2.

Note that σ1 now has N output wires, as required.

Recall that, by the abuse of notation introduced in §2.2.2, for a vector

v = (a1, . . . , aN) ∈ FN2 ,

we let σ1(v0, v) represent σ1 after deleting every element corresponding to a 1 in v, where we

take v0 = ∅.

Having given the details of our construction, we now prove the following:
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Lemma 2.2.4. We have σ1o(v0, v) ≡ 1 mod 2 precisely when exactly one of each pair {a2i−1, a2i}

is equal to 1, and σ1 o (v0, v) ≡ 0 mod 2 otherwise.

Proof. By construction, when exactly one of each pair {a2i−1, a2i} is equal to 1, then σ1 o

(v0, v) = ψ◦ o (~0,~0), so e(σ1(v)) = e(ψ◦ o (~0,~0)) ≡ 1 mod 2. If the condition of this

lemma is false. In this case, there must be some i for which both a2i−1 and a2i are equal

to 1 or both equal to 0. But then σ1 will contain either two adjacent stable elements or

two adjacent variables without any intervening term. The rearrangement of these terms are

therefore independent of the rearrangement of the rest of σ1, so that e(σ1 o (v0, v)) is even,

as desired.

Rather than construct σm+1 in a single step, we introduce a new gate:

Xor gate L6: A function from F2
2 → F2 that sends ab→ (a xor b),

where Xor is the exclusive-or bitwise operation, for a, b ∈ F2.

Since we are only interested in the output wire, we can use Xor gates repeatedly to

remove all but two wires: the desired output wire and another wire. Since no gate can

change the parity of the number of true wires, we now know the value that both wires

should carry.

We can test those values by taking either

σm+1 = 7 2 5 1 3 6 4,

or

σm+1 = 7 2 5 1 3 4,

depending on the parity of k, the number of pairs of wires in our construction. We can

verify directly that these have the desired properties, or note that σm+1 is two copies of the

identity wire coupled together.

Lemma 2.2.5. There are Identity, Swap, AndOr, TestNeq and Xor gates that can

act on the top wires and match the conditions of Lemma 3.2.2.
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Proof. By the preceding argument and by construction. See Lemma 2.2.3. We enclose the

penultimate element in a box for readability. The computer code to generate these gates

was a much simpler version of the code described in § 3.4.1.

1. Identity gate:

φ = 1 2 3.

2. Swap gate:

11 2 7 3 6 9 1 10 4 8 5

.

3. AndOr gate:

11 2 7 4 1 6 9 10 3 8 5.

4. Xor gate:

10 2 3 6 8 9 1 7 4 5

.

5. TestNeq gate:

11 2 4 1 7 10 3 8 5 9 6

.
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CHAPTER 3

Linear extensions of dimension two posets

3.1 Primes and circuits in the Bruhat order

The proof of Theorem 1.1.1 employs the same general constructions as the proof of Theo-

rem 1.1.2, with additional construction. There is no parsimonious reduction from #Rigid-

Circuit to #Bruhat, because there exist rigid circuits with no satisfying assignments, but

every element σ ∈ Sn has e(σ) ≥ 1. Instead, we will use a collection of permutations σ that

allow us to compute the residue of #RigidCircuit modulo enough primes that we can

then use the Chinese Remainder Theorem to compute #RigidCircuit.

We need the following number theory result:

Proposition 3.1.1 (see e.g. [BW91, p. 4]). For k ≥ 4, the product of primes between k

and k2 is at least 2kk!.

In Section 3.2 we will prove the following:

Main Lemma 3.1.2. For every rigid circuit C with m circuit states and 2k wires, k > 7, and

every prime p between k and k2, there is n = O(mk10), and σ ∈ Sn, such that e(C) ≡ −e(σ)

mod p.

Proof of Theorem 1.1.4. We construct a polynomial time reduction from #3SAT to #Bruhat.

Given a problem in #3SAT, we first apply Lemma 2.1.3 to obtain a rigid circuit C with m

circuit states and 2k wires. We next apply Lemma 3.1.2 to find, for each prime p between k

and k2, some choice of n and σ ∈ Sn with e(C) ≡ −e(σ) mod p. Then, as in [BW91], we

use the Chinese Remainder Theorem to compute the residue of e(C) modulo the product of

primes between k and k2.
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Since there are at most 2k satisfying assignments of a particular rigid circuit, applying

Proposition 3.1.1 completes the proof.

3.2 Circuit constructions

3.2.1 Mod-p parallel Bruhat circuits

We must further modify our circuits from § 2.2.1. Let C be a specialized rigid circuit with

2k wires and m circuit states. First, we add (p − k) pairs of wires and use TestEq gates

to set the value of ak+1, ak+2, . . . , ap equal to the initial value of a1. We then stack (p − 1)

copies of this modified circuit together, and use TestEq gates to ensure that each copy of

the circuit will have the same initial assignment as every other copy.

As in § 2.2.1, whenever a TestEq or AndOr gate acts on a pair of wires (in any copy

of the circuit), we use Swap gates to move those wires to the first two positions of the

circuit state vector. We perform the desired TestEq or AndOr operation, and then use

Swap gates to put the wires back in their previous positions.

Finally, we use Swap gates to bring the last wire of each circuit copy into the final (p−1)

positions of our final circuit state. We write Cp for the resulting circuit, and call it a mod-p

parallel circuit.

The motivation for these modifications comes later, in the technical requirements of

Lemma 3.2.2 and the constructions in §3.2.3 and §3.2.5. For now, though, we note that e(C) =

e(Cp), and, by Lemma 2.1.2, in every valid circuit assignment, each circuit state of Cp will

contain exactly (p2 − p) wires set to true.

We use Bruhat circuit frameworks as described in §2.2.1. We now require that there be

exactly

N = 2p2 − 2p

variables.
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Note that we take aij = 0 if τ−1(si) < τ−1(xij) < τ−1(si+1), and aij = 1 otherwise in this

chapter.

For technical reasons, we also require that immediately preceding the last k terms is a

block of (p3 − 1) consecutive elements, all less than the last k terms. We refer to this block,

appropriately, as the penultimate block.

Since we are now working modulo p for some unknown prime p, we must have the

product (2.2.2) take the value 0 modulo p whenever (v1, . . . , vm) is not a satisfying assignment

of Cp, and to take some nonzero constant value otherwise.

The simplest way to do this would be to construct Bruhat logic gates σi so that

e
(
σi o (vi−1, vi)

)
≡ 0 mod p , when (vi−1, vi) 6∈ Li−1,

and

e
(
σi o (vi−1, vi)

)
≡ 1 mod p, when (vi−1, vi) ∈ Li−1.

To keep computations manageable, we weaken the condition by sometimes only requiring

e
(
σi o (vi−1, vi)

)
6≡ 0 mod p , when (vi−1, vi) ∈ Li−1.

In §3.2.5, we explain how to complete the proof of Main Lemma 3.1.2 under these weakened

conditions. We postpone the construction of σ1 and σm+1 until §3.2.3.

3.2.2 Bruhat compound logic gates

In this subsection, we explain how the technical requirements to couple together two Bruhat

logic gates φ with k wires and φ′ with k′ wires has changed from §2.2.3.

First, we give a technical construction to ensure that the number of wires carrying the

value true remains constant through logic gates. This matches the statement for rigid

circuits given in Lemma 2.1.2. Given a Bruhat logic gate φ with k wires, we now say φ is

balanced modulo p if |φ| − k ≡ 0 mod p3.

To construct the restriction of φ, which we write φ◦, we append to the beginning of φ the

block (max(φ) + 1,max(φ) + 2, . . . ,max(φ) + p3 − 1), which we call the initial block of φ◦.

We have:
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Lemma 3.2.1. For a Bruhat logic gate φ that is balanced modulo p, we have

e (φ◦ o (v, v′)) ≡ 0 mod p

when v and v′ do not have an equal number of wires carrying the value true. When v and v′

do have an equal number of wires carrying the value true, we have

e (φ◦ o (v, v′)) ≡ e (φo (v, v′)) mod p.

The proof of this lemma is given in Subsection 3.3.1.

The construction of φ ∧ φ′ now proceed as in § 2.2.3. We restrict to the case where φ is

one of our simple Bruhat gates, and where φ′ is a compound gate made up of Identity and

Swap gates, since the construction in §3.2.1 requires us to place every TestEq or AndOr

gate at the top of our circuit. We require further that φ and φ′ be balanced modulo p.

The construction of φ ∧ φ′ involves inserting φ′◦ in place of the penultimate block of φ,

shifting elements appropriately. The relabeling procedure is exactly the same as in § 2.2.3,

except we now take y to be the value of the first entry of the penultimate block of φ. Note

that φ ∧ φ′ is balanced modulo p.

Recall the left, middle and right insertion operations given in Definition 2.2.2. The

following lemma is the more general version of Lemma 2.2.3. These equations produce the

polynomials given in Section 3.5 that are used in §3.2.5 to complete the proof of Main

Lemma 3.1.2.

Lemma 3.2.2. Given φ and φ′ as above, if φ is not the identity gate, (φ ∧ φ′)◦ behaves as

the coupling of the logic gates associated to φ◦ and φ′◦ when the following six equations are

satisfied:

|φ| − 2 ≡ 0 mod p3, (1)

− 2e
(
M(φ◦) o (10, 11)

)
+ e

(
L(φ◦) o (10, 11)

)
+ e

(
R(φ◦) o (10, 11)

)
≡ 0 mod p, (2)

− 2e
(
M(φ◦) o (01, 11)

)
+ e

(
L(φ◦) o (01, 11)

)
+ e

(
R(φ◦) o (01, 11)

)
≡ 0 mod p, (3)

− 2e
(
M(φ◦) o (00, 01)

)
+ e

(
L(φ◦) o (00, 01)

)
+ e

(
R(φ◦) o (00, 01)

)
≡ 0 mod p, (4)
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− 2e
(
M(φ◦) o (00, 10)

)
+ e

(
L(φ◦) o (00, 10)

)
+ e

(
R(φ◦) o (00, 10)

)
≡ 0 mod p, (5)

2e
(
M2(φ◦) o (00, 11)

)
− 4e

(
LM(φ◦) o (00, 11)

)
− 4e

(
RM(φ◦) o (00, 11)

)
+

e
(
L2(φ◦) o (00, 11)

)
+ 2e

(
LR(φ◦) o (00, 11)

)
+ e

(
R2(φ◦) o (00, 11)

)
≡ 0 mod p. (6)

When φ is the identity gate, we need two equations to be satisfied:

|φ| − 1 ≡ 0 mod p3, (7)

−2e
(
M(φ◦) o (0, 1)

)
+ e
(
L(φ◦) o (0, 1)

)
+ e
(
R(φ◦) o (0, 1)

)
≡ 0 mod p. (8)

The proof of this lemma is given in Subsection 3.3.2.

3.2.3 Initializing and testing wires

We now give explicitly the construction of σ1 and σm+1, to initialize wires at the beginning

of our circuit and test the value of the output wire at the end. The construction of σ1 is

similar to the construction in 2.2.4, while the construction of σm+1 is entirely different.

For σ1, we begin with ψ, a compound Bruhat logic gate consisting of p2− p copies of the

identity wire, and then take σ1 = ψ◦o (~0,~0), where ~0 represents a circuit state with all wires

set to false. The identity gate construction given in Lemma 3.2.6 is simple enough that we

can state what σ1 looks like explicitly. It contains a sequence of p2 − p + 1 blocks, each of

size p3 − 1, followed by the variables. The blocks themselves decrease by p3 with each block

step, and the variables fill in the missing terms.

For example, when p = 2, σ1 has 2 wires, and we have

σ1 = 17 9 1 16 8,

where each of the numbers in boxes represent blocks of size p3 − 1, using the x notation

described in § 1.2.2. For ease in notation, we shift elements down and write instead

σ1 = 5 3 1 4 2.
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We then modify σ1 by duplicating each of the p2 − p terms at the end, in their respective

positions. Our example above becomes

σ1 = 5 3 1 4 4 2 2.

Finally, we shift all elements of σ1 up so that all of the elements are distinct and the final

sequence is in strictly decreasing order. Our example now reads

σ1 = 7 4 1 6 5 3 2.

Note that σ1 now has N = 2p2 − 2p output wires, as required.

Recall that, by the abuse of notation introduced in §2.2.2, for a vector

v = (a1, . . . , aN) ∈ FN2 ,

we let σ1(v0, v) represent σ1 after deleting every element corresponding to a 1 in v, where we

take v0 = ∅.

Having given the details of our construction, we now prove the following:

Lemma 3.2.3. We have σ1o(v0, v) ≡ 1 mod p precisely when exactly one of each pair {a2i−1, a2i}

is equal to 1, and σ1 o (v0, v) ≡ 0 mod p otherwise.

Proof. By construction, when exactly one of each pair {a2i−1, a2i} is equal to 1, then σ1 o

(v0, v) = ψ◦o (~0,~0), so e(σ1(v)) = e(ψ◦o (~0,~0)) ≡ 1 mod p. And, by Lemma 3.2.1, e(σ1 o

(v0, v)) ≡ 0 mod p unless |v| = p2 − p.

The only case left to consider is when |v| = p2−p, but the condition of this lemma is false.

In this case, there must be some i for which both a2i−1 and a2i are equal to 1. However, σ1

will then contain two adjacent blocks of size p3 − 1 with no other elements whose values

lie between those two blocks. In our example above, deleting both the 6 and the 5 leaves

adjacent blocks 7 and 4 in σ1.

The rearrangement of these two blocks are therefore independent of the rearrangement

of the rest of σ1, so that e(σ1 o (v0, v)) is divisible by
(

2p3 − 2

p3 − 1

)
.
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This is p3Cp3−1, where Cp3−1 is the p3− 1-th Catalan number. Thus the binomial coefficient

is divisible by p, so e(σ1 o (v0, v)) ≡ 0 mod p, as desired.

We now give the construction of σm+1. Recall, by the construction given in §3.2.1, that

the final p−1 wires should all carry the value of the output wire, while the other N−(p−1) =

2p2 − 3p+ 1 wires are grouped into p− 1 sets of 2p− 1 wires.

We begin with

σm+1 = (N, . . . , 2, 1).

This choice is forced on us, since the input variables always must be in decreasing order and

the smallest elements of the permutation. To finish our construction, we insert the sequence

(
N + 1, N + 2, . . . , N + (p− 1)

)

into σ1 so as to divide the variables into the sets described above, i.e. first p−1 sets of 2p−1

wires, followed by a final set of p− 1 wires.

We call the sequence
(
N+1, N+2, . . . , N+(p−1)

)
dividers. Again, by abuse of notation,

given a vector v ∈ FN2 , we write σm+1 o (v,∅) = σm+1 o (v, vm+1) for the sequence obtained

by deleting from σm+1 each variable corresponding to a 0 in v.

Lemma 3.2.4. If the last element of v is 1, i.e. if the output wire contains the value true,

then e(σm+1 o (v, vm+1)) ≡ −1 mod p. Otherwise, e(σm+1 o (v, vm+1)) ≡ 0 mod p.

Proof. By construction, the entire final set of (p − 1) wires will either all be true or all

be false. Before all the swapping we did at the end of our circuit in §3.2.1, each of the

original p− 1 circuits contained 2p wires, with p wires set to true. So, after the swapping,

if the final set of wires is true, each of the other sets will have p − 1 wires set to true,

while if the final set of wires is false, each of the other sets will have p wires set to true.

We treat each case separately:

Case 1 : The desired wire carries the value false. Then the p wires set to true in each of

the other p − 1 sets correspond in σm+1(v, vm+1) to a sequence of p consecutive decreasing

elements. There are p! rearrangements of each of those sets, and the rearrangements of those
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sets are independent of the rearrangement of the rest of the elements in the permutation, so

that e(σm+1(v, vm+1)) ≡ 0 mod p.

Case 2 : The desired wire carries the value true. Then the p − 1 wires set to true in

each of the other p− 1 sets correspond in σm+1(v, vm+1) to a sequence of p− 1 consecutive

decreasing elements. The final set of wires also contains p−1 decreasing elements. We count

the number of rearrangements τ ≤ σm+1(v, vm+1) based on the position of the dividers in τ .

When the dividers remain in exactly the same position, then no other element can move

out of its set either, since the variables in τ must remain to the left of every divider they were

already to the left of in σ. This leaves only rearrangements within the p sets of p− 1 strictly

decreasing elements, for a total count of
(
(p − 1)!

)p ≡ (−1)p ≡ −1 mod p by Wilson’s

theorem.

For all other choices of positions for the dividers, there will be some gap of size at least p

between dividers. The number of ways to rearrange the at least p elements that fill this

gap will be divisible by p! These rearrangements are independent of the rearrangement of

the rest of the sequence, and so the contribution from every other choice of positions for the

dividers is 0 modulo p. Thus the total number of rearrangements is congruent to −1 mod p,

as desired.

3.2.4 Parametrized gates

We now describe how to construct a parametrized family of logic gates whose count of

rearrangements is a polynomial in the parameters. We use this construction in §3.2.5 to give

Swap, AndOr and TestEq gates for arbitrary primes p.

Let φ be a logic gate containing an increasing sequence (x1, . . . , xt). We form the

parametrization of φ with respect to (xi) by replacing each of the elements xi with a block of

consecutive elements of length zi ∈ N and shifting the other elements of φ up appropriately,

and denote this as φ (xi, zi).

We require that the sequence of xi’s conclude prior to the penultimate block of φ, and

by convention write xt+1 for the penultimate block of φ, with zt+1 = p3 − 1.
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Lemma 3.2.5. For every parametrization φ (xi, zi) of a logic gate φ, there is a polyno-

mial g(z1, . . . , zt+1) over Q such that g(z1, . . . , zt, p
3 − 1) = e

(
φ (xi, zi)

)
for every p.

The proof of this lemma is given in Subsection 3.3.3.

3.2.5 Mod-p modification

Recall that for a logic gate L, we say (v1, v2) ∈ L whenever (v1, v2) satisfies the logic gate,

and (v1, v2) 6∈ L otherwise. For computational reasons, it is easier to find simple logic gates

if we relax the condition that e(σ o (v1, v2)) ≡ 1 mod p whenever (v1, v2) satisfies the logic

gate. We never alter the set of conditions e(σ o (v1, v2)) ≡ 0 mod p when (v1, v2) fails to

satisfy the logic gate. We describe the modified conditions below.

Identity gate L1: e
(
σ o (v1, v2)

)
≡ 1 mod p whenever (v1, v2) ∈ L1.

Swap gate L2: e
(
σ o (v1, v2)

)
≡ 1 mod p whenever (v1, v2) ∈ L2.

AndOr gate L3: e
(
σ o (v1, v2)

)
6≡ 0 mod p whenever (v1, v2) ∈ L3.

TestEq gate L4: e
(
σ o (v1, v2)

)
6≡ 0 mod p whenever (v1, v2) ∈ L4.

We now have all of the conditions on our simple Bruhat logic gates, allowing us to state and

prove the following:

Lemma 3.2.6. For every prime p ≥ 2, there is an Identity gate satisfying the condi-

tion of Lemma 3.2.2. In addition, for each of Swap, AndOr and TestEq, there are

parametrized Bruhat logic gates φ such that the conditions above together with the condi-

tions in Lemma 3.2.2 give a system of polynomial equations in the parameters {zi} that has

solutions modulo p for all primes p ≥ 11.

Proof. We prove the statement for each gate by giving an explicit construction. The following

permutations represent our four desired gates before restriction. The Identity gate works

correctly modulo p without parametrization. The other three gates are parametrized with

respect to the sequence {3, 4, 5, 6, 7}. The 2 in the Identity gate and the 8 in the other

three gates represent the penultimate blocks of size p3 − 1.
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We treat each of the equations in Lemma 3.2.2 first over Q, so that the equations cor-

respond to some algebraic variety over Q. For each gate, we are able to give explicitly a

rational point on that variety, and the rational nonzero values taken by the AndOr and

TestEq gates. For every prime p ≥ 11, this corresponds to a solution modulo p.

1. Identity gate:

φ = 1 2 3.

The equations that φ must satisfy are (7) and (8) from Lemma 3.2.2, and the following

four equations:

e
(
φo (0, 0)

)
= e

(
φo (1, 1)

)
= 1, e

(
φo (0, 1)

)
= e

(
φo (1, 0)

)
= 0.

The last two equations are guaranteed to be satisfied by Lemma 3.2.1. Since |φ| =

p3 + 1, we have that (7) is satisfied. Note that

e
(
φo (0, 0)

)
= e

(
φo (1, 1)

)
= e

(
L(φ) o (0, 1)

)

= e
(
M(φ) o (0, 1)

)
= e

(
R(φ) o (0, 1)

)
= 1,

since these permutations are all just strictly increasing sequences of length p3. Thus

the remaining two equations given here and (8) are satisfied, as desired.

For each of the remaining three gates, there are 6 equations from Lemma 3.2.2, and

an additional 16 equations for every possible pair of input and output wires. However,

applying Lemma 3.2.1 as above, we see that 10 of these equations will be satisfied

automatically. For the remaining 12 equations, we use Lemma 3.2.5 to compute the

corresponding polynomials in {zi}, for 1 ≤ i ≤ 5. We write out these polynomials

explicitly in Appendix 3.5.

2. Swap gate:

φ = 2 3 12 4 1 5 10 6 13 7 8 11 9.

The system of equations in §3.5.1 has a unique solution over Q:

(z1, z2, z3, z4, z5) = (−1,−2, 0, 1,−2),
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so the system of equations is solvable mod p, for every prime p ≥ 2.

3. AndOr gate:

φ = 2 3 13 4 11 5 1 6 10 7 8 12 9.

The system of equations in §3.5.2 reduces to a two-dimensional variety over Q of

degree 2, with infinitely many rational points, including the point

(z1, z2, z3, z4, z5) = (−2, 1,−3, 1,−1).

The nonzero values e(σ(v, v′)) takes are 2 and 4, so we require p 6= 2, and the system

of equations is solvable mod p for every prime p ≥ 3.

4. TestEq gate:

φ = 2 3 12 4 10 5 1 6 13 7 8 11 9.

The system of equations in §3.5.3 reduces to a one-dimensional variety over Q of

degree 1, with infinitely many rational points, including the point

(z1, z2, z3, z4, z5) = (−2,−8
3
, 5
3
,−3, 2),

with nonzero values of 7
3

and −8
3

for e(σ(v, v′)), so that the system of equations is

solvable mod p for every prime p ≥ 11.

3.2.6 Proof of Main Lemma 3.1.2.

Given a rigid circuit C, we construct the mod-p parallel circuit Cp with e(C) = e(Cp). We

then construct a Bruhat circuit σ that mirrors the behavior of Cp.

By Lemma 3.2.3, our choices of variable assignments v1 in the sum in (2.2.2) are restricted

to those with N = 2p2 − 2p wires grouped in pairs, with exactly one wire set to true and

one wire set to false in each pair. By lemmas 3.2.2 and 3.2.6, the inside product in (2.2.2)

is congruent to 0 mod p except when (v1, . . . , vm) is a set of circuit states satisfying Cp.
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By the parallel circuit construction, every time an AndOr gate operation occurs in C,

it occurs p−1 times in Cp, acting on the same set of truth values, which gives a contribution

of 1 mod p to the product in (2.2.2).

The same is true for the TestEq operations that occur after the parallel circuit has

already been constructed. For the TestEq operations that occur in the construction of the

parallel circuit (i.e. the TestEq operations used to force each of the copies of the circuit to

have the same initial truth values), just repeat them p − 1 times, which has no impact on

the operation of the circuit.

The Identity and Swap operations all also give a contribution of 1 mod p to the

product, by construction.

In summary, the contribution to the product from the operation of each of the gates is 1.

The only contribution left comes from σm+1, which, by Lemma 3.2.4, multiplies the product

by −1 if the output wire is true and 0 otherwise.

3.3 Proof of lemmas

3.3.1 Proof of Lemma 3.2.1.

Write |v| for the number of wires carrying the value true in v. Since the elements in

the initial block of φ◦ are larger than every other element of φ, the Bruhat order gives no

restriction on the position of these elements relative to the position of the elements of φ in

a rearrangement τ ≤ φ◦. Thus:

e (φ◦ o (v, v′)) =

(
|φo (v, v′)|+ p3 − 1

p3 − 1

)
e (φo (v, v′))

=

(
|φ| − (k − |v|)− |v′|+ p3 − 1

p3 − 1

)
e (φo (v, v′)) .

Since φ is balanced, we know |φ| − k ≡ 0 mod p3. Write |φ| − k = ap3 and |v| − |v′| = b.

We have |b| ≤ 2p2 + 2p. Observe that, for integers a, b with a > 0 and 0 < |b| ≤ 2p2 + 2p, as
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long as p ≥ 3 we have (
ap3 + p3 − 1 + b

p3 − 1

)
≡ 0 mod p.

On the other hand, for a > 0 and b = 0, we have:

(
ap3 + p3 − 1 + b

p3 − 1

)
≡ 1 mod p.

We thus have e(φ◦ o (v, v′)) ≡ 0 mod p whenever |v| 6= |v′|. When |v| = |v′|, the binomial

coefficient evaluates to 1 modulo p, so that we have e(φ◦ o (v, v′)) ≡ e o (φ(v, v′)), as

desired.

3.3.2 Proof of Lemma 3.2.2.

Equations (1) and (8) follow immediately from the requirement that φ be balanced.

We prove the lemma in the case where φ is the Swap, AndOr or TestEq gate, and

then explain how to adjust the proof when φ is the Identity gate. Write the input and

output wires of φ ∧ φ′ as v1 ∧ v′1 and v2 ∧ v′2, where here ∧ denotes concatenation, vi ∈ F2
2,

and v′i ∈ Fk2, so that there are a total of k + 2 input and output wires in φ ∧ φ′.

For every rearrangement τ of (φ∧φ′)o(v1∧v′1, v2∧v′2), we can restrict to a rearrangement

of φ′◦ by looking only at the elements that come from φ′◦ in τ (and shifting the elements back

down to their previous values). Write this new rearrangement as τ |φ′◦ . Then, writing τ |φ′◦ in

one-line notation, τ |φ′◦ begins with some sequence (possibly of length zero) of input variables,

and ends with some sequence (possibly of length zero) of output variables. Call the length

of the first sequence `(τ) and the length of the second sequence r(τ).

Now we wish to begin with a permutation τ ′ ≤ φ′ o (v′1, v
′
2), and count the number

of τ ≤ (φ∧ φ′)o (v1 ∧ v′1, v2 ∧ v′2) with τ |φ′◦ = τ ′. Since we have fixed τ ′, we need to consider

only the possible ways that the elements of φ can be rearranged with respect to each other

or shuffled among the elements of φ′.

By Lemma 3.2.1, we have:

e
(
(φ ∧ φ′) o (v1 ∧ v′1, v2 ∧ v′2)

)
≡ 0 mod p
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unless |v1|+ |v′1| ≡ |v2|+ |v′2| mod p3. Thus, we restrict our attention to the case where that

holds. Then, by the same argument used in the proof of Lemma 3.2.1, we have:

|φ′ o (v′1, v
′
2)| = |φ′|+ (|v′1| − k)− |v′2| ≡ |v′1| − |v′2| ≡ |v2| − |v1| mod p3.

Since φ′◦ adds a block of size p3 − 1, we have |φ′◦ o (v′1, v
′
2)| ≡ |v2| − |v1| − 1 mod p3.

We then note that the number of τ ≤ (φ ∧ φ′) o (v1 ∧ v′1, v2 ∧ v′2) with τ |φ′◦ = τ ′ is equal

to:
1

`(τ ′)! r(τ ′)!
· e
(
L`(τ

′)Rr(τ ′)M |v2|−|v1|−`(τ ′)−r(τ ′)(φ) o (v1, v2)
)
.

With the 1
`(τ ′)! r(τ ′)!

term because repeated left and right insertion gives sets of consecutive

decreasing elements that can be rearranged in `(τ ′)! and r(τ ′)! ways, respectively, but exactly

one of these arrangements actually corresponds to τ ′.

Next, we group permutations τ ′ based on the value of `(τ ′) and r(τ ′). Let g(`, r) be

the number of τ ′ ≤ φ′ o (v′1, v
′
2) with `(τ ′) = ` and r(τ ′) = r. Of course, the value g(`, r)

also depends on φ′ o (v′1, v
′
2). We omit this dependence from our notation for the sake of

readability. We then have:

e
(
(φ ∧ φ′) o (v1 ∧ v′1, v2 ∧ v′2)

)
=
∑

`,r≥0

g(`, r)

`! r!
· e
(
L`RrM |v2|−|v1|−`−r(φ) o (v1, v2)

)
. (3.3.1)

It remains to compute g(`, r) for an arbitrary choice of v1 ∧ v′1, v2 ∧ v′2, `, and r. Beginning

or ending τ ′ with a particular sequence of elements is the same as counting the number of

permutations of τ ′ with those elements removed. Thus we have:

`! r!
∑

|v′1|−|w′1|=`

∑

|w′2|−|v′2|=r
e
(
φ′◦ o (w′1, w

′
2)
)

=
∑

`≤h≤k

∑

r≤j≤k
g(h, j). (3.3.2)

Here the left hand sum is taken over circuit states w′1 obtained from v′1 by flipping ` wires

from true to false and w′2 obtained from v′2 by flipping r from false to true. The `!

and r! terms account for the ways to arrange the initial and final sequences, each strictly

decreasing, of length ` and r respectively.

Either of the wire flips just described reduces |v′1| − |v′2| by one, so that we have:

|v2| − |v1| = |v′1| − |v′2| = `+ r + |w′1| − |w′2|.
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Recall that, by Lemma 3.2.1, for the left hand side of (3.3.2) to be nonzero modulo p we

must have |w′1| − |w′2| = 0.

Thus, on one hand, if `+r > |v′1|+ |v′2|, the left hand side of (3.3.2) is always 0 modulo p,

so that we conclude g(h, j) ≡ 0 mod p for every h, j with h+ j > `+ r.

On the other hand, if the left hand side of (3.3.2) is nonzero modulo p, we have

|v2| − |v1| = |v′1| − |v′2| = `+ r ≥ 0.

Since v1, v2 ∈ F2
2, we have |v2| − |v1| ≤ 2, and so we conclude 0 ≤ |v′1| − |v′2| ≤ 2.

Since φ′ is composed entirely of Identity and Swap gates, each input wire in v′1 can

be matched with one output wire in v′2 whose signal state it controls. If we require e(φ′◦ o

(w′1, w
′
2)) to be nonzero, then all the input-output wire pairs in w′1, w

′
2 match, and somewhere

between zero and two input-output pairs of wires in v′1, v
′
2 have an input wire reading true

and an output wire reading false. We refer to such a pair as a (true, false) pair and note

that the number of (true, false) pairs is equal to |v′1| − |v′2|.

Of course, whenever |v′1| − |v′2| > 0, the output wires do not correspond correctly to the

input wires, so we need the count

e
(
(φ ∧ φ′) o (v1 ∧ v′1, v2 ∧ v′2)

)
≡ 0 mod p

for this choice of (v1 ∧ v′1, v2 ∧ v′2). We will now use (3.3.1) and (3.3.2) to do a computation

which will produce the remaining equations given in the statement of this lemma.

Note that, because φ′ is made up of Identity and Swap gates, the technical restrictions

in §3.2.5 are enough to ensure that e(φ′◦ o (w′1, w
′
2)) ≡ 1 mod p whenever e(φ′◦ o (w′1, w

′
2))

is nonzero modulo p.

Case 1 : Zero (true, false) pairs in (v′1, v
′
2). Then e(φ′◦ o (w′1, w

′
2)) is nonzero modulo p

precisely when w′1 = v′1 and w′2 = v′2, so that (3.3.2) gives g(0, 0) ≡ 1 mod p and g(h, j) ≡ 0

mod p otherwise. Then (3.3.1) becomes:

e
(
(φ ∧ φ′) o (v1 ∧ v′1, v2 ∧ v′2)

)
≡ e

(
φo (v1, v2)

)
mod p.
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So that e(φ ∧ φ′) behaves like the Bruhat logic gate φ on the top two wires.

Case 2 : One (true, false) pair in (v′1, v
′
2). Then for ` = 1, r = 0, there is exactly one

choice of w′1, w
′
2 with e(φ′◦o(w′1, w

′
2)) nonzero modulo p; this choice corresponds to switching

the true input wire in the (true, false) pair to false. Likewise, for ` = 0, r = 1, there

is exactly one choice. Thus (3.3.2) gives g(1, 0) ≡ g(0, 1) ≡ 1 mod p.

Now taking ` = r = 0, we have (w′1, w
′
2) = (v′1, v

′
2), and e(φ′◦ o (w′1, w

′
2)) ≡ 0 mod p by

Lemma 3.2.1. Then (3.3.2) gives g(0, 0) ≡ −2 mod p. There are four possible choices of v1

and v2 satisfying |v2| − |v1| = 1, which give (2), (3), (4), and (5).

Case 3 : Two (true, false) pairs in (v′1, v
′
2). We proceed with a calculation similar to the

one above. For ` = 2, r = 0 and ` = 0, r = 2, there is exactly one choice of w′1, w
′
2, while

for ` = 1, r = 1, there are two choices. Then (3.3.2) gives:

g(2, 0) ≡ g(1, 1) ≡ g(0, 2) ≡ 2 mod p.

For ` + r = 1 and ` + r = 0, Lemma 3.2.1 tells us e(φ′◦ o (w′1, w
′
2)) ≡ 0 mod p, and we

compute:

g(1, 0) ≡ g(0, 1) ≡ −4 mod p and g(0, 0) ≡ 2 mod p.

There is only one choice of v1 and v2 satisfying |v2| − |v1| = 2, which gives (6).

This completes the proof when φ is the Swap, AndOr or TestEq gate. When φ is the

Identity gate, we follow the same argument and find that we must only consider the cases

when 0 ≤ |v2| − |v1| ≤ 1. Working through Case 1 and Case 2 above gives (8).

3.3.3 Proof of Lemma 3.2.5

We describe a function that sends a permutation τ with τ ≤ φ (xi, zi) to a permutation τ ∗ ≤

φ. Note that since the blocks are in increasing order in φ (xi, zi), they will still be in

increasing order in τ . The only elements that can lie “within” one of these blocks (where

“within” means to the right of some element from the block and to the left of another element

of the block) are elements that were originally larger than the block and to its left, or smaller

than the block and to its right.
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To produce τ ∗, push the elements of τ that have moved within blocks out of their blocks,

either to the left or right, back to the side they came from. We treat the penultimate block

the same way. Then replace the blocks with the old xi’s and shift everything back down.

Since φ has finite length, there are only finitely many choices of τ ∗. For each τ ∗ we count

the number of possible τ ≤ φ (xi, zi) in the pre-image of the function described above. To

do this computation, we consider the number of elements in τ immediately to the left of

an xi and larger than it, or immediately to the right of an xi and smaller than it. Call the

first number ` and the second r. Then we are counting rearrangements of the block sequence

3 2 1

with blocks of lengths `, zi and r, respectively, such that none of the elements from the 3

or 1 block cross the entire 2 block. We sum over the number h ≤ ` of elements that move

from the 3 block into the 2 block, and the number j ≤ r of elements that move from

the 1 block into the 2 block:

∑

0≤h≤`

∑

0≤j≤r

(
zi + h+ j − 2

h

)(
zi + j − 2

j

)
.

We thus obtain:

e
(
φ (xi, zi)

)
=
∑

τ∗≤φ

t+1∏

i=1

∑

0≤h≤`

∑

0≤j≤r

(
zi + h+ j − 2

h

)(
zi + j − 2

j

)
,

which is a polynomial in the zi’s and p3 − 1, as desired.

3.4 Final remarks

3.4.1

Our computer assisted proof is both technical and innovative. The computer algebra solu-

tion of large algebraic systems used to encode logical gates is novel as until recently such

computations remained far out of reach.

The equations in Section 3.5 are nonhomogeneous polynomials in 5 variables, with a max-

imum total degree of 5. The coefficients are nonnegative integers ≤ 400. Before inserting
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parameters, the gates were permutations of length 8, so there were 8! = 40320 possibilities.

In fact, the requirement that the variables be in strictly decreasing order restricts the possi-

bilities significantly. After some experimentation, we added the further restriction that the

first variable be in the first position of the permutation. After these restrictions, only 96

possibilities remain.

For each gate, we generated the system of 12 polynomials in C++, for each of these 96

possible permutations. We then computed which systems had solutions over C; the systems

were tested with Macaulay2.1 Generating the systems took 314.4 seconds, or an average of

3.3 seconds per system. Testing all 96 systems took less than ten seconds for each of the

three gates. If we had needed to extend our search to 6 variables, the cost in computing

time would have increased significantly, as shown in Figure 3.1.

Here is the result of our computation. For each gate, at least one of the of the 96 possible

permutations produced systems of equations with nontrivial solutions over C. To be precise:

� For the Swap gate, this worked for 2 of the 96 possible permutations.

� For the AndOr gate, this worked for 47 of the 96 possible permutations.

� For the TestEq gate, this worked for 4 of the 96 possible permutations.

Variables Candidate gates Computation time per candidate gate (sec.)

4 6 ≤ 0.1

5 96 3.3

6 1200 1618 (∼ 27 minutes)

Figure 3.1: Candidate permutations and computation time.

1Computations were made with an Intel R© CoreTM i7-3610QM CPU with 2.30GHz, 4 cores and 8Gb of
RAM.
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3.4.2

Let us quickly mention complexity implications of our results for people unfamiliar with

modern Complexity Theory. Roughly, when a counting problem is #P-complete, this is an

extremely strong evidence against it being computable in polynomial time, much stronger

than P 6= NP, for example. Indeed, otherwise Toda’s theorem PH ⊆ P#P implies that every

problem in polynomial hierarchy PH can be solved in polynomial time [Tod91].

3.4.3

We are also curious about variations on Theorem 1.1.4. For example, is computing the size

of the principal ideal of the strong Bruhat order #P-complete? What about other finite

Coxeter groups? We refer [BjB05] for definitions and the background.

Finally, we conjecture that computing the number R(σ) of reduced factorizations of a

permutation σ ∈ Sn into adjacent transpositions is #P-complete. Recall that R(σ) can be

computed in polynomial time in several special cases, see e.g. [MPP17]. Note that such

factorizations can be viewed as saturated chains 1 → σ in the weak Bruhat order Bn =

(Sn,≤).

46



3.5 Gate equations

We print here the systems of polynomial equations for the parametrized Swap, AndOr,

and TestEq gates given in Lemma 3.2.6. For each of these gates, there are six equations

from Lemma 3.2.2 and six equations from the requirements for the logical operation of the

gate itself, for a total of twelve equations.

3.5.1 Swap gate.

1. |φ| − 2 ≡ 0 mod p3:

z1 + z2 + z3 + z4 + z5 + 4 = 0

2. e
(
φo (11, 11)

)
≡ 1 mod p:

2z2z
3
5 +2z1z

3
5 +4z35 +6z2z4z

2
5 +6z1z4z

2
5 +12z4z

2
5 +3z2z3z

2
5 +3z1z3z

2
5 +6z3z

2
5 +3z22z

2
5 +3z1z2z

2
5 +15z2z

2
5 +

6z1z
2
5 + 15z25 + 6z2z

2
4z5 + 6z1z

2
4z5 + 12z24z5 + 6z2z3z4z5 + 6z1z3z4z5 + 12z3z4z5 + 6z22z4z5 + 6z1z2z4z5 +

30z2z4z5 +12z1z4z5 +30z4z5 +3z2z3z5 +3z1z3z5 +6z3z5 +3z22z5 +3z1z2z5 +13z2z5 +4z1z5 +11z5 = 6

3. e
(
φo (10, 01)

)
≡ 1 mod p:

2z35 + 6z4z
2
5 + 3z3z

2
5 + 3z2z

2
5 + 12z25 + 6z24z5 + 6z3z4z5 + 6z2z4z5 + 24z4z5 + 9z3z5 + 9z2z5 + 16z5 +

6z24 + 6z3z4 + 6z2z4 + 12z4 = 6

4. e
(
φo (10, 10)

)
≡ 0 mod p:

2z35 + 6z4z
2
5 + 3z3z

2
5 + 3z2z

2
5 + 12z25 + 6z24z5 + 6z3z4z5 + 6z2z4z5 + 24z4z5 + 9z3z5 + 9z2z5 + 22z5 +

6z24 + 6z3z4 + 6z2z4 + 18z4 + 6z3 + 6z2 + 12 = 0

5. e
(
φo (01, 10)

)
≡ 1 mod p:

2z2z
3
5 + 2z1z

3
5 + 2z35 + 6z2z4z

2
5 + 6z1z4z

2
5 + 6z4z

2
5 + 3z2z3z

2
5 + 3z1z3z

2
5 + 3z3z

2
5 + 3z22z

2
5 + 3z1z2z

2
5 +

18z2z
2
5 + 12z1z

2
5 + 15z25 + 6z2z

2
4z5 + 6z1z

2
4z5 + 6z24z5 + 6z2z3z4z5 + 6z1z3z4z5 + 6z3z4z5 + 6z22z4z5 +

6z1z2z4z5 + 36z2z4z5 + 24z1z4z5 + 30z4z5 + 9z2z3z5 + 9z1z3z5 + 9z3z5 + 9z22z5 + 9z1z2z5 + 40z2z5 +

22z1z5 + 31z5 + 6z2z
2
4 + 6z1z

2
4 + 6z24 + 6z2z3z4 + 6z1z3z4 + 6z3z4 + 6z22z4 + 6z1z2z4 + 30z2z4 + 18z1z4 +

24z4 + 6z2z3 + 6z1z3 + 6z3 + 6z22 + 6z1z2 + 24z2 + 12z1 + 18 = 6

6. e(φo (01, 01)
)
≡ 0 mod p:

2z2z
3
5 +2z1z

3
5 +2z35 +6z2z4z

2
5 +6z1z4z

2
5 +6z4z

2
5 +3z2z3z

2
5 +3z1z3z

2
5 +3z3z

2
5 +3z22z

2
5 +3z1z2z

2
5 +18z2z

2
5 +

12z1z
2
5 + 15z25 + 6z2z

2
4z5 + 6z1z

2
4z5 + 6z24z5 + 6z2z3z4z5 + 6z1z3z4z5 + 6z3z4z5 + 6z22z4z5 + 6z1z2z4z5 +
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36z2z4z5 + 24z1z4z5 + 30z4z5 + 9z2z3z5 + 9z1z3z5 + 9z3z5 + 9z22z5 + 9z1z2z5 + 34z2z5 + 16z1z5 + 25z5 +

6z2z
2
4 + 6z1z

2
4 + 6z24 + 6z2z3z4 + 6z1z3z4 + 6z3z4 + 6z22z4 + 6z1z2z4 + 24z2z4 + 12z1z4 + 18z4 = 0

7. e(φo (00, 00)
)
≡ 1 mod p:

2z35 + 6z4z
2
5 + 3z3z

2
5 + 3z2z

2
5 + 18z25 + 6z24z5 + 6z3z4z5 + 6z2z4z5 + 36z4z5 + 15z3z5 + 15z2z5 + 40z5 +

12z24 + 12z3z4 + 12z2z4 + 36z4 + 6z3 + 6z2 + 15 = 3

8. −2e
(
M(φ◦) o (10, 11)

)
+ e
(
L(φ◦) o (10, 11)

)
+ e
(
R(φ◦) o (10, 11)

)
≡ 0 mod p:

2z45 +8z4z
3
5 +5z3z

3
5 +5z2z

3
5 +2z1z

3
5 +12z35 +12z24z

2
5 +15z3z4z

2
5 +15z2z4z

2
5 +6z1z4z

2
5 +36z4z

2
5 +3z23z

2
5 +

6z2z3z
2
5 + 3z1z3z

2
5 + 18z3z

2
5 + 3z22z

2
5 + 3z1z2z

2
5 + 18z2z

2
5 + 6z1z

2
5 + 22z25 + 6z34z5 + 12z3z

2
4z5 + 12z2z

2
4z5 +

6z1z
2
4z5 + 30z24z5 + 6z23z4z5 + 12z2z3z4z5 + 6z1z3z4z5 + 33z3z4z5 + 6z22z4z5 + 6z1z2z4z5 + 33z2z4z5 +

12z1z4z5 + 40z4z5 + 3z23z5 + 6z2z3z5 + 3z1z3z5 + 13z3z5 + 3z22z5 + 3z1z2z5 + 13z2z5 + 4z1z5 + 12z5 = 0

9. −2e
(
M(φ◦) o (01, 11)

)
+ e
(
L(φ◦) o (01, 11)

)
+ e
(
R(φ◦) o (01, 11)

)
≡ 0 mod p:

2z2z
4
5 + 2z1z

4
5 + 2z45 + 8z2z4z

3
5 + 8z1z4z

3
5 + 8z4z

3
5 + 5z2z3z

3
5 + 5z1z3z

3
5 + 5z3z

3
5 + 5z22z

3
5 + 7z1z2z

3
5 +

22z2z
3
5 +2z21z

3
5 +16z1z

3
5 +17z35 +12z2z

2
4z

2
5 +12z1z

2
4z

2
5 +12z24z

2
5 +15z2z3z4z

2
5 +15z1z3z4z

2
5 +15z3z4z

2
5 +

15z22z4z
2
5 +21z1z2z4z

2
5 +66z2z4z

2
5 +6z21z4z

2
5 +48z1z4z

2
5 +51z4z

2
5 +3z2z

2
3z

2
5 +3z1z

2
3z

2
5 +3z23z

2
5 +6z22z3z

2
5 +

9z1z2z3z
2
5 +30z2z3z

2
5 +3z21z3z

2
5 +24z1z3z

2
5 +24z3z

2
5 +3z32z

2
5 +6z1z

2
2z

2
5 +27z22z

2
5 +3z21z2z

2
5 +33z1z2z

2
5 +

67z2z
2
5 + 6z21z

2
5 + 37z1z

2
5 + 43z25 + 6z2z

3
4z5 + 6z1z

3
4z5 + 6z34z5 + 12z2z3z

2
4z5 + 12z1z3z

2
4z5 + 12z3z

2
4z5 +

12z22z
2
4z5 + 18z1z2z

2
4z5 + 54z2z

2
4z5 + 6z21z

2
4z5 + 42z1z

2
4z5 + 42z24z5 + 6z2z

2
3z4z5 + 6z1z

2
3z4z5 + 6z23z4z5 +

12z22z3z4z5 + 18z1z2z3z4z5 + 57z2z3z4z5 + 6z21z3z4z5 + 45z1z3z4z5 + 45z3z4z5 + 6z32z4z5 + 12z1z
2
2z4z5 +

51z22z4z5 + 6z21z2z4z5 + 63z1z2z4z5 + 124z2z4z5 + 12z21z4z5 + 70z1z4z5 + 79z4z5 + 3z2z
2
3z5 + 3z1z

2
3z5 +

3z23z5 + 6z22z3z5 + 9z1z2z3z5 + 25z2z3z5 + 3z21z3z5 + 19z1z3z5 + 19z3z5 + 3z32z5 + 6z1z
2
2z5 + 22z22z5 +

3z21z2z5 + 26z1z2z5 + 47z2z5 + 4z21z5 + 23z1z5 + 28z5 = 0

10. −2e
(
M(φ◦) o (00, 01)

)
+ e
(
L(φ◦) o (00, 01)

)
+ e
(
R(φ◦) o (00, 01)

)
≡ 0 mod p:

2z45 + 8z4z
3
5 + 5z3z

3
5 + 5z2z

3
5 + 2z1z

3
5 + 20z35 + 12z24z

2
5 + 15z3z4z

2
5 + 15z2z4z

2
5 + 6z1z4z

2
5 + 60z4z

2
5 +

3z23z
2
5 + 6z2z3z

2
5 + 3z1z3z

2
5 + 33z3z

2
5 + 3z22z

2
5 + 3z1z2z

2
5 + 33z2z

2
5 + 12z1z

2
5 + 64z25 + 6z34z5 + 12z3z

2
4z5 +

12z2z
2
4z5 + 6z1z

2
4z5 + 54z24z5 + 6z23z4z5 + 12z2z3z4z5 + 6z1z3z4z5 + 63z3z4z5 + 6z22z4z5 + 6z1z2z4z5 +

63z2z4z5 + 24z1z4z5 + 124z4z5 + 9z23z5 + 18z2z3z5 + 9z1z3z5 + 52z3z5 + 9z22z5 + 9z1z2z5 + 52z2z5 +

16z1z5 + 64z5 + 6z34 + 12z3z
2
4 + 12z2z

2
4 + 6z1z

2
4 + 36z24 + 6z23z4 + 12z2z3z4 + 6z1z3z4 + 36z3z4 + 6z22z4 +

6z1z2z4 + 36z2z4 + 12z1z4 + 48z4 = 0

11. −2e
(
M(φ◦) o (00, 10)

)
+ e
(
L(φ◦) o (00, 10)

)
+ e
(
R(φ◦) o (00, 10)

)
≡ 0 mod p:

2z45 + 8z4z
3
5 + 5z3z

3
5 + 5z2z

3
5 + 2z1z

3
5 + 20z35 + 12z24z

2
5 + 15z3z4z

2
5 + 15z2z4z

2
5 + 6z1z4z

2
5 + 60z4z

2
5 +

3z23z
2
5 + 6z2z3z

2
5 + 3z1z3z

2
5 + 33z3z

2
5 + 3z22z

2
5 + 3z1z2z

2
5 + 33z2z

2
5 + 12z1z

2
5 + 70z25 + 6z34z5 + 12z3z

2
4z5 +

12z2z
2
4z5 + 6z1z

2
4z5 + 54z24z5 + 6z23z4z5 + 12z2z3z4z5 + 6z1z3z4z5 + 63z3z4z5 + 6z22z4z5 + 6z1z2z4z5 +
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63z2z4z5 + 24z1z4z5 + 136z4z5 + 9z23z5 + 18z2z3z5 + 9z1z3z5 + 64z3z5 + 9z22z5 + 9z1z2z5 + 64z2z5 +

22z1z5 + 100z5 + 6z34 + 12z3z
2
4 + 12z2z

2
4 + 6z1z

2
4 + 42z24 + 6z23z4 + 12z2z3z4 + 6z1z3z4 + 48z3z4 + 6z22z4 +

6z1z2z4 + 48z2z4 + 18z1z4 + 84z4 + 6z23 + 12z2z3 + 6z1z3 + 36z3 + 6z22 + 6z1z2 + 36z2 + 12z1 + 48 = 0

12. 2e
(
M2(φ◦) o (00, 11)

)
− 4e

(
LM(φ◦) o (00, 11)

)
− 4e

(
RM(φ◦) o (00, 11)

)
+

e
(
L2(φ◦) o (00, 11)

)
+ 2e

(
LR(φ◦) o (00, 11)

)
+ e
(
R2(φ◦) o (00, 11)

)
≡ 0 mod p:

2z55 + 10z4z
4
5 + 7z3z

4
5 + 7z2z

4
5 + 4z1z

4
5 + 20z45 + 20z24z

3
5 + 28z3z4z

3
5 + 28z2z4z

3
5 + 16z1z4z

3
5 + 80z4z

3
5 +

8z23z
3
5 + 16z2z3z

3
5 + 10z1z3z

3
5 + 50z3z

3
5 + 8z22z

3
5 + 10z1z2z

3
5 + 50z2z

3
5 + 2z21z

3
5 + 26z1z

3
5 + 70z35 + 18z34z

2
5 +

39z3z
2
4z

2
5+39z2z

2
4z

2
5+24z1z

2
4z

2
5+114z24z

2
5+24z23z4z

2
5+48z2z3z4z

2
5+30z1z3z4z

2
5+147z3z4z

2
5+24z22z4z

2
5+

30z1z2z4z
2
5 +147z2z4z

2
5 +6z21z4z

2
5 +78z1z4z

2
5 +206z4z

2
5 +3z33z

2
5 +9z2z

2
3z

2
5 +6z1z

2
3z

2
5 +33z23z

2
5 +9z22z3z

2
5 +

12z1z2z3z
2
5 +66z2z3z

2
5 +3z21z3z

2
5 +39z1z3z

2
5 +107z3z

2
5 +3z32z

2
5 +6z1z

2
2z

2
5 +33z22z

2
5 +3z21z2z

2
5 +39z1z2z

2
5 +

107z2z
2
5 + 6z21z

2
5 + 50z1z

2
5 + 100z25 + 6z44z5 + 18z3z

3
4z5 + 18z2z

3
4z5 + 12z1z

3
4z5 + 54z34z5 + 18z23z

2
4z5 +

36z2z3z
2
4z5 + 24z1z3z

2
4z5 + 111z3z

2
4z5 + 18z22z

2
4z5 + 24z1z2z

2
4z5 + 111z2z

2
4z5 + 6z21z

2
4z5 + 66z1z

2
4z5 +

160z24z5 + 6z33z4z5 + 18z2z
2
3z4z5 + 12z1z

2
3z4z5 + 60z23z4z5 + 18z22z3z4z5 + 24z1z2z3z4z5 + 120z2z3z4z5 +

6z21z3z4z5 + 72z1z3z4z5 + 185z3z4z5 + 6z32z4z5 + 12z1z
2
2z4z5 + 60z22z4z5 + 6z21z2z4z5 + 72z1z2z4z5 +

185z2z4z5+12z21z4z5+92z1z4z5+172z4z5+3z33z5+9z2z
2
3z5+6z1z

2
3z5+25z23z5+9z22z3z5+12z1z2z3z5+

50z2z3z5 + 3z21z3z5 + 29z1z3z5 + 64z3z5 + 3z32z5 + 6z1z
2
2z5 + 25z22z5 + 3z21z2z5 + 29z1z2z5 + 64z2z5 +

4z21z5 + 28z1z5 + 48z5 = 0

Solution: (z1, z2, z3, z4, z5) = (−1,−2, 0, 1,−2).

3.5.2 AndOr gate.

1. |φ| − 2 ≡ 0 mod p3:

z1 + z2 + z3 + z4 + z5 + 4 = 0

2. e
(
φo (11, 11)

)
6≡ 0 mod p:

z3z
3
5 + z2z

3
5 + z1z

3
5 + 2z35 + 2z3z4z

2
5 + 2z2z4z

2
5 + 2z1z4z

2
5 + 4z4z

2
5 + 2z23z

2
5 + 3z2z3z

2
5 + 2z1z3z

2
5 + 9z3z

2
5 +

z22z
2
5 +z1z2z

2
5 +6z2z

2
5 +3z1z

2
5 +8z25 +z3z

2
4z5+z2z

2
4z5+z1z

2
4z5+2z24z5+2z23z4z5+3z2z3z4z5+2z1z3z4z5+

9z3z4z5 + z22z4z5 + z1z2z4z5 + 6z2z4z5 + 3z1z4z5 + 8z4z5 + z33z5 + 2z2z
2
3z5 + z1z

2
3z5 + 7z23z5 + z22z3z5 +

z1z2z3z5 + 8z2z3z5 + 3z1z3z5 + 14z3z5 + z22z5 + z1z2z5 + 6z2z5 + 2z1z5 + 8z5 6= 0

3. e
(
φo (10, 01)

)
6≡ 0 mod p:

z35 +2z4z
2
5 +2z3z

2
5 +z2z

2
5 +4z25 +z24z5+2z3z4z5+z2z4z5+4z4z5+z23z5+z2z3z5+4z3z5+z2z5+3z5 6= 0
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4. e
(
φo (10, 10)

)
≡ 0 mod p:

z35 + 2z4z
2
5 + 2z3z

2
5 + z2z

2
5 + 6z25 + z24z5 + 2z3z4z5 + z2z4z5 + 7z4z5 + z23z5 + z2z3z5 + 7z3z5 + 3z2z5 +

11z5 + z24 + 2z3z4 + z2z4 + 5z4 + z23 + z2z3 + 5z3 + 2z2 + 6 = 0

5. e
(
φo (01, 10)

)
≡ 0 mod p:

z3z
3
5 + z2z

3
5 + z1z

3
5 + z35 + 2z3z4z

2
5 + 2z2z4z

2
5 + 2z1z4z

2
5 + 2z4z

2
5 + 2z23z

2
5 + 3z2z3z

2
5 + 2z1z3z

2
5 + 10z3z

2
5 +

z22z
2
5 +z1z2z

2
5 +8z2z

2
5 +6z1z

2
5 +8z25 +z3z

2
4z5+z2z

2
4z5+z1z

2
4z5+z24z5+2z23z4z5+3z2z3z4z5+2z1z3z4z5+

11z3z4z5 +z22z4z5 +z1z2z4z5 +9z2z4z5 +7z1z4z5 +9z4z5 +z33z5 +2z2z
2
3z5 +z1z

2
3z5 +10z23z5 +z22z3z5 +

z1z2z3z5 + 13z2z3z5 + 7z1z3z5 + 28z3z5 + 3z22z5 + 3z1z2z5 + 18z2z5 + 11z1z5 + 19z5 + z3z
2
4 + z2z

2
4 +

z1z
2
4 + z24 + 2z23z4 + 3z2z3z4 + 2z1z3z4 + 9z3z4 + z22z4 + z1z2z4 + 7z2z4 + 5z1z4 + 7z4 + z33 + 2z2z

2
3 +

z1z
2
3 + 8z23 + z22z3 + z1z2z3 + 10z2z3 + 5z1z3 + 19z3 + 2z22 + 2z1z2 + 11z2 + 6z1 + 12 = 0

6. e(φo (01, 01)
)
6≡ 0 mod p:

z3z
3
5 + z2z

3
5 + z1z

3
5 + z35 + 2z3z4z

2
5 + 2z2z4z

2
5 + 2z1z4z

2
5 + 2z4z

2
5 + 2z23z

2
5 + 3z2z3z

2
5 + 2z1z3z

2
5 + 8z3z

2
5 +

z22z
2
5 +z1z2z

2
5 +6z2z

2
5 +4z1z

2
5 +6z25 +z3z

2
4z5+z2z

2
4z5+z1z

2
4z5+z24z5+2z23z4z5+3z2z3z4z5+2z1z3z4z5+

8z3z4z5 + z22z4z5 + z1z2z4z5 + 6z2z4z5 + 4z1z4z5 + 6z4z5 + z33z5 + 2z2z
2
3z5 + z1z

2
3z5 + 7z23z5 + z22z3z5 +

z1z2z3z5 + 8z2z3z5 + 4z1z3z5 + 14z3z5 + z22z5 + z1z2z5 + 6z2z5 + 3z1z5 + 8z5 6= 0

7. e(φo (00, 00)
)
6≡ 0 mod p:

2z35 + 4z4z
2
5 + 4z3z

2
5 + 2z2z

2
5 + 12z25 + 2z24z5 + 4z3z4z5 + 2z2z4z5 + 13z4z5 + 2z23z5 + 2z2z3z5 + 13z3z5 +

4z2z5 + 18z5 + z24 + 2z3z4 + z2z4 + 6z4 + z23 + z2z3 + 6z3 + 2z2 + 8 6= 0

8. −2e
(
M(φ◦) o (10, 11)

)
+ e
(
L(φ◦) o (10, 11)

)
+ e
(
R(φ◦) o (10, 11)

)
≡ 0 mod p:

z45 + 3z4z
3
5 + 3z3z

3
5 + 2z2z

3
5 + z1z

3
5 + 6z35 + 3z24z

2
5 + 6z3z4z

2
5 + 4z2z4z

2
5 + 2z1z4z

2
5 + 12z4z

2
5 + 3z23z

2
5 +

4z2z3z
2
5 +2z1z3z

2
5 +12z3z

2
5 +z22z

2
5 +z1z2z

2
5 +7z2z

2
5 +3z1z

2
5 +11z25 +z34z5 +3z3z

2
4z5 +2z2z

2
4z5 +z1z

2
4z5 +

6z24z5 + 3z23z4z5 + 4z2z3z4z5 + 2z1z3z4z5 + 12z3z4z5 + z22z4z5 + z1z2z4z5 + 7z2z4z5 + 3z1z4z5 + 11z4z5 +

z33z5 + 2z2z
2
3z5 + z1z

2
3z5 + 6z23z5 + z22z3z5 + z1z2z3z5 + 7z2z3z5 + 3z1z3z5 + 11z3z5 + z22z5 + z1z2z5 +

5z2z5 + 2z1z5 + 6z5 = 0

9. −2e
(
M(φ◦) o (01, 11)

)
+ e
(
L(φ◦) o (01, 11)

)
+ e
(
R(φ◦) o (01, 11)

)
≡ 0 mod p:

z3z
4
5 + z2z

4
5 + z1z

4
5 + z45 + 3z3z4z

3
5 + 3z2z4z

3
5 + 3z1z4z

3
5 + 3z4z

3
5 + 3z23z

3
5 + 5z2z3z

3
5 + 4z1z3z

3
5 + 12z3z

3
5 +

2z22z
3
5 + 3z1z2z

3
5 + 10z2z

3
5 + z21z

3
5 + 8z1z

3
5 + 9z35 + 3z3z

2
4z

2
5 + 3z2z

2
4z

2
5 + 3z1z

2
4z

2
5 + 3z24z

2
5 + 6z23z4z

2
5 +

10z2z3z4z
2
5 + 8z1z3z4z

2
5 + 24z3z4z

2
5 + 4z22z4z

2
5 + 6z1z2z4z

2
5 + 20z2z4z

2
5 + 2z21z4z

2
5 + 16z1z4z

2
5 + 18z4z

2
5 +

3z33z
2
5 + 7z2z

2
3z

2
5 + 5z1z

2
3z

2
5 + 21z23z

2
5 + 5z22z3z

2
5 + 7z1z2z3z

2
5 + 31z2z3z

2
5 + 2z21z3z

2
5 + 21z1z3z

2
5 + 44z3z

2
5 +

z32z
2
5 +2z1z

2
2z

2
5 +10z22z

2
5 +z21z2z

2
5 +13z1z2z

2
5 +30z2z

2
5 +3z21z

2
5 +19z1z

2
5 +26z25 +z3z

3
4z5+z2z

3
4z5+z1z

3
4z5+

z34z5+3z23z
2
4z5+5z2z3z

2
4z5+4z1z3z

2
4z5+12z3z

2
4z5+2z22z

2
4z5+3z1z2z

2
4z5+10z2z

2
4z5+z21z

2
4z5+8z1z

2
4z5+

9z24z5+3z33z4z5+7z2z
2
3z4z5+5z1z

2
3z4z5+21z23z4z5+5z22z3z4z5+7z1z2z3z4z5+31z2z3z4z5+2z21z3z4z5+
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21z1z3z4z5 + 44z3z4z5 + z32z4z5 + 2z1z
2
2z4z5 + 10z22z4z5 + z21z2z4z5 + 13z1z2z4z5 + 30z2z4z5 + 3z21z4z5 +

19z1z4z5 + 26z4z5 + z43z5 + 3z2z
3
3z5 + 2z1z

3
3z5 + 10z33z5 + 3z22z

2
3z5 + 4z1z2z

2
3z5 + 21z2z

2
3z5 + z21z

2
3z5 +

13z1z
2
3z5 + 35z23z5 + z32z3z5 + 2z1z

2
2z3z5 + 12z22z3z5 + z21z2z3z5 + 15z1z2z3z5 + 44z2z3z5 + 3z21z3z5 +

25z1z3z5 + 50z3z5 + z32z5 + 2z1z
2
2z5 + 9z22z5 + z21z2z5 + 11z1z2z5 + 26z2z5 + 2z21z5 + 14z1z5 + 24z5 = 0

10. −2e
(
M(φ◦) o (00, 01)

)
+ e
(
L(φ◦) o (00, 01)

)
+ e
(
R(φ◦) o (00, 01)

)
≡ 0 mod p:

z45 + 3z4z
3
5 + 3z3z

3
5 + 2z2z

3
5 + z1z

3
5 + 8z35 + 3z24z

2
5 + 6z3z4z

2
5 + 4z2z4z

2
5 + 2z1z4z

2
5 + 16z4z

2
5 + 3z23z

2
5 +

4z2z3z
2
5 +2z1z3z

2
5 +16z3z

2
5 +z22z

2
5 +z1z2z

2
5 +9z2z

2
5 +4z1z

2
5 +19z25 +z34z5 +3z3z

2
4z5 +2z2z

2
4z5 +z1z

2
4z5 +

8z24z5 + 3z23z4z5 + 4z2z3z4z5 + 2z1z3z4z5 + 16z3z4z5 + z22z4z5 + z1z2z4z5 + 9z2z4z5 + 4z1z4z5 + 19z4z5 +

z33z5 + 2z2z
2
3z5 + z1z

2
3z5 + 8z23z5 + z22z3z5 + z1z2z3z5 + 9z2z3z5 + 4z1z3z5 + 19z3z5 + z22z5 + z1z2z5 +

7z2z5 + 3z1z5 + 12z5 = 0

11. −2e
(
M(φ◦) o (00, 10)

)
+ e
(
L(φ◦) o (00, 10)

)
+ e
(
R(φ◦) o (00, 10)

)
≡ 0 mod p:

z45+3z4z
3
5+3z3z

3
5+2z2z

3
5+z1z

3
5+10z35+3z24z

2
5+6z3z4z

2
5+4z2z4z

2
5+2z1z4z

2
5+21z4z

2
5+3z23z

2
5+4z2z3z

2
5+

2z1z3z
2
5 +21z3z

2
5 +z22z

2
5 +z1z2z

2
5 +13z2z

2
5 +6z1z

2
5 +35z25 +z34z5 +3z3z

2
4z5 +2z2z

2
4z5 +z1z

2
4z5 +12z24z5 +

3z23z4z5 + 4z2z3z4z5 + 2z1z3z4z5 + 24z3z4z5 + z22z4z5 + z1z2z4z5 + 15z2z4z5 + 7z1z4z5 + 44z4z5 + z33z5 +

2z2z
2
3z5+z1z

2
3z5+12z23z5+z22z3z5+z1z2z3z5+15z2z3z5+7z1z3z5+44z3z5+3z22z5+3z1z2z5+25z2z5+

11z1z5+50z5+z34+3z3z
2
4+2z2z

2
4+z1z

2
4+9z24+3z23z4+4z2z3z4+2z1z3z4+18z3z4+z22z4+z1z2z4+11z2z4+

5z1z4+26z4+z33+2z2z
2
3+z1z

2
3+9z23+z22z3+z1z2z3+11z2z3+5z1z3+26z3+2z22+2z1z2+14z2+6z1+24 =

0

12. 2e
(
M2(φ◦) o (00, 11)

)
− 4e

(
LM(φ◦) o (00, 11)

)
− 4e

(
RM(φ◦) o (00, 11)

)
+

e
(
L2(φ◦) o (00, 11)

)
+ 2e

(
LR(φ◦) o (00, 11)

)
+ e
(
R2(φ◦) o (00, 11)

)
≡ 0 mod p:

z55 + 4z4z
4
5 + 4z3z

4
5 + 3z2z

4
5 + 2z1z

4
5 + 10z45 + 6z24z

3
5 + 12z3z4z

3
5 + 9z2z4z

3
5 + 6z1z4z

3
5 + 30z4z

3
5 + 6z23z

3
5 +

9z2z3z
3
5 + 6z1z3z

3
5 + 30z3z

3
5 + 3z22z

3
5 + 4z1z2z

3
5 + 21z2z

3
5 + z21z

3
5 + 13z1z

3
5 + 35z35 + 4z34z

2
5 + 12z3z

2
4z

2
5 +

9z2z
2
4z

2
5 + 6z1z

2
4z

2
5 + 30z24z

2
5 + 12z23z4z

2
5 + 18z2z3z4z

2
5 + 12z1z3z4z

2
5 + 60z3z4z

2
5 + 6z22z4z

2
5 + 8z1z2z4z

2
5 +

42z2z4z
2
5 + 2z21z4z

2
5 + 26z1z4z

2
5 + 70z4z

2
5 + 4z33z

2
5 + 9z2z

2
3z

2
5 + 6z1z

2
3z

2
5 + 30z23z

2
5 + 6z22z3z

2
5 + 8z1z2z3z

2
5 +

42z2z3z
2
5 +2z21z3z

2
5 +26z1z3z

2
5 +70z3z

2
5 +z32z

2
5 +2z1z

2
2z

2
5 +12z22z

2
5 +z21z2z

2
5 +15z1z2z

2
5 +44z2z

2
5 +3z21z

2
5 +

25z1z
2
5 + 50z25 + 1(z44)z5 + 4z3z

3
4z5 + 3z2z

3
4z5 + 2z1z

3
4z5 + 10z34z5 + 6z23z

2
4z5 + 9z2z3z

2
4z5 + 6z1z3z

2
4z5 +

30z3z
2
4z5 + 3z22z

2
4z5 + 4z1z2z

2
4z5 + 21z2z

2
4z5 + z21z

2
4z5 + 13z1z

2
4z5 + 35z24z5 + 4z33z4z5 + 9z2z

2
3z4z5 +

6z1z
2
3z4z5 + 30z23z4z5 + 6z22z3z4z5 + 8z1z2z3z4z5 + 42z2z3z4z5 + 2z21z3z4z5 + 26z1z3z4z5 + 70z3z4z5 +

z32z4z5 + 2z1z
2
2z4z5 + 12z22z4z5 + z21z2z4z5 + 15z1z2z4z5 + 44z2z4z5 + 3z21z4z5 + 25z1z4z5 + 50z4z5 +

z43z5 + 3z2z
3
3z5 + 2z1z

3
3z5 + 10z33z5 + 3z22z

2
3z5 + 4z1z2z

2
3z5 + 21z2z

2
3z5 + z21z

2
3z5 + 13z1z

2
3z5 + 35z23z5 +

z32z3z5 + 2z1z
2
2z3z5 + 12z22z3z5 + z21z2z3z5 + 15z1z2z3z5 + 44z2z3z5 + 3z21z3z5 + 25z1z3z5 + 50z3z5 +

z32z5 + 2z1z
2
2z5 + 9z22z5 + z21z2z5 + 11z1z2z5 + 26z2z5 + 2z21z5 + 14z1z5 + 24z5 = 0

Solution: (z1, z2, z3, z4, z5) = (−2, 1,−3, 1,−1).
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The nonzero values e(σ o (v, v′)) takes are 2 and 4.

3.5.3 TestEq gate.

1. |φ| − 2 ≡ 0 mod p3:

z1 + z2 + z3 + z4 + z5 + 4 = 0

2. e
(
φo (11, 11)

)
6≡ 0 mod p:

2z3z
3
5 +2z2z

3
5 +2z1z

3
5 +4z35 +6z3z4z

2
5 +6z2z4z

2
5 +6z1z4z

2
5 +12z4z

2
5 +6z23z

2
5 +9z2z3z

2
5 +6z1z3z

2
5 +24z3z

2
5 +

3z22z
2
5 +3z1z2z

2
5 +15z2z

2
5 +6z1z

2
5 +18z25 +6z3z

2
4z5+6z2z

2
4z5+6z1z

2
4z5+12z24z5+12z23z4z5+18z2z3z4z5+

12z1z3z4z5+48z3z4z5+6z22z4z5+6z1z2z4z5+30z2z4z5+12z1z4z5+36z4z5+6z33z5+12z2z
2
3z5+6z1z

2
3z5+

36z23z5+6z22z3z5+6z1z2z3z5+39z2z3z5+12z1z3z5+58z3z5+3z22z5+3z1z2z5+19z2z5+4z1z5+26z5 6= 0

3. e
(
φo (10, 01)

)
≡ 0 mod p:

2z35 + 6z4z
2
5 + 6z3z

2
5 + 3z2z

2
5 + 12z25 + 6z24z5 + 12z3z4z5 + 6z2z4z5 + 24z4z5 + 6z23z5 + 6z2z3z5 + 24z3z5 +

9z2z5 + 16z5 + 6z24 + 12z3z4 + 6z2z4 + 12z4 + 6z23 + 6z2z3 + 12z3 = 0

4. e
(
φo (10, 10)

)
≡ 0 mod p:

2z35 + 6z4z
2
5 + 6z3z

2
5 + 3z2z

2
5 + 12z25 + 6z24z5 + 12z3z4z5 + 6z2z4z5 + 24z4z5 + 6z23z5 + 6z2z3z5 + 24z3z5 +

9z2z5 + 22z5 + 6z24 + 12z3z4 + 6z2z4 + 18z4 + 6z23 + 6z2z3 + 18z3 + 6z2 + 12 = 0

5. e
(
φo (01, 10)

)
≡ 0 mod p:

2z3z
3
5 + 2z2z

3
5 + 2z1z

3
5 + 2z35 + 6z3z4z

2
5 + 6z2z4z

2
5 + 6z1z4z

2
5 + 6z4z

2
5 + 6z23z

2
5 + 9z2z3z

2
5 + 6z1z3z

2
5 +

24z3z
2
5 + 3z22z

2
5 + 3z1z2z

2
5 + 18z2z

2
5 + 12z1z

2
5 + 18z25 + 6z3z

2
4z5 + 6z2z

2
4z5 + 6z1z

2
4z5 + 6z24z5 + 12z23z4z5 +

18z2z3z4z5 + 12z1z3z4z5 + 48z3z4z5 + 6z22z4z5 + 6z1z2z4z5 + 36z2z4z5 + 24z1z4z5 + 36z4z5 + 6z33z5 +

12z2z
2
3z5 + 6z1z

2
3z5 + 42z23z5 + 6z22z3z5 + 6z1z2z3z5 + 51z2z3z5 + 24z1z3z5 + 88z3z5 + 9z22z5 + 9z1z2z5 +

46z2z5 +22z1z5 +52z5 +6z3z
2
4 +6z2z

2
4 +6z1z

2
4 +6z24 +12z23z4 +18z2z3z4 +12z1z3z4 +42z3z4 +6z22z4 +

6z1z2z4 + 30z2z4 + 18z1z4 + 30z4 + 6z33 + 12z2z
2
3 + 6z1z

2
3 + 36z23 + 6z22z3 + 6z1z2z3 + 42z2z3 + 18z1z3 +

66z3 + 6z22 + 6z1z2 + 30z2 + 12z1 + 36 = 0

6. e(φo (01, 01)
)
≡ 0 mod p:

2z3z
3
5 +2z2z

3
5 +2z1z

3
5 +2z35 +6z3z4z

2
5 +6z2z4z

2
5 +6z1z4z

2
5 +6z4z

2
5 +6z23z

2
5 +9z2z3z

2
5 +6z1z3z

2
5 +24z3z

2
5 +

3z22z
2
5 +3z1z2z

2
5 +18z2z

2
5 +12z1z

2
5 +18z25 +6z3z

2
4z5+6z2z

2
4z5+6z1z

2
4z5+6z24z5+12z23z4z5+18z2z3z4z5+

12z1z3z4z5+48z3z4z5+6z22z4z5+6z1z2z4z5+36z2z4z5+24z1z4z5+36z4z5+6z33z5+12z2z
2
3z5+6z1z

2
3z5+

42z23z5 + 6z22z3z5 + 6z1z2z3z5 + 51z2z3z5 + 24z1z3z5 + 82z3z5 + 9z22z5 + 9z1z2z5 + 40z2z5 + 16z1z5 +

46z5 +6z3z
2
4 +6z2z

2
4 +6z1z

2
4 +6z24 +12z23z4 +18z2z3z4 +12z1z3z4 +36z3z4 +6z22z4 +6z1z2z4 +24z2z4 +

12z1z4 + 24z4 + 6z33 + 12z2z
2
3 + 6z1z

2
3 + 30z23 + 6z22z3 + 6z1z2z3 + 30z2z3 + 12z1z3 + 42z3 + 6z2 + 18 = 0
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7. e(φo (00, 00)
)
6≡ 0 mod p:

2z35 + 6z4z
2
5 + 6z3z

2
5 + 3z2z

2
5 + 18z25 + 6z24z5 + 12z3z4z5 + 6z2z4z5 + 36z4z5 + 6z23z5 + 6z2z3z5 + 36z3z5 +

15z2z5 + 40z5 + 12z24 + 24z3z4 + 12z2z4 + 36z4 + 12z23 + 12z2z3 + 36z3 + 6z2 + 15 6= 0

8. −2e
(
M(φ◦) o (10, 11)

)
+ e
(
L(φ◦) o (10, 11)

)
+ e
(
R(φ◦) o (10, 11)

)
≡ 0 mod p:

2z45 + 8z4z
3
5 + 8z3z

3
5 + 5z2z

3
5 + 2z1z

3
5 + 12z35 + 12z24z

2
5 + 24z3z4z

2
5 + 15z2z4z

2
5 + 6z1z4z

2
5 + 36z4z

2
5 +

12z23z
2
5 + 15z2z3z

2
5 + 6z1z3z

2
5 + 36z3z

2
5 + 3z22z

2
5 + 3z1z2z

2
5 + 18z2z

2
5 + 6z1z

2
5 + 22z25 + 6z34z5 + 18z3z

2
4z5 +

12z2z
2
4z5 + 6z1z

2
4z5 + 30z24z5 + 18z23z4z5 + 24z2z3z4z5 + 12z1z3z4z5 + 60z3z4z5 + 6z22z4z5 + 6z1z2z4z5 +

33z2z4z5 +12z1z4z5 +40z4z5 +6z33z5 +12z2z
2
3z5 +6z1z

2
3z5 +30z23z5 +6z22z3z5 +6z1z2z3z5 +33z2z3z5 +

12z1z3z5 + 40z3z5 + 3z22z5 + 3z1z2z5 + 13z2z5 + 4z1z5 + 12z5 = 0

9. −2e
(
M(φ◦) o (01, 11)

)
+ e
(
L(φ◦) o (01, 11)

)
+ e
(
R(φ◦) o (01, 11)

)
≡ 0 mod p:

2z3z
4
5+2z2z

4
5+2z1z

4
5+2z45+8z3z4z

3
5+8z2z4z

3
5+8z1z4z

3
5+8z4z

3
5+8z23z

3
5+13z2z3z

3
5+10z1z3z

3
5+28z3z

3
5+

5z22z
3
5 +7z1z2z

3
5 +22z2z

3
5 +2z21z

3
5 +16z1z

3
5 +20z35 +12z3z

2
4z

2
5 +12z2z

2
4z

2
5 +12z1z

2
4z

2
5 +12z24z

2
5 +24z23z4z

2
5 +

39z2z3z4z
2
5 +30z1z3z4z

2
5 +84z3z4z

2
5 +15z22z4z

2
5 +21z1z2z4z

2
5 +66z2z4z

2
5 +6z21z4z

2
5 +48z1z4z

2
5 +60z4z

2
5 +

12z33z
2
5 + 27z2z

2
3z

2
5 + 18z1z

2
3z

2
5 + 72z23z

2
5 + 18z22z3z

2
5 + 24z1z2z3z

2
5 + 99z2z3z

2
5 + 6z21z3z

2
5 + 60z1z3z

2
5 +

130z3z
2
5 + 3z32z

2
5 + 6z1z

2
2z

2
5 + 27z22z

2
5 + 3z21z2z

2
5 + 33z1z2z

2
5 + 76z2z

2
5 + 6z21z

2
5 + 40z1z

2
5 + 70z25 + 6z3z

3
4z5 +

6z2z
3
4z5 + 6z1z

3
4z5 + 6z34z5 + 18z23z

2
4z5 + 30z2z3z

2
4z5 + 24z1z3z

2
4z5 + 66z3z

2
4z5 + 12z22z

2
4z5 + 18z1z2z

2
4z5 +

54z2z
2
4z5+6z21z

2
4z5+42z1z

2
4z5+48z24z5+18z33z4z5+42z2z

2
3z4z5+30z1z

2
3z4z5+114z23z4z5+30z22z3z4z5+

42z1z2z3z4z5+165z2z3z4z5+12z21z3z4z5+108z1z3z4z5+214z3z4z5+6z32z4z5+12z1z
2
2z4z5+51z22z4z5+

6z21z2z4z5 + 63z1z2z4z5 + 136z2z4z5 + 12z21z4z5 + 76z1z4z5 + 118z4z5 + 6z43z5 + 18z2z
3
3z5 + 12z1z

3
3z5 +

54z33z5 + 18z22z
2
3z5 + 24z1z2z

2
3z5 + 111z2z

2
3z5 + 6z21z

2
3z5 + 66z1z

2
3z5 + 166z23z5 + 6z32z3z5 + 12z1z

2
2z3z5 +

60z22z3z5 + 6z21z2z3z5 + 72z1z2z3z5 + 194z2z3z5 + 12z21z3z5 + 98z1z3z5 + 206z3z5 + 3z32z5 + 6z1z
2
2z5 +

28z22z5 + 3z21z2z5 + 32z1z2z5 + 86z2z5 + 4z21z5 + 38z1z5 + 88z5 = 0

10. −2e
(
M(φ◦) o (00, 01)

)
+ e
(
L(φ◦) o (00, 01)

)
+ e
(
R(φ◦) o (00, 01)

)
≡ 0 mod p:

2z45 + 8z4z
3
5 + 8z3z

3
5 + 5z2z

3
5 + 2z1z

3
5 + 20z35 + 12z24z

2
5 + 24z3z4z

2
5 + 15z2z4z

2
5 + 6z1z4z

2
5 + 60z4z

2
5 +

12z23z
2
5 + 15z2z3z

2
5 + 6z1z3z

2
5 + 60z3z

2
5 + 3z22z

2
5 + 3z1z2z

2
5 + 33z2z

2
5 + 12z1z

2
5 + 64z25 + 6z34z5 + 18z3z

2
4z5 +

12z2z
2
4z5 +6z1z

2
4z5 +54z24z5 +18z23z4z5 +24z2z3z4z5 +12z1z3z4z5 +108z3z4z5 +6z22z4z5 +6z1z2z4z5 +

63z2z4z5+24z1z4z5+124z4z5+6z33z5+12z2z
2
3z5+6z1z

2
3z5+54z23z5+6z22z3z5+6z1z2z3z5+63z2z3z5+

24z1z3z5 +124z3z5 +9z22z5 +9z1z2z5 +52z2z5 +16z1z5 +64z5 +6z34 +18z3z
2
4 +12z2z

2
4 +6z1z

2
4 +36z24 +

18z23z4 + 24z2z3z4 + 12z1z3z4 + 72z3z4 + 6z22z4 + 6z1z2z4 + 36z2z4 + 12z1z4 + 48z4 + 6z33 + 12z2z
2
3 +

6z1z
2
3 + 36z23 + 6z22z3 + 6z1z2z3 + 36z2z3 + 12z1z3 + 48z3 = 0

11. −2e
(
M(φ◦) o (00, 10)

)
+ e
(
L(φ◦) o (00, 10)

)
+ e
(
R(φ◦) o (00, 10)

)
≡ 0 mod p:

2z45 + 8z4z
3
5 + 8z3z

3
5 + 5z2z

3
5 + 2z1z

3
5 + 20z35 + 12z24z

2
5 + 24z3z4z

2
5 + 15z2z4z

2
5 + 6z1z4z

2
5 + 60z4z

2
5 +

12z23z
2
5 + 15z2z3z

2
5 + 6z1z3z

2
5 + 60z3z

2
5 + 3z22z

2
5 + 3z1z2z

2
5 + 33z2z

2
5 + 12z1z

2
5 + 70z25 + 6z34z5 + 18z3z

2
4z5 +
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12z2z
2
4z5 +6z1z

2
4z5 +54z24z5 +18z23z4z5 +24z2z3z4z5 +12z1z3z4z5 +108z3z4z5 +6z22z4z5 +6z1z2z4z5 +

63z2z4z5+24z1z4z5+136z4z5+6z33z5+12z2z
2
3z5+6z1z

2
3z5+54z23z5+6z22z3z5+6z1z2z3z5+63z2z3z5+

24z1z3z5 + 136z3z5 + 9z22z5 + 9z1z2z5 + 64z2z5 + 22z1z5 + 100z5 + 6z34 + 18z3z
2
4 + 12z2z

2
4 + 6z1z

2
4 +

42z24 + 18z23z4 + 24z2z3z4 + 12z1z3z4 + 84z3z4 + 6z22z4 + 6z1z2z4 + 48z2z4 + 18z1z4 + 84z4 + 6z33 +

12z2z
2
3 + 6z1z

2
3 + 42z23 + 6z22z3 + 6z1z2z3 + 48z2z3 + 18z1z3 + 84z3 + 6z22 + 6z1z2 + 36z2 + 12z1 + 48 = 0

12. 2e
(
M2(φ◦) o (00, 11)

)
− 4e

(
LM(φ◦) o (00, 11)

)
− 4e

(
RM(φ◦) o (00, 11)

)
+

e
(
L2(φ◦) o (00, 11)

)
+ 2e

(
LR(φ◦) o (00, 11)

)
+ e
(
R2(φ◦) o (00, 11)

)
≡ 0 mod p:

2z55 + 10z4z
4
5 + 10z3z

4
5 + 7z2z

4
5 + 4z1z

4
5 + 20z45 + 20z24z

3
5 + 40z3z4z

3
5 + 28z2z4z

3
5 + 16z1z4z

3
5 + 80z4z

3
5 +

20z23z
3
5 +28z2z3z

3
5 +16z1z3z

3
5 +80z3z

3
5 +8z22z

3
5 +10z1z2z

3
5 +50z2z

3
5 +2z21z

3
5 +26z1z

3
5 +70z35 +18z34z

2
5 +

54z3z
2
4z

2
5+39z2z

2
4z

2
5+24z1z

2
4z

2
5+114z24z

2
5+54z23z4z

2
5+78z2z3z4z

2
5+48z1z3z4z

2
5+228z3z4z

2
5+24z22z4z

2
5+

30z1z2z4z
2
5 + 147z2z4z

2
5 + 6z21z4z

2
5 + 78z1z4z

2
5 + 206z4z

2
5 + 18z33z

2
5 + 39z2z

2
3z

2
5 + 24z1z

2
3z

2
5 + 114z23z

2
5 +

24z22z3z
2
5+30z1z2z3z

2
5+147z2z3z

2
5+6z21z3z

2
5+78z1z3z

2
5+206z3z

2
5+3z32z

2
5+6z1z

2
2z

2
5+33z22z

2
5+3z21z2z

2
5+

39z1z2z
2
5 + 107z2z

2
5 + 6z21z

2
5 + 50z1z

2
5 + 100z25 + 6(z44)z5 + 24z3z

3
4z5 + 18z2z

3
4z5 + 12z1z

3
4z5 + 54z34z5 +

36z23z
2
4z5 + 54z2z3z

2
4z5 + 36z1z3z

2
4z5 + 162z3z

2
4z5 + 18z22z

2
4z5 + 24z1z2z

2
4z5 + 111z2z

2
4z5 + 6z21z

2
4z5 +

66z1z
2
4z5 + 160z24z5 + 24z33z4z5 + 54z2z

2
3z4z5 + 36z1z

2
3z4z5 + 162z23z4z5 + 36z22z3z4z5 + 48z1z2z3z4z5 +

222z2z3z4z5 + 12z21z3z4z5 + 132z1z3z4z5 + 320z3z4z5 + 6z32z4z5 + 12z1z
2
2z4z5 + 60z22z4z5 + 6z21z2z4z5 +

72z1z2z4z5 + 185z2z4z5 + 12z21z4z5 + 92z1z4z5 + 172z4z5 + 6z43z5 + 18z2z
3
3z5 + 12z1z

3
3z5 + 54z33z5 +

18z22z
2
3z5 +24z1z2z

2
3z5 +111z2z

2
3z5 +6z21z

2
3z5 +66z1z

2
3z5 +160z23z5 +6z32z3z5 +12z1z

2
2z3z5 +60z22z3z5 +

6z21z2z3z5 + 72z1z2z3z5 + 185z2z3z5 + 12z21z3z5 + 92z1z3z5 + 172z3z5 + 3z32z5 + 6z1z
2
2z5 + 25z22z5 +

3z21z2z5 + 29z1z2z5 + 64z2z5 + 4z21z5 + 28z1z5 + 48z5 = 0

Solution: (z1, z2, z3, z4, z5) = (−2,−8
3
, 5
3
,−3, 2).

The nonzero values e(σ o (v, v′)) takes are 7
3

and −8
3

.

54



CHAPTER 4

Linear extensions of height two posets

4.1 Height two posets

In this chapter, we prove Theorem 1.1.6 and Theorem 1.1.7. We begin with a procedure

for constructing a height two poset from an arbitrary poset. Let P = (X,<) be a poset

on a set X of n elements {x1, . . . , xn}. Denote by Γ = (X,E) its comparability graph,

with oriented edges (xi, xj) ∈ E if xi < xj in P . Denote by X ′ a identical copy of X with

elements {x′1, . . . , x′n}.

Define the poset Q = (X ∪ X ′,≺) on 2n elements, by having xi ≺ x′i for all xi ∈ X,

and xi ≺ x′j for all xi < xj, with xi, xj ∈ X. In particular, the Hasse diagram of Q consists

of n+ |E| edges. Note that Q is a poset of height 2, see Figure 4.2.

x4

x2 x3

x1

Figure 4.1: The Hasse diagram of a poset

P .

x′1 x′2 x′3 x′4

x1 x2 x3 x4

Figure 4.2: Poset Q associated to poset

P .

For every prime p between n and n2, we construct the modified poset Qp by adding, for

all i and j satisfying 1 ≤ i ≤ n and 1 ≤ j ≤ p− 2, the element xij and the relation xij ≺ x′i.

Note that Qp is still of height 2 and has pn elements (see Figure 4.3).

We will use the number of linear extensions of Q and Qp to compute the number of linear
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extensions of P . Consider first the number e(Q) of linear extensions of Q. Let A ∈
(
[2n]
n

)
,

i.e. A is a n-subset of [2n] = {1, 2, . . . , 2n}. Denote by eA(Q) be the number of linear

extensions ` of Q such that `(X ′) = A. In other words, eA(Q) consists of linear extensions

that assign values in A to elements of X ′. A linear extension ` of Q belongs to exactly one

set eA(Q), so

e(Q) =
∑

A∈([2n]
n )

eA(Q).

x′1 x′2 x′3 x′4

x11 x1 x21 x2 x31 x3 x41 x4

Figure 4.3: Qp for p = 3.

Lemma 4.1.1. e(P) = e{2,4,6,...,2n}(Q).

Proof. We construct a bijection Φ explictly from e(P) → e{2,4,6,...,2n}(Q), and give its in-

verse Ψ. First, given a linear extension ρ of P , let Φ(ρ) ∈ e{2,4,6,...,2n}(Q) be defined by

Φ(ρ)[xi] = 2ρ[xi]− 1

and

Φ(ρ)[x′i] = 2ρ[xi].

Note that Φ(ρ)[xi] < Φ(ρ)[x′i] for all i, and if xi < xj ∈ P , then

Φ(ρ)[xi] = 2ρ[xi]− 1 < 2ρ[xj]− 1 < 2ρ[xj] = Φ(ρ)[x′j].

Thus Φ(ρ) is indeed a linear extension of Q. Since Φ : e(P) → e{2,4,6,...,2n}(Q) is injective,

we have e(P) ≤ e{2,4,6,...,2n}(Q).

We next give the inverse map Ψ. Given a linear extension η ∈ e{2,4,6,...,2n}(Q) we construct

a linear extension Ψ(η) ∈ e(P). For every xi ∈ P , we set

Ψ(η)[xi] = η[x′i]/2.
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For every ρ ∈ e(P) we have Ψ(Φ(ρ)) = ρ, by construction. To complete the proof, we

must show that Φ(Ψ(η)) = η for every η ∈ e{2,4,6,...,2n}(Q), and that Ψ(η) ∈ e(P) for

every η ∈ e{2,4,6,...,2n}(Q), that is, we must show that Ψ(η) is a linear extension of P .

Consider η ∈ e{2,4,6,...,2n}(Q). We will show that η[xi] = η[x′i]− 1 for all i with 1 ≤ i ≤ n.

Since

η[X ′] = {2, 4, 6, . . . , 2n}

we must have

η[X] = {1, 3, 5, . . . , 2n− 1}.

For some x′i ∈ X ′ and for some xj ∈ X, we have η[x′i] = 2n and η[xj] = 2n − 1. For the

relation xj ≺ x′j to be satisfied, we must have η[xj] < η[x′j]. We must therefore have x′j = 2n,

that is, i = j and η[xi] = η[x′i]− 1 for this value of i.

Suppose that for some m we have that η[xi] = η[x′i] − 1 for all xi with η[xi] > 2m. We

have just proved this statement holds for the case m = n − 1. We proceed by induction

on n − m. There exist x′j ∈ X ′ and xk ∈ X with η[x′j] = 2m and η[xk] = 2m − 1. Note

that we cannot have η[x′k] > 2m, since then we would have η[xk] = η[x′k] − 1 > 2m − 1 by

the induction hypothesis. But η[x′k] > η[xk] = 2m − 1, so that we must have η[x′k] = 2m

and η[xj] = η[x′j]− 1. Thus by induction η[xi] = η[x′i]− 1 for all i with 1 ≤ i ≤ n, as desired.

Applying this result, we have

Φ(Ψ(η))[x′i] = 2Ψ(η)[xi] = η[x′i]

and

Φ(Ψ(η))[xi] = 2Ψ(η)[xi]− 1 = η[x′i]− 1 = η[xi],

so that Φ(Ψ(η)) = η, as desired.

Finally, for every pair xi < xj ∈ P , we have xi ≺ x′j ∈ Q. Then η[xi] < η[x′j],

so that η[xi] + 1 = η[x′i] ≤ η[x′j]. Of course η is a bijection so we have η[x′i] < η[x′j].

Thus Ψ(η)[xi] < Ψ(η)[xj], and Ψ(η) is a linear extension of P . We conclude that Φ and Ψ

are inverse maps, which completes the proof.

The above lemma should be compared with the following result:
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Lemma 4.1.2. e(Qp) ≡ (−1)ne{2,4,6,...,2n}(Q) mod p.

Proof. Throughout the proof of this lemma, we will consider colorings of a set of integers.

A coloring of a set is a function from that set to some list of acceptable colors.

Let A ∈
(
[2n]
n

)
, and write A = {a1, . . . , an}, with a1 < a2 < · · · < an. A coloring of the

set [pn] = {1, 2, . . . , pn} is called A-compatible if the following conditions are satisfied:

1. there is a sequence of 2n integers b1 < · · · < b2n colored black,

2. there are another n colors C1, . . . , Cn, and p− 2 integers are colored with each of these

colors,

3. all of the elements colored with Ck lie before bak .

Let fp(A) be the number of A-compatible colorings of [pn]. Given a linear extension η ∈

e(Q), we write eη(Qp) for the number of linear extensions of Qp which preserve the ordering

on X ∪X ′ given by η. When η ∈ eA(Q), we claim that

eη(Qp) = fp(A)
(
(p− 2)!

)n
.

Given a linear extension η ∈ eA(Q) and a coloring in fp(A), we can construct
(
(p − 2)!

)n

linear extensions ρ ∈ eη(Qp) as follows. Let

ρ[xi] = bη[xi]

for all xi ∈ X, and similarly let

ρ[x′i] = bη[x′i]

for all x′i ∈ X ′. Thus ρ[xi] < ρ[xj] if and only if η[xi] < η[xj]. Note that for every integer k,

with 1 ≤ k ≤ n, there is some i with η[x′i] = ak and ρ[x′i] = bak . For the p − 2 elements

xij ≺ x′i, assign to ρ[xij] some permutation of the integers with color Ck. This gives (p− 2)!

choices for each k, so the total number of linear extensions ρ preserving the ordering η for a

fixed coloring is
(
(p− 2)!

)n
, as desired. Reversing this procedure gives a linear extension for

every choice of a linear extension η ∈ eA(Q) and an A-compatible coloring.
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We then have, by Wilson’s theorem:

e(Qp) =
∑

A∈([2n]
n )

∑

η∈eA(Q)
eη(Qp)

= ((p− 2)!)n
∑

A∈([2n]
n )

eA(Q)fp(A)

≡
∑

A∈([2n]
n )

eA(Q)fp(A) mod p.

In an A-compatible coloring of {1, 2, . . . , pn}, there are ak − 1 + k(p − 2) terms to the left

of bak colored either black or one of the colors C1, . . . , Ck. Among these terms, we can choose

the position of the elements colored Ck arbitrarily. This gives

fp(A) =
n∏

k=1

(
ak − 1 + k(p− 2)

p− 2

)
.

For A = {2, 4, 6, . . . , 2n}, we have ak = 2k, so this becomes

fp ({2, 4, 6, . . . , 2n}) =
n∏

k=1

(
kp− 1

p− 2

)
≡ (−1)n mod p,

by Lucas’s theorem. For every other A with eA(Q) 6= 0, we have fp(A) ≡ 0 mod p. Indeed,

suppose eA(Q) 6= 0 and consider some η ∈ eA(Q). Then η[x′i] = 2n for some i, since η[xi] =

2n contradicts xi ≺ x′i. Thus an = 2n. We proceed by induction on n− k. Suppose that

(ak+1, . . . , an) = (2k + 2, . . . , 2n).

Then for every integer j > ak with j 6∈ (2k + 2, . . . , 2n), we have η[xi] = j, for some xi ∈ X.

The relation xi ≺ x′i gives η[x′i] > η[xi] > ak, so that η[x′i] ∈ (2k + 2, . . . , 2n). If we

had ak < 2k, we would then have at least (n − k + 2) possible values of j > ak, but

only (n − k + 1) possible values for η[x′i] to take in (2k + 2, . . . , 2n). Thus either ak = 2k

or ak = 2k + 1.

If ak = 2k + 1, then (
ak − 1 + kp− 2k

p− 2

)
=

(
kp

p− 2

)

will divide fp(A). By another application of Lucas’s theorem,
(
kp
p−2
)
≡ 0 mod p, so we

have fp(A) ≡ 0 mod p unless ak = 2k. This completes the induction, and we con-

clude eA(P)fp(A) ≡ 0 mod p unless A = {2, 4, . . . , 2n}.
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We now apply Proposition 3.1.1 to complete the proof.

Proof of Theorem 1.1.6. We make an argument based on the Chinese Remainder Theorem

similar to that in [BW91] and Section 3.1. Since e(P) ≤ n!, Proposition 3.1.1 together with

the Chinese Remainder Theorem shows that computing the residue of e(P) mod p for the

primes p with n ≤ p ≤ n2 is sufficient to determine e(P). The lemmas above show that we

can compute the residue of e(P) mod p by computing e(Qp). Since #LE is #P-complete,

so is #H2LE.

4.2 Incidence posets

4.2.1 Counting incidence posets

Given a graph G = (V,E), we construct its incidence poset IG, with elements corresponding

to vertices and edges of G, with x < y in P if and only if x ∈ E, y ∈ V and y is an endpoint

of x. We write e(G) for the number of linear extensions of IG.

Our approach here is similar to our approach in Section 4.1. We produce, given a poset P

and a prime p > |P|, a graph Gp(P) with:

e (Gp(P)) ≡ (−1)|P| · 8e(P) mod p.

Let G = (V,E) be a graph, with V = {x1, . . . , xn}, and σ ∈ Sn a permutation. Denote by

eσ(G) the number of linear extensions of IG, which satisfy the following condition: when

restricted to V , induce the permutation σ, so that xσ−1(1) ≤ xσ−1(2) ≤ · · · ≤ xσ−1(n). We

have:

e(G) =
∑

σ∈Sn
eσ(G).

Informally, to compute eσ(G) we visit the vertices of G in the order dictated by σ, accounting

for the new edges we meet at each step.

Formally, given a permutation σ ∈ Sn, we produce the sequence {t1, . . . , tn}, where ti is

the number of edges in E with xσ−1(i) as an endpoint, and no endpoint xσ−1(j) for j < i. Let
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{u1, . . . , un} be the sequence of partial sums of the ti’s, so that

uk = t1 + . . . + tk .

Note that uk is the total number of edges incident to the set of vertices xσ−1(1), . . . , xσ−1(k).

Let |E| = m. Then we call a coloring of the set {1, 2, . . . ,m + n} (G, σ)-compatible if

the following conditions are satisfied:

1. there is a sequence of n integers b1 < · · · < bn colored black,

2. there are another n colors C1, . . . , Cn, and tk integers are colored with the color Ck ,

3. all of the elements colored with Ck lie before bk .

Let f(G, σ) be the number of (G, σ)-compatible colorings. In such a coloring, there are

uk + k − 1 numbers to the left of bk colored either black or one of the colors C1, . . . , Ck.

Among these terms, we can choose the position of the elements colored Ck arbitrarily. This

gives:

f(G, σ) =
n∏

k=1

(
uk + k − 1

tk

)
.

A (G, σ)-compatible coloring corresponds to a collection of linear extensions of IG counted

by eσ(G). The values assigned to the tk new edges at xσ−1(k) are given by the numbers

colored with Ck, and these values can be assigned in (tk)! ways, so that we have:

e(G) =
∑

σ∈Sn
f(G, σ)

n∏

k=1

(tk)! =
∑

σ∈Sn

n∏

k=1

(tk)!

(
uk + k − 1

tk

)
. (4.2.1)

In particular, when we are counting modulo p we can restrict our attention to permutations σ,

which have corresponding sequences {t1, . . . , tn} with ti < p for all i. Informally, we want

to visit each vertex of G in the order given by σ, deleting the edges incident to each vertex

after we visit it, and ensure that no vertex has at least p edges by the time we visit it.

Now we give the actual construction of Gp(P). The first step is to construct a gadget Jp,

which is a graph defined as follows. Start with the complete bipartite graph Kp−1,p−1 on 2p−2

vertices. Call these vertices y1, . . . , yp−1 and z1, . . . , zp−1 and add an additional p − 2 edges

from zp−1 to zi for 1 ≤ i < p − 1. Note that each of the yi’s has degree p − 1 and the zi’s

have degree ≥ p (see Figure 4.4). We need the following:
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Lemma 4.2.1. e(Jp) ≡ −8 mod p.

We defer the proof of this lemma to the end of this section.

z1 z2

y1 y2

Figure 4.4: Jp for p = 3.

z1 z2

y1 y2

x4

x2 x3

x1

Figure 4.5: Gp(P) for P as in Figure 4.1

and p = 3.

To construct Gp(P), add below Jp the Hasse diagram of P (treated as an undirected

graph). For each element x ∈ P , let vx be the number of elements in P that cover x.

Add p− 1− vx edges from x to the degree p− 1 vertices yi of Jp in an arbitrarily way (see

Figure 4.5).

Theorem 1.1.7 follows immediately from the following:

Lemma 4.2.2. e(Gp(P)) ≡ (−1)|P|+1 · 8e(P) mod p

Proof. Every maximal element of P has vx = 0, and so is connected to each of the yi’s in Jp.

Since P has at least one maximal element, every element of Jp has degree ≥ p. Thus every σ

which visits a vertex in Jp before visiting every maximal element of P has a term ti ≥ p,

so that eσ(Gp(P)) ≡ 0 mod p. Likewise, of these permutations, every permutation σ that

visits an element of P before visiting all of its immediate predecessors has eσ(Gp(P)) ≡ 0

mod p.

Thus we can restrict our count of e(Gp(P)) modulo p to permutations that have as their

first n terms a linear extension of P . For these permutations, we have t1 = t2 = . . . = tn =
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(1, 0, 1)
0
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0
xx

(0, 0, 1)

Figure 4.6: The c = 1 half of the directed graph G ′, with weights, for p = 5.

p− 1, so that (tk)! ≡ −1 mod p by Wilson’s theorem, and

(
uk + k − 1

tk

)
=

(
kp− 1

p− 1

)
≡ 1 mod p.

Furthermore, for every k > n, we have t1 + . . .+ tk = np− n+ (tn+1 + · · ·+ tk) + k − 1, so

that (
uk + k − 1

tk

)
≡
(
uk − un + (k − n)− 1

tk

)
mod p.

Now comparing the expressions for e(Gp(P)) and e(Jp) given by (4.2.1), we have

e (Gp(P)) ≡ (−1)|P|e(P)e(Jp) mod p,

and Lemma 4.2.1 completes the proof.

Proof of Theorem 1.1.7. Using the same Chinese Remainder Theorem argument we used in

Section 3.1 and Section 4.1, the two lemmas above show that computing e(Gp(P )) for the

primes between |P| and |P|2 is sufficient to determine e(P). Since #LE is #P-Complete,

so is #IPLE.
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4.2.2 Proof of Lemma 4.2.1

Note that the values tk and uk + k − 1 in (4.2.1) are both independent of the order in

which the previous k − 1 vertices are visited. They can be computed solely by identifying

the vertex xσ−1(k) and the collection of vertices {xσ−1(i)}i<k. This motivates the following

construction. Recall that the induced subgraphs of a graph G are those formed by deleting

some vertices together with all incident edges. Take a directed graph G whose vertices are

the induced subgraphs of Jp and whose edges point from each subgraph to those obtained

from it by deleting a single vertex. Attach to each edge the weight

(tk)!

(
uk + k − 1

tk

)
= (tk)!

(
uk + k − 1

uk − uk−1

)
. (4.2.2)

Then e(Jp) is equal to the sum of all weighted paths in G from Jp to the empty subgraph.

Let Jp(a, b, c) be an induced subgraph of Jp with a of the yi’s, b of the zi’s, for 1 ≤ i < p−1,

and c = 1 if zp−1 ∈ Jp(a, b, c), c = 0 otherwise, for 0 ≤ a ≤ p − 1 and 0 ≤ b ≤ p − 2. Since

the yi’s, and the zi’s, except for zp−1, are indistinguishable, these subgraphs Jp(a, b, c) are

all of the induced subgraphs of Jp, up to isomorphism.

We can thus reduce our graph of subgraphs G to the graph G ′ containing only these 2p2−2p

vertices. We re-weight the edges from Jp(a, b, c) where a, b or c is reduced by one, by

multiplying by a, b or c, respectively. This accounts for the a, b or c choices of vertex

to remove. Write `(a, b, c) for the value of uk−1 + k − 1 upon reaching Jp(a, b, c), that is,

`(a, b, c) is the number of vertices and edges that must be deleted from Jp(p− 1, p− 2, 1) to

give Jp(a, b, c). Then (4.2.2) gives the weight of the edge from Jp(a, b, c) to Jp(a− 1, b, c) in

terms of a, b, c and `:

a(b+ c)!

(
`(a, b, c) + b+ c

b+ c

)
= a(b+ c)!

(
`(a− 1, b, c)− 1

`(a− 1, b, c)− `(a, b, c)− 1

)
. (4.2.3)

The equations for the edges from Jp(a, b, c) to Jp(a, b− 1, c) and Jp(a, b, c− 1) are the same

up to a cyclic permutation of (a, b, c). The total number of edges in Jp is (p−1)2 + (p−2) =

p2 − p − 1. The number of edges in Jp(a, b, c) is ab + ac + bc, and we reach Jp(a, b, c) by

deleting (p− 1− a) + (p− 2− b) + (1− c) vertices. We then calculate:

`(a, b, c) = p2 − p− 1 − (ab+ (a+ b)c) + (p− 1− a) + (p− 2− b) + (1− c)
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≡ (a+ 2)(p− b− 2) + (c− 1)(a+ b+ 2) mod p.

Lemma 4.2.3. When c = 1, (a + 2)(p− b− 2) > p and (p− a− 2)(b + 2) > p, every path

in G ′ that visits Jp(a, b, c) has weight zero modulo p.

Proof. We argue by induction on (2p − 3) − (a + b), that is, on the distance in G ′ from

Jp(p − 1, p − 2, 1) to Jp(a, b, c). When a = p − 1, b = p − 2, c = 1, the conditions of the

lemma are not met, and the statement is true vacuously.

Now suppose that a, b, c satisfy the conditions in this lemma. Then a path that visits

Jp(a, b, c) must come from either Jp(a+1, b, c) or Jp(a, b+1, c). If the values a+1, b, c satisfy

the conditions in this lemma, we can then apply the induction hypothesis to show that every

path through Jp(a + 1, b, c) has weight 0 modulo p. In particular, a path that includes the

edge from Jp(a+ 1, b, c) to Jp(a, b, c) has weight 0 modulo p.

On the other hand, suppose that a + 1, b, c do not satisfy the conditions in this lemma.

Then (a+3)(p−b−2) > (a+2)(p−b−2) > p, so we must have (p−a−3)(b+2) ≤ p. Note that

if a or b is greater than or equal to p−2, either (a+2)(p−b−2) ≤ 0 or (p−a−2)(b+2) ≤ 0.

We thus have a, b < p− 2, so that (p− a− 3)(b+ 2) = p is impossible.

However, when (p − a − 3)(b + 2) < p, since b < p − 2, we have (p − a − 3)(b − 2) >p

(p−a−2)(b+2). Thus, `(a+1, b, c) >p `(a, b, c), and so by (4.2.3), the edge from Jp(a+1, b, c)

to Jp(a, b, c) has weight 0 modulo p. The argument for the edge from Jp(a, b+1, c) to Jp(a, b, c)

is the same by symmetry.

Lemma 4.2.4. Given a, b with (b+ 2)(p− a− 2) ≤ p the edge from Jp(a, b, 1) to Jp(a, b, 0)

has weight 0 unless a = p − 3 and b = 0, a = p − 2 and b = 0 or 1, or a = p − 1 with

b arbitrary. Similarly, given a, b with (a + 2)(p − b − 2) ≤ p, the edge from Jp(a, b, 1) to

Jp(a, b, 0) has weight 0 unless b = p− 3 and a = 0, or b = p− 2 and a = 0 or 1.

Proof. We give the proof of the first statement, since the proof of the second is essen-

tially identical. Permuting (a, b, c) in (4.2.3) to find the weight of the edge from Jp(a, b, 1)

to Jp(a, b, 0), we note that we must have a + b < p and a + b <p a + b + `(a, b, 1). Since
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`(a, b, 1) ≡ (b+ 2)(p− a− 2) mod p, this gives:

a+ b+ (b+ 2)(p− a− 2) < p.

This implies that

p < a+ 1 + 3
b+1
≤ a+ 4.

We conclude that a > p−4, and the rest of the lemma follows by elementary case analysis.

Proof of Lemma 4.2.1. Note that the edges from Jp(p− 1, p− 2, 1) to Jp(p− 1, p− 3, 1) and

Jp(p − 1, p − 2, 0) have weight 0 modulo p. Combining this with the previous two lemmas,

we conclude that every path in G ′ has weight 0 modulo p unless it visits either Jp(p− 2, 1, 1)

or Jp(1, p − 2, 1). We now complete the desired calculation, through repeated applications

of (4.2.3), symmetry, and Wilson’s theorem:

e(Jp(p− 1, p− 2, 1)) ≡ (p− 1)(p− 1)!e
(
Jp(p− 2, p− 2, 1)

)

≡ (p− 2)! (−1)p−3
[
e(Jp(p− 2, 1, 1)) + e

(
Jp(p− 2, 0, 1)

)]

≡ 2e
(
Jp(p− 2, 1, 1)

)

≡ 2 (p− 1)!
[
e
(
Jp(p− 2, 1, 0)

)
+ e

(
Jp(p− 2, 0, 1)

)]

≡ −4e
(
Jp(p− 2, 0, 1)

)

≡ −4 (p− 2)!e
(
Jp(p− 2, 0, 0)

)
− 4 (p− 2) e

(
Jp(p− 3, 0, 1)

)

≡ −4e
(
Jp(p− 2, 0, 0)

)
+ 8

(
p− 1

2

)
e
(
Jp(p− 3, 0, 0)

)

≡ −4 (p− 2)! + 4 (p− 1)(p− 2)(p− 3)!

≡ −8 mod p.

This completes the proof.

4.3 Polytope of modes

Motivated by probabilistic applications, Montúfar and Rauh [MR16] recently defined the

polytope of modes (G,X), for every simple graph G = (V,E) and independent subset of
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vertices X ⊂ V . The polytope (G,X) consists of all functions p : V → [0, 1] satisfying

∑

v∈V
p(v) = 1

and

p(x) ≥ p(y)

for every pair (x, y) with x ∈ X and (x, y) ∈ E. From the perspective of probability, the

functions p are probability distributions, and the points x are modes of the distribution.

Montúfar and Rauh proved that

vol (G,X) =
vol(∆n)

n!
e
(
PG,X

)
,

where n = |V |, vol(∆n) =
√
n/(n−1)!, and PG,X is a poset constructed fromG andX [MR16,

Prop. 3] (see also [Sta97] for a strongly related order polytope). The poset PG,X is formed by

taking the elements of V together with the relation x < y for every pair (x, y) with x ∈ X

and (x, y) ∈ E. This poset has height 2, with vertices in X on one level and V rX on the

other. The authors then discuss the problem of computing e
(
PG,X

)
.

The following result follows easily from our Theorem 1.1.7.

Proposition 4.3.1. For every incidence poset IG of a simple graph G = (V,E), there exists

some graph H and some independent set X ⊆ H with PH,X = IG.

Proof. The desired graph H is the medial graph defined as a graph on the set of vertices V ∪E.

The edges of this graph are pairs (v, e) where v is incident to e in G. This graph is bipartite,

so V is an independent set, and we take X = V . Now we note that the poset PH,X consists of

the set V ∪E together with the relation v < e whenever v is incident to e, so that PH,X = IG,

as desired.

Corollary 4.3.2. The problem of computing e
(
PG,X

)
is #P-complete.

Proof. By the proposition, computing e
(
PH,X

)
allows us to compute e(IG) for any graph G.

Applying Theorem 1.1.7 completes the proof.
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Part II

Contingency tables
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CHAPTER 5

Contingency tables

5.1 Introduction

Let a = (a1, . . . , am), a1 ≥ . . . ≥ am > 0, and b = (b1, . . . , bn), b1 ≥ . . . ≥ bn > 0, be two

integer sequences with equal sum:

m∑

i=1

ai =
n∑

j=1

bj = N.

A contingency table with margins (a,b) is an m× n matrix of non-negative integers whose

i-th row sums to ai and whose j-th column sums to bj. Recall that we write T (a, b) for the

set of all such matrices, and T(a,b) := |T (a, b)|.

Two central algorithmic questions are sampling from the uniform distribution on T (a, b)

and computing T(a,b). We refer to Section 1.3 for a more thorough discussion of the

significance and background of these questions.

The algorithm in this chapter is based on a MCMC approach. We define a new SHM

Markov chain, with three stages which correspond to splitting the table into many smaller

tables, the hypergeometric sampling and merging the tables back into one (thus, SHM stands

for Split–Hyper-Merge, see below). This Markov chain is substantially different from the

Diaconis–Gangolli chain and other Markov chains employed in the literature.

Although more technical, on sparse matrices SHM is by far superior to the Diaconis–

Gangolli chain in both theory and practice, as we show in Section 7.5. In both cases (1) and

(2) described in § 1.3.1, we obtain O(log n) mixing times (see below). The proof employs a

technical coupling argument. Furthermore, we are able to use the comparison technique to

obtain polynomial upper bounds of the Diaconis–Gangolli chain which remained open until
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now.

We should mention the group theoretic origin of our algorithm. Although it is not

transparent from our description and is perhaps cumbersome as a motivation, our algorithm

is a special case of the Burnside process introduced in [Jer93]. This approach was shown to

have rapid mixing in some cases and torpid mixing in other cases [GJ02] (cf. Theorem 5.2.8).

In fact, one can view our Theorem 5.2.8 below as a more natural example of torpid mixing

for the Burnside process; we omit the details.

5.2 Main results

5.2.1 Approximate counting

The following results show that we can approximately count the number of sparse tables:

Theorem 5.2.1 (Small margins). Fix constants C1, C2, C3, α > 0, with α < 1
4
. Let (a,b) be

margins for an m× n table with C1m < n < C2m and 0 < ai, bj < C3n
α. Then there exists

a FPRAS to approximately count the number of tables T(a,b).

Here by FPRAS we mean fully polynomial randomized approximation scheme (see e.g. [Jer03]).

Note that the margins in the theorem are allowed to have unbounded ratios. When this is not

allowed, we can approximately count the number of sparse tables with even larger margins:

Theorem 5.2.2 (Smooth margins). Fix constants C1, C2, C3, C4, α > 0, with α < 1. Let (a,b)

be the margins of an m × n table with C1m < n < C2m and C3n
α < ai, bj < C4n

α. Then

there exists a FPRAS to approximately count the number of tables T(a,b).

Both theorems are proved by using a new SHM Markov Chain we describe in the next

section. We conclude with a simple but attractive special case.

Corollary 5.2.3 (Counting magic squares). Fix ε, δ > 0. The number t(n,K) of n × n

magic squares with row/column sums K, where K = O
(
n1−ε), can be approximated within

factor (1± δ) in time polynomial in n and log 1/δ.
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Remark 5.2.4. Note that if the corollary is extended to all K < (n−1)2, then by Lagrange

interpolation one can perhaps approximate the volume of the Birkhoff polytope Bn (see

above). This would be of independent interest.

5.2.2 Mixing time of the SHM chain

Let π be the uniform distribution on T (a,b) and ω be the hypergeometric distribution on

T (a,b) defined to be proportional to the inverse of the product of factorials of entries:

ω(X) = C ·

(∏

i,j

(xij)!

)−1
where X =

(
xij
)
∈ T (a,b).

We denote by P t(X) the distribution after t steps of the SHM Markov chain starting

with the table X. Similarly, denote by P t(ω) the distribution after t steps, when we begin

our Markov chain with a table chosen at random from the hypergeometric distribution.

Theorem 5.2.5 (Constant margins). Fix K > 0. Let (a,b) be margins for an m×n table X

with constant margins a1, b1 < K. Then there exists a constant C > 0 independent of m

and n, s.t.

‖P t(X)− π‖TV ≤
1

4
for all t > C .

This special case is subsumed by the following two results. We prove it first as it is a

stepping stone towards these extensions. The proofs of this and other results are given in

Section 5.6.

Theorem 5.2.6 (Small margins). Fix constants C1, C2, C3, α > 0, with α < 1
4
. Let X be

an m × n table with nonzero row and column sums and C1m < n < C2m. Let the row and

column sums of X satisfy ai, bj < C3n
α. Then there exists constants C,C ′ > 0 independent

of m and n, s.t.

‖P t(ω)− π‖TV ≤
1

4
for all t > C log n

and

‖P t(X)− π‖TV ≤
1

4
for all t > C ′nα .
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The second part of the theorem gives a weaker bound than the first since we are starting

the MC from distribution ω rather than the worst case starting contingency table X ∈

T (a, b).

Theorem 5.2.7 (Smooth margins). Fix constants C1, C2, C3, C4, α > 0, with α < 1. Let X

be an m×n table with nonzero row and column sums and C1m < n < C2m. Let the row and

column sums of X satisfy C3n
α < ai, bj < C4n

α. Then there exists a constant C independent

of m and n, s.t.

‖P t(ω)− π‖TV ≤
1

4
for all t > C log n.

The following result shows that for superpolynomial margins the SHM chain does not

mix rapidly.

Theorem 5.2.8 (Torpid mixing). Fix a constant L. Let A be a 2 × n table with column

sums 2L and row sums Ln. Then

‖P t(ω)− π‖TV >
1

4
for all t <

L

18n logL
.

This result shows that, for tables whose entries are large compared to the size of the

table, the mixing time can grow with the size of the entries. For example, for L = exp Ω(n),

the mixing time is exponential as opposed to polynomial in [C+06].

5.2.3 Mixing time of the Diaconis–Gangolli chain

Here we apply our results to obtain upper bounds on mixing time for the lazy Diaconis–

Gangolli chain which at each step stays put with probability 1/2. Denote by Qt(X) the

distribution after t steps of this MC starting with the table X.

Theorem 5.2.9 (Constant margins). Fix K > 0. Let (a,b) be margins for an m×n table X

with constant margins a1, b1 < K. Then there exists C > 0 independent of m and n, s.t.

‖Qt(X)− π‖TV ≤
1

4
for all t > Cn7 log n.
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In other words, the mixing time for the Diaconis–Gangolli Markov chain is O(n7 log n).

No subexponential bounds were known in this case. It is easy to see that the mixing time is

Ω(n3 log n) for the case of m = n and K = 1, see [DS95]. In fact, Diaconis and Saloff-Coste

conjecture an upper bound O(n3 log n) for all constant margins.

Theorem 5.2.10 (Small margins). Fix constants C1, C2, C3, α > 0, with α < 1
4
. Let X be

an m × n table with nonzero row and column sums and C1m < n < C2m. Let the row and

column sums of X satisfy ai, bj < C3n
α. Then there exists C > 0 independent of m and n,

s.t.

‖Qt(X)− π‖TV ≤
1

4
for all t > Cn4α+7 log n.

Remark 5.2.11. Viewing contingency tables as integer points in the transportation polytope

suggests that the hit-and-run version of the Diaconis–Gangolli chain mixes in polynomial

time for all margins (cf. [Lov99, LV06]). Torpid mixing Theorem 5.2.8 implies that such

results cannot be obtained via comparison with the SHM Markov chain.

Note also that the above results are in sharp contrast with [BBR11] which considers the

same chain with 0–1 restrictions on the entries; the authors show torpid mixing in some

cases.

5.3 The Algorithm

5.3.1 The setup

Let X =
(
xij
)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Denote by αi(X) and βj(X) the marginal sums of X

defined as

αi(X) :=
n∑

j=1

xij , βj(X) :=
m∑

i=1

xij .

We use a to denote the sequence (a1, a2, . . .). In particular, α(X) and β(X) are vectors of

margins of X.

Let S(n) be the permutation group on n elements. For all s ∈ S(n) denote by M(s) the

0-1 matrix of size n corresponding to s.
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Each step of the Markov chain consists of three subroutines: Split, Hyper and Merge.

We describe the procedure in detail below. The second subroutine samples from the Fisher–

Yates (hypergeometric) distribution on tables with fixed row and column sums. This fast

hypergeometric sampling algorithm has been known for some time, see e.g. [Eve92]. Our

version follows [DS98].

5.3.2 Construction of the SHM Markov chain

In the Split subroutine, we construct a sequence of m×n tables (Yk) so that the entrywise

sum of kYk is equal to the original table X. We do this by generating a random permutation

for each entry of X and finding the partition associated to the cycle decomposition of that

permutation. In the Hyper subroutine, we transform each table Yk into a table Zk with the

same margins by generating a random permutation matrix and subdividing the matrix into

blocks based on the marginal sums. Then in the Merge subroutine we add together kZk

entrywise to produce a new table X ′.

We now formally describe the SHM Markov chain by the following pseudocode. The

subroutines Split and Hyper are given in separate blocks while the Merge subroutine is

given in the last line of the main block.

Step of SHM

Input: m× n matrix X = (xij) with marginal sums a, b.

Output: m× n matrix X ′ = (x′ij) with marginal sums a, b.

begin

Split X −→
(
Y1, Y2, Y3, . . .

)
, where Yi are m× n matrices

and X = Y1 + 2Y2 + 3Y3 + . . .

for all k = 1, 2, . . . do

Hyper Yk −→ Zk , where α(Yk) = α(Zk), β(Yk) = β(Zk)

end
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Merge X ′ ←− Z1 + 2Z2 + 3Z3 + . . .

end

Split

Input: m× n matrix X = (xij)

Output: sequence of m× n matrices (Y1, Y2, . . .), where Yk = (yijk)

and X = Y1 + 2Y2 + 3Y3 + . . .

begin

for i = 1 to m do

for j = 1 to n do

sample uniform random permutation sij ∈ S(xij)

for all k ≥ 1 do

yijk ← number of k-cycles in sij

end

end

end

end

Hyper

Input: m× n matrix Y = (yij) with marginal sums p, q.

Output: m× n matrix Z = (zij) with marginal sums p, q.

begin

N ← p1 + . . .+ pm = q1 + . . .+ qn

sample uniform random permutation s ∈ S(N)

M(s) ← permutation matrix of s of size N ×N

B ← m× n block matrix with blocks Bij of size pi × qj
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for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

for i = 1 to m do

for j = 1 to n do

zij ← sum of entries in M(s) ∩Bij

end

end

end

5.3.3 Analysis

We can now state the foundational result for this chapter. It implies that SHM Markov

chain can in principle be used to sample (nearly) uniformly at random from T (a, b).

Theorem 5.3.1. The SHM Markov chain defined by the algorithm above converges to the

uniform distribution π on T (a, b).

To finish the analysis of the SHM chain, we will also need the following technical result.

Lemma 5.3.2. One step of the SHM Markov chain can be executed in O(mnN logN) time.

This is sufficient for our purposes, since N = o(mn) in theorems 5.2.1 and 5.2.2.

5.3.4 Proof of theorems 5.2.1 and 5.2.2

We start with a contingency table X, run the Hyper routine once, and Step of SHM for

t steps. The resulting contingency table has distribution P t(ω). Applying the first part of

Theorem 5.2.6 and Theorem 5.2.7 gives t = O(log n) mixing time to sample from T (a, b) in

both cases. Since the cost of each step of SHM Markov chain is polynomial in n, we obtain

both theorems 5.2.1 and 5.2.2, respectively. �

Remark 5.3.3. The logarithmic mixing time t = O(log n) is really surprising and more

indicative of the actual performance of the algorithm than the theorems are suggesting. We

explore the empirical performance of the algorithm in Chapter 7.
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Note that formally we prove O(log n) mixing time only when SHM chain starts from

the hypergeometric distribution ω rather than from the worst case starting point. Similar

“average case mixing times” have been studied in other context as well (cf. [Gey92, LW98]).

As the second part of Theorem 5.2.6 shows, the total variation mixing time is polynomial in

the small margin case.

5.4 Proof of the uniform stationary distribution

In this section we prove Theorem 5.3.1. First, observe that choosing the identity permutation

throughout in the Split step gives Y1 = X and Y2 = Y3 = · · · = 0. The Hyper step then

samples a random contingency table Z1 from the hypergeometric distribution, where Z1 has

the same margins as X, and the Merge step sets X ′ = Z1. It is therefore possible to move

from any table to any other table in a single step. Thus, the SHM Markov chain is irreducible

and aperiodic.

It remains to show that its stationary distribution is uniform on contingency tables. To

do this, we show that the uniform distribution is stationary after one step of the Markov

chain, or equivalently that the transition matrix is doubly stochastic. LetX t be the table that

occurs in our Markov chain after t steps, beginning with some unspecified initial distribution.

We must show:

∑

X∈T (a,b)

P
(
X t+1 = W |X t = X

)
= 1 for every W ∈ T (a, b). (5.4.1)

Our proof works by re-writing this probability in terms of the tables produced by the

subroutines of the SHM chain and changing the order of summation. To emphasize the

intermediate tables produced during the subroutines of the SHM chain, we introduce new

notation. We write

P
(
X

SHM−−−→ W
)

:= P(X t+1 = W |X t = X),

so that (5.4.1) becomes
∑

X∈T (a,b)

P
(
X

SHM−−−→ W
)

= 1. (5.4.2)
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We write similarly

P
(
X

Split−−−→ (Yk)
)

for the probability that a table X produces the sequence of tables (Yk) = (Y1, Y2, . . . ) during

the Split step, and

P
(

(Yk)
Hyper−−−→ (Zk)

)

for the probability that the sequence (Yk) produces the sequence (Zk) = (Z1, Z2, . . . ) during

the Hyper step. We now proceed with the proof.

The probability that a table X produces another table W after one step of the SHM

chain can be expressed by summing over all possible intermediate states (Yk) and (Zk) that

can arise during the Split and Hyper steps.

P
(
X

SHM−−−→ W
)

=
∑

(Yk)

∑

(Zk)

P
(
X

Split−−−→ (Yk)
)
· P
(

(Yk)
Hyper−−−→ (Zk)

)
,

where the sum is taken over all ordered pairs
(
(Yk), (Zk)

)
with Merge(Zk) = W . Substi-

tuting into (5.4.2), we desire to show

∑

X

∑

(Yk)

∑

(Zk)

P
(
X

Split−−−→ (Yk)
)
· P
(

(Yk)
Hyper−−−→ (Zk)

)
= 1. (5.4.3)

The sum is taken over triples
(
X, (Yk), (Zk)

)
with Merge(Zk) = W . We next re-express

these probabilities in terms of the entries of the tables.

For a fixed sequence of tables (Yk), there is exactly one X that can produce (Yk) during

the Split step, that is, X = Merge(Yk). Write xij for the entries of X, and yijk for the

corresponding entries of Yk. The probability that a random permutation of xij has yijk cycles

of length k is
∏

k≥1

1

kyijk (yijk)!
. (5.4.4)

Taking the product of (5.4.4) over i and j and setting

Nk :=
∑

i,j

yijk

gives

P
(
X

Split−−−→ (Yk)
)

=
∏

k≥1

1

kNk
·
∏

i,j,k

1

(yijk)!
. (5.4.5)
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For every k, the probability P
(
Yk

Hyper−−−→ Zk
)

is independent of Yk as long as Yk and Zk

have the same marginal sums (pik, qjk). Let Zk have entries zijk. By the properties of the

hypergeometric distribution,

P
(
Yk

Hyper−−−→ Zk
)

=

∏
i(pik)! ·

∏
j(qjk)!

(Nk)!
∏

i,j(zijk)!
. (5.4.6)

We write (p,q) for the sequence of marginal sums of (Yk), and write y |(p,q) for the set of

all tables (Yk) with marginal sums (p,q). We write z |(p,q) for the set of all tables (Zk) with

marginal sums (p,q) and Merge(Zk) = W . Substituting (5.4.5) and (5.4.6) into (5.4.3)

gives

∑

X

∑

(Yk)

∑

(Zk)

P
(
X

Split−−−→ (Yk)
)
· P
(

(Yk)
Hyper−−−→ (Zk)

)

=
∑

(p,q)

∑

y |(p,q)

∑

z |(p,q)

(∏

k≥1

1

kNk
·
∏

i,j,k

1

(yijk)!
·
∏

i,k(pik)!
∏

j,k(qjk)!∏
i,j,k(zijk)!

∏
k(Nk)!

)
,

where the outermost sum is over all possible margins (p,q) compatible with T (a, b). Re-

arranging the yijk and zijk terms in the product and changing the order of summation gives

=
∑

(p,q)


 ∑

z |(p,q)

∏

k≥1

1

kNk
·
∏

i,j,k

1

(zijk)!
·
∑

y |(p,q)

∏
i,k(pik)!

∏
j,k(qjk)!∏

i,j,k(yijk)!
∏

k(Nk)!


 .

The innermost sum is the probability of producing a sequence of tables (Yk) during the Hy-

per step, summed over all possible sequences (Yk) that could be produced. It therefore

evaluates to 1, which simplifies the expression considerably.

=
∑

(p,q)

∑

z |(p,q)

(∏

k≥1

1

kNk
·
∏

i,j,k

1

(zijk)!

)
=
∑

(Zk)

(∏

k≥1

1

kNk
·
∏

i,j,k

1

(zijk)!

)
,

where the final sum is over all tables (Zk) with Merge(Zk) = W . But, applying (5.4.5),

this becomes

=
∑

(Zk)

P
(
W

Split−−−→ (Zk)
)

= 1,

since the sequences (Zk) of tables with Merge(Zk) = W are precisely those that can be

produced by applying the Split step to W . This completes the proof of Theorem 5.3.1. �
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5.5 Making of a coupling

5.5.1 Notation

Throughout the proofs we let X be an m × n table with margins (a,b). We use (Yk) for

tables produced by Split and (Zk) for tables produced by Hyper. We use (p,q) for the

margins of Yk or Zk.

For two tables X, X̂ we write

d(X, X̂) =
∑

i,j

|xij − x̂ij|.

We write 0 for the table whose entries are all 0, so that

d(X,0) =
∑

i,j

|xij| =
∑

i,j

xij,

since all entries are non-negative.

For our coupling results, we write (P, P̂ ) for the coupled distributions, and X t and X̂ t for

the tables occurring at P t(ω) and P̂ t(ω), respectively. We likewise write Y t
k and Ŷ t

k for the

tables produced by the Split steps and Zt
k and Ẑt

k for the tables produced by the Hyper

steps in P t(ω) and P̂ t(ω), respectively. Similarly, write P t(X0) and P̂ t(X̂0) for probability

distribution of the Markov chain starting at X0 and X̂0, respectively. We write the entries

of these tables as ytijk, ŷ
t
ijk, z

t
ijk and ẑtijk, respectively. We write

ptik :=
n∑

j=1

ytijk

for the row sums of Y t
k ,

qtjk :=
m∑

i=1

ytijk

for the column sums of Y t
k , and

N t
k :=

m∑

i=1

ptik

for the total sum of Y t
k . Finally, we take

γtijk :=
ptikq

t
jk

N t
k

,
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when N t
k 6= 0, and γtijk := 0 otherwise. We define p̂tik, q̂

t
jk, N̂

t
k and γ̂tijk similarly. Let atik be

the number of k’s in column i of P t(ω). Define âtik, btjk and b̂
t

jk similarly. As lower bounds

on the error d(Y t
k , Ŷ

t
k ), we write

ptk =
m∑

i=1

∣∣ptik − p̂tik
∣∣,

and

qtk =
n∑

j=1

∣∣qtjk − q̂tjk
∣∣.

As estimates of the error d(X t, X̂ t), we define xtk as the number of entries where X t is equal

to k but X̂ t is not, and define x̂tk similarly. Note that

d(X t, X̂ t) ≤
N∑

k=1

kxtk + kx̂tk .

5.5.2 Coupling construction idea

We adopt a notation from (see e.g. [LPW09, LW98]) that the (total variation) mixing time

is the smallest t such that

‖P t(X)− π‖TV ≤
1

4
for all starting points X.

Recall that

‖P t(X)− π‖TV ≤ P(τ > t) (5.5.1)

for every t and a coupling τ , see e.g. [LPW09, §5].

We employ a simple coupling construction in the proof of Theorem 5.2.5; we show that two

copies of the SHM chain will on average quickly produce identical margins during the Split

step, and then couple together from that point. For theorems 5.2.6 and 5.2.7 our coupling

is more complicated. During the Split step we couple by producing identical cycle decom-

positions at every entry where X and X̂ match. The coupling we give for the Hyper step

does not always cause d(Zk, Ẑk) < d(Yk, Ŷk). We use Lemma 5.5.3 to bound the new error

introduced in the Hyper step.
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5.5.3 Dispersion lemma

We use the following technical lemma in the proofs of theorems 5.2.5 and 5.2.6. When we

begin our algorithm by sampling from the hypergeometric distribution, we use this lemma to

show that most of the nonzero values in the table are initially 1. When we compute the (total

variation) mixing time, we use this lemma to show that most 1’s produced during the Split

step disperse into unoccupied space elsewhere in the table during the Hyper step.

Lemma 5.5.1 (Dispersion lemma). Let Y be an m × n table satisfying the conditions of

Theorem 5.2.5 or of Theorem 5.2.6. Let Z be the table produced by applying a Hyper step

to (Y ). Then for any column i, and any subset S of entries in column i with |S| = O(nα),

the expected number of nonzero entries outside of S in column i is

∑

j 6∈S
P (zij 6= 0) = qi − o(1).

Proof. The probability that zij is nonzero is bounded below by

P (zij 6= 0) ≥ 1−
(

1− pj
N

)qi
=
pjqi
N
−O

(
p2jq

2
i

N2

)
.

The same probability is bounded above by the expectation of the entry, that is

P(zij 6= 0) ≤ E[zij] =
pjqi
N

.

The marginal sums are all at least 1, so N ≥ n and (pjqi)/N = O(n2α−1). The expected

number of nonzero entries outside of S in column i is thus at least

n∑

j=1

(pjqi
N
−O(n4α−2)

)
−
∑

j∈S

(pjqi
N

)
= qi −O(n4α−1)−O(n3α−1) = qi − o(1),

as desired.

5.5.4 Coupling lemmas

The first lemma in this section gives the coupling we apply during the Hyper step. The

second lemma bounds the error introduced during the Hyper step under this coupling.
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Lemma 5.5.2 (Coupling lemma). Let T, T̂ ⊆ [m] and U, Û ⊆ [n] be subsets with |T | =

|U |, |T̂ | = |Û |, |T ∩ T̂ | = |U ∩ Û |, and |T̂ | ≥ |T |. Then there is a coupling on pairs of

permutations (σ, τ) with σ ∈ S|T |, τ ∈ S|T̂ | such that the marginal distributions on S|T |

and S|T̂ | are uniform. Moreover, treating σ and τ as 0 − 1 matrices on T × U and T̂ × Û ,

respectively, this coupling can be constructed so that, restricting both σ and τ to T∩T̂×U∩Û ,

the `1 distance ‖σ − τ‖1 ≤ |T̂ | − |T |.

Proof. First, assume that T ⊆ T̂ and U ⊆ Û . Choose a random permutation matrix τ on

T̂ × Û . We construct a permutation σ from τ . Restricting τ to T × U gives a 0− 1 matrix

with at most one 1 in any row or column. If there is exactly one 1 in each row and column

we call the resulting 0 − 1 matrix σ. Otherwise, there are an equal number of empty rows

and empty columns. Call this number k, and let the empty rows and empty columns be

indexed by x1, . . . , xk and y1, . . . , yk, respectively. Choose a bijection from the xi’s to the yi’s

uniformly at random, place 1’s at the corresponding entries in T × U , and call the result σ.

The marginal distribution of τ in this coupling is uniform, by construction. The proba-

bility of generating a fixed σ is

|T̂ |−|T |∑

k=0

1

k!

(
|T |
k

)(
|T̂ | − |T | − k

)
!

(
(|T̂ | − |T |)!

(|T̂ | − |T | − k)!

)2

,

which is independent of σ. The marginal distribution of σ is thus also uniform. The `1

distance between σ and τ restricted to T × U is the number k of empty rows or empty

columns in τ restricted to T × U , which is at most |T̂ | − |T |, as desired.

Next, suppose that |T | = |T̂ | and |U | = |Û |. Then we can choose bijections α : T → T̂

and β : U → Û such that α and β act as the identity on T∩T̂ and U∩Û , respectively. Choose

a random permutation τ : T̂ × Û . Then take σ : T → U to be σ = β−1τα. Since σ = τ

on (T ∩ T̂ )× (U ∩ Û), the `1 distance between σ and τ on that set is 0, as desired.

Note that for every collection of subsets T, T̂ ⊆ [m] and U, Û ⊆ [n] satisfying the condi-

tions of the lemma, we can choose subsets T̂ ′ ⊆ [m] and Û ′ ⊆ [n] with |T̂ ′| = |T |, |Û ′| = |U |,

T̂ ′ ⊆ T̂ , and Û ′ ⊆ Û . We couple permutations σ : T → U with permutations ω : T̂ ′ → Û ′,

and then in turn couple those permutations ω with permutations τ : T̂ → Û . This completes
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the proof in the general case.

Lemma 5.5.3. Let Y and Ŷ be tables with different marginal sums (p,q) and (p̂, q̂). Let p =
∑m

i=1 |pi − p̂i| and define q similarly. Then there is a coupling

(Y, Ŷ )
Hyper−−−→ (Z, Ẑ)

such that

d(Z, Ẑ) ≤ 3
2

(p + q) ≤ 3d(Y, Ŷ ).

Proof. We treat the pair of tables (Y, Ŷ ) as a pair of permutation matrices in SN and apply

Lemma 5.5.2. In the language of Lemma 5.5.2, we have |T̂ | − |T | ≤ min{p,q} ≤ d(Y, Ŷ ).

The contribution to d(Z, Ẑ) on (T ∩ T̂ )× (U ∩ Û) is thus bounded above by

1
2

(p + q) ≤ d(Y, Ŷ ).

We count the contribution to d(Z, Ẑ) on (T/T̂ )× [N ] by summing |pi− p̂i| over all indices i

where pi > p̂i. We count the contribution on (T̂ /T ) × [N ] in the same way. Together, this

gives a contribution of
∑

i |pi−p̂i|. Similarly, the contribution on [N ]×(U/Û) and [N ]×(Û/U)

is
∑

i |qi − q̂i|. Adding these three bounds gives the desired result.

5.5.5 Error bounding results

The following results allow us to bound the expected error E[d(X t, X̂ t)] under our coupling.

Proposition 5.5.4. Let X t and X̂ t be sequences of m× n tables under the coupling (P, P̂ )

described in §5.5.2 and Lemma 5.5.2. Suppose that there is some κ > 1 and some t0 ≥ 0,

s.t.
∑

k>κ

E
[
N t
k

]
= o(1) for all t > t0 .

Then, for t > t0 we have:

κ∑

k=1

k
(
E
[
ptk
]

+ E
[
qtk
])
≤ O

(∣∣∣
κ∑

k=1

E
[
xtk + x̂tk

]∣∣∣
1/2
)

+ o(1),

where the implied constant depends only on κ.
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Proof. By Lyapunov’s inequality, for every random variable S we have

E
[
|S|
]
≤
√

E[S2] =
√

Var(S) + (E[S])2 ≤
√

Var(S) +
∣∣E[S]

∣∣. (5.5.2)

By symmetry,

E[ptik − p̂tik] = 0.

Thus, taking

S =
m∑

i=1

ptik − p̂tik

in 5.5.2 gives

E[ptk] ≤

√√√√Var

(
m∑

i=1

ptik − p̂tik

)
. (5.5.3)

The expected number of k-cycles in a random permutation S` is 1/k when ` ≥ k, so that

E[ptik] =
∑

`≥k

1

k
E[ati`].

By the coupling described in §5.5.2, the only contribution to ptk comes from entries that

contribute to xt` or x̂t`, with ` ≥ k. If ` < 2k, the distribution of ptik conditioned on X t is

binomial with probability 1/k. For ` ≥ 2k, it is sufficient for us to observe that, conditioned

on X t, the contribution to ptk from each ` is independent, with mean

1

k

(
xt` − x̂t`

)

and variance

O(xt` + x̂t`),

where the implied constant depends only on κ. Thus, by the law of total variance, we have

Var

(
m∑

i=1

ptik − p̂tik

)
= O

(
1

k

∑

k≥`
xt` + x̂t`

)
. (5.5.4)

The same argument for qtjk gives that

E[qtk] ≤

√√√√Var

(
n∑

j=1

qtjk − q̂tjk

)
. (5.5.5)
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and

Var

(
n∑

j=1

qtjk − q̂tjk

)
= O

(
1

k

∑

k≥`
xt` + x̂t`

)
. (5.5.6)

Combining (5.5.3) with (5.5.4) and (5.5.5) with (5.5.6), and absorbing the contribution from

every entry larger than κ into the o(1) term, gives the desired result.

Lemma 5.5.5. Let X t and X̂ t be sequences of m × n tables under the coupling (P, P̂ )

described in §5.5.2 and Lemma 5.5.2. Suppose that there is some κ > 1 and some t0 ≥ 0

such that, for all t > t0, we have
∑

k>κ E[N t
k] = o(1) and the probability that the pair of

values

{ztijk, ẑtijk} 6= {0, 1}

is o(1) conditioned on ztijk 6= ẑtijk. We also require the probability that ztij` 6= ẑtij` to be o(1)

conditioned on ztijk 6= ẑtijk, for k 6= `. We then have

κ∑

k=1

kE
[
xt+1
k + x̂t+1

k

]
= O

(∣∣∣
κ∑

k=1

E
[
xtk + x̂tk

]∣∣∣
1/2
)
,

where the implied constant depends only on κ.

Proof. Suppose that every ztijk takes only the values 0 and 1, and for every entry (i, j) at

most one of ztijk is nonzero. We would then have

kE
[
xt+1
k + x̂t+1

k

]
= kE

[
d(Zt

k, Ẑ
t
k)
]
.

We now show that removing the conditions we imposed on ztijk contribute at most a factor

of (1 + o(1)). The only contributions to kxt+1
k +kx̂t+1

k occur at entries (i, j) where ztij` 6= ẑtij`

for some `. This contribution is bounded by 2κ except on the o(1) entries greater than κ,

so that removing our assumptions on ztijk gives

N∑

k=1

kE
[
xt+1
k + x̂t+1

k

]
≤ (1 + o(1))

N∑

k=1

kE
[
d(Zt

k, Ẑ
t
k)
]
.

Applying Lemma 5.5.3 gives

N∑

k=1

kE
[
xt+1
k + x̂t+1

k

]
≤
(
3
2

+ o(1)
) N∑

k=1

kE
[
ptk + qtk

]
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≤
(
3
2

+ o(1)
) κ∑

k=1

kE[ptk + qtk
]

+ o(1).

Applying Proposition 5.5.4 gives

N∑

k=1

kE
[
xt+1
k + x̂t+1

k

]
≤
(
3
2

+ o(1)
)
O

(∣∣∣
κ∑

k=1

E
[
xtk + x̂tk

]∣∣∣
1/2
)

≤ O

(∣∣∣
κ∑

k=1

E
[
xtk + x̂tk

]∣∣∣
1/2
)
.

Finally, observe that the implied constant depends only on κ, as desired.

5.6 Mixing time of the SHM chain for small margins

We refer to §5.5.1 for notation we adopt throughout and §5.5.2 for an overview of the coupling

approach used in the proofs in this section.

5.6.1 Proof of Theorem 5.2.5

We prove this theorem by showing that, with high probability, two copies of the SHM chain

running in parallel will produce identical margins during the Split step simultaneously, after

which we can couple the chains together immediately. We need the following elementary

result:

Proposition 5.6.1. Let Y be an m × n table with nonzero row and column sums. Then

after performing Split, the expected number of rows with nonzero sums in Y1 is at least n
2
.

Moreover, the probability that there are less than n
4

such rows is O(e−Cn) for some absolute

constant C.

Proof. The probability that a random permutation σ ∈ Sk has at least one fixed point is

≥ 1/2, for every k ≥ 1. The outcomes of the given distribution are thus greater than or

equal to the outcomes from a binomial distribution with p = 1
2

and n trials. The exponential

bound is a standard Chernoff bound.
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We now show that, when the row and column sums are bounded by an absolute con-

stant K, our Markov chain quickly produces tables where almost every entry is 1. Suppose

that column i has sum ai, and after t steps of our Markov chain there are atik entries equal

to k, for 1 ≤ k ≤ K. Let qti1 be the sum of column i in Y t
1 after the Split step. Since the

expected number of fixed points in any permutation is 1, we have

E[qti1] =
K∑

k=1

E[atik].

The right hand side is at least ati1 + 1 if ati1 < ai, and equal to exactly ai otherwise, so that

we have
K∑

k=1

E[atik] ≥ aiP(ati1 = ai) + E[ati1 + 1]P(ati1 6= ai).

For each column i, choose S to be the set of entries where 2Y t
2 + 3Y t

3 + · · ·+KY t
K is nonzero

and apply Lemma 5.5.1 to the subtable of Y t
1 formed by taking all rows and columns with

nonzero sum. We then have

E
[
at+1
i1

]
= E

[
qti1
]
− O(1/n) ≥ min

{
E[ati1] + 1, ai

}
− O(1/n).

Thus, for t > K and n sufficiently large, we have E[ati1] = ai−O(1/n), and so the probability

that Y2 = Y3 = · · · = 0 is bounded below by some constant. The implied constant is the

maximum value of pjqi/N , at most K2. Thus for n > K2 and t > K, with high probability

two different tables, running two different Markov chains in parallel, will, within O(K) steps,

have a Split step that gives Y2 = Y3 = · · · = 0 for each table simultaneously. After this,

we can couple together the two Markov chains immediately. By applying (5.5.1) the mixing

time is O(1), where the implied constant depends linearly on K.

For n ≤ K2, the total number of possible tables is bounded above by
(
K2

K

)K
= O(1), so

that the mixing time under this condition is also O(1).

5.6.2 Proof of Theorem 5.2.6

We prove this theorem by analyzing the coupling described in §5.5.2 and §5.5.4. First, we

show that we can reduce our computation of the (total variation) mixing time to the case
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where we begin our algorithm by sampling from the hypergeometric distribution. If we

initialize our two Markov chains with random samples from the hypergeometric distribution,

we have |Y1|, |Ŷ1| = N −O(n4α) immediately. If we begin our two Markov chains with fixed

tables X and X̂, then applying Lemma 5.5.1 and adjusting the argument from the previous

section we have

E[at+1
i1 ] = E[qti1]−O(nα−1) ≥ min{E[ati1] + 1, ai} −O(nα−1).

Taking n large enough that the O(nα−1) term is less than 1/2 we have E[ati1] = ai−O(nα−1)

for t > 2ai. Let t0 = 0 when we begin our algorithm by sampling from the hypergeometric

distribution and t0 = 2ai when we begin with some arbitrary fixed table X. We therefore

have |Y1|, |Ŷ1| = N − O(n4α) for t > t0 in both cases. We now show that the coupling time

is t0 + O(log n). Extending the argument in Lemma 5.5.1, the expected number of entries

in X t that are at least 4 is

n2O
(
(max {piqj/N})4

)
= O

(
n2+4(2α−1)) = O

(
n2α−8) = o(1).

The probability that a pair of entries {ztijk, ẑtijk} is equal to {0, 1} is

2
piqj
N
−O

(
p2i q

2
j

N2

)
,

and the probability that ztijk or ẑtijk is at least 2 is O
(
(piqj/N)2

)
, so that the probability

that {ztijk, ẑtijk} 6= {0, 1} conditioned on ztijk 6= ẑtijk is

O
(piqj
N

)
= O

(
n2α−1) = o(1).

The conditions of Lemma 5.5.5 are therefore satisfied for κ = 3. Applying this lemma, there

is some absolute constant C5 such that

d(X t, X̂ t) ≤
N∑

k=1

kE
[
xtk
]

+ kE
[
x̂tk
]

= O(1) for t > t0 + C5 log n.

Once the distance between X t and X̂ t is bounded, coupling will occur if the Split steps

at some bounded number of cells produce matching results, giving Y t
k = Ŷ t

k for all k. This

will occur with some nonzero probability depending only on κ, so the coupling time is t0 +

O(log n), and applying (5.5.1) completes the proof. �
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5.7 Mixing time of the SHM chain for smooth margins

In this section we prove Theorem 5.2.7 with the same coupling used in §5.6.2.

5.7.1 Distribution of entries

We begin with a lemma describing the distribution of values in each entry of the table. This

lemma is analogous to Lemma 5.5.1 used in previous proofs.

Lemma 5.7.1. Let κ = b2/(1−α)c. For k satisfying 1 ≤ k ≤ κ, and for all integers t ≥ 0,

there exist constants c(k, t) such that

E[ytijk] =
c(k, t)

k

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
,

and

E[γtijk] =
c(k, t)

k

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
,

for all pairs (i, j) of table entries. We also have

Var[ytijk] =
c(k, t)

k

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
,

and for any pair (i, j), (`,m) of table entries with (i, j) 6= (`,m) we have

Cov[ytijk, y
t
`mk] = O

(
n2k(α−1)(nα−1 + n−α)

)
.

Proof. We first verify the claimed bounds on E[ytijk] for t = 0. Recall that t = 0 corresponds

to sampling from the hypergeometric distribution. We set c(k, 0) = 1/k!. From the bounds

on ai, bj, and N , we have

C2
3

C2C4

nα−1 ≤ aibj
N
≤ C2

4

C1C3

nα−1 = o(1).

Our initial table A(0) is sampled from the hypergeometric distribution, so the probability

that the (i, j) entry is exactly k is bounded below by

(
1− ai

N

)bj−k (bj
k

)(
ai − k
N

)k
=

1

k!

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
.
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The same probability is bounded above by

(1− ai
N − k

)bj−k
(
bj
k

)(ai
N

)k
=

1

k!

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
.

A similar calculation shows that the probability the (i, j) entry is more than k isO
(
n(k+1)(α−1)).

When the (i, j) entry is equal to exactly k, the probability that y0ijk will be set equal to 1

in the Split step is exactly 1/k. To calculate the expectation and variance of y0ijk, we can

absorb the probability that the (i, j) entry is greater than k into the (1 +O(nα−1) +O(n−α))

error term, giving

E[y0ijk] =
c(k, 0)

k

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
,

and

Var[y0ijk] =
c(k, 0)

k

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
,

as desired. A similar calculation shows that

P(y0ijk = 1 ∩ y0`mk = 1) = P(y0ijk = 1)P(y0`mk = 1)
(
1 +O(nα−1) +O(n−α)

)
,

which gives the desired bounds on Cov[y0ijk, y
0
`mk]. We proceed by induction on t to prove the

desired bounds on E[ytijk] and E[γtijk] and the variance and covariance of ytijk, for all t ≥ 1.

First we show that the correct bounds on E[ytijk], the variance and the covariance imply the

correct bounds on E[γtijk]. Then we show the correct bounds on E[γtijk] imply the correct

bounds on E[yt+1
ijk ], the variance and the covariance.

The correct bounds on E[ytijk] give

E[ptik] =
c(k, t)aki
kNk

∑

j

bkj
(
1 +O(nα−1) +O(n−α)

)
,

E[qtjk] =
c(k, t)bkj
kNk

∑

i

aki
(
1 +O(nα−1) +O(n−α)

)
,

and similarly

E[N t
k] =

c(k, t)

kNk

∑

i,j

(aibj)
k
(
1 +O(nα−1) +O(n−α)

)

=
c(k, t)

kNk

(∑

i

aki

)(∑

j

bkj

) (
1 +O(nα−1) +O(n−α)

)
.
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From the bounds on the covariance, we get that

E[ptikq
t
jk] =

(c(k, t))2 aki b
k
j

k2N2k

(∑

i

aki

)(∑

j

bkj

) (
1 +O(nα−1) +O(n−α)

)
.

From the Taylor series expansion for X/Y , we have

E[X/Y ] =
E[X]

E[Y ]
+ O

(
Cov(X, Y )

(E[Y ])2

)
+ O

(
Var(Y )E[X]

(E[Y ])3

)

as long as Y is bounded away from 0. Since N t
k is approximately a binomial random variable,

we have

P
(
N t
k <

1
2
E[N t

k]
)

= 1− e−Cn,

for some constant C. We can then apply the previous calculus result to give

E[γtijk] =
c(k, t)

k

(
aibj
N

)k (
1 +O(nα−1) +O(n−α)

)
,

as desired. We obtain Zt
k from Y t

k by sampling from the hypergeometric distribution, so that

P (Zij(k, t) = `) =

(
γtijk
)`

`!

(
1 +O(nα−1) +O(n−α)

)
.

Performing our Merge step gives

xt+1
ij =

∑

k

kztijk .

Writing a permutation λ ` k as λ = 1a12a2 · · · , we have

P
(
xt+1
ij = k

)
=
∑

λ`k

∏

`≥1

(γij(`, t))
a`

a`!

(
1 +O(nα−1) +O(n−α)

)

and

P
(
xt+1
ij > k

)
= O

(
n(k+1)(α−1)) .

Thus

E[yij(k, t+ 1)] =
1

k
E

[∑

λ`k

∏

`≥1

(γij(`, t))
a`

a`!

]
(
1 +O(nα−1) +O(n−α)

)
.

One more computation with covariances allows us to move the expectation inside the product

and absorb the error into the (1 +O(nα−1) +O(n−α)) term. We then have

E[yt+1
ijk ] =

1

k

∑

λ`k

∏

`≥1

(
aibj
N

)`a` (d(`, t))a`

a`!`a`

(
1 +O(nα−1) +O(n−α)

)
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=
1

k

(
aibj
N

)k∑

λ`k

∏

`≥1

(d(`, t))a`

a`!`a`

(
1 +O(nα−1) +O(n−α)

)
.

Setting

c(k, t+ 1) =
∑

λ`k

∏

`≥1

(d(`, t))a`

a`!`a`
(5.7.1)

completes the induction. The bounds on the variance and covariance of yij(k, t + 1) follow

from an argument similar to the argument for t = 0, and we omit the details.

Lemma 5.7.2. For some constant C1 depending only on α, and for t > C1 log n, we have

c(k, t) = 1−O
(
nα−1

)
.

Proof. We introduce the generating function

Gt(x) =
∑

k≥1
c(k, t)xk.

We have: ∫
Gt(x)

x
dx =

∑

k≥1

c(k, t)

k
xk .

Thus, we can rewrite 5.7.1 as

Gt+1(x) = exp

∫
Gt(x)

x
dx − 1.

We have G0(x) = ex − 1, and this recurrence relation has a stable solution of

G(x) =
x

1− x
.

Therefore if c(1, t), c(2, t), . . . , c(k − 1, t) are all equal to 1 +O(nα−1), then (5.7.1) becomes

c(k, t+ 1) =
c(k, t)

k
+
k − 1

k
+ O(nα−1),

which converges to 1 +O(nα−1) in O(log n) time.
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5.7.2 Proof of Theorem 5.2.7

These two lemmas taken together give us precise information about the distribution of val-

ues at each entry of the table. Following the argument in the proof of Lemma 5.7.1, the

probability that {ztijk, ẑtijk} 6= {0, 1} conditioned on ztijk 6= ẑtijk is

O
(piqj
N

)
= O

(
nα−1

)
= o(1),

so that the conditions of Lemma 5.5.5 are satisfied for κ as in Lemma 5.7.1 and t0 = 0.

Then as in the proof of Theorem 5.2.6, we apply Lemma 5.5.5 to show that there is some

absolute constant C5 such that

d(X t, X̂ t) ≤
N∑

k=1

kE
[
xtk
]

+ kE
[
x̂tk
]

= O(1) for t > t0 + C5 log n.

As in the proof of Theorem 5.2.6, coupling will occur after this point with some probability

depending only on κ, and so the coupling time is O(log n), and applying (5.5.1) completes

the proof. �

5.8 Proof of torpid mixing

5.8.1 Torpid mixing lemmas

The proof of torpid mixing is a consequence of two lemmas. First we show that the ex-

pected `1 distance between two tables connected by a single step of the Markov chain is

small.

Lemma 5.8.1. We have:

E[d(P t+1(ω), P t(ω))] ≤ 18n2 logL .

Proof. We write (Y t
k )k≥1 for the tables produced during the Split step on P t(ω). Then

E
[
d(P t+1(ω), P t(ω))

]
≤
∑

k≥1
kE
[
d(Y t

k , Z
t
k)
]
.
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If the (i, j) entry of P t(ω) is greater than or equal to k, then from the theory of random

permutations we have

E[ytijk] =
1

k
.

For all k we have d(Y t
k ,0) = d(Zt

k,0), and so

E
[
d(Y t

k , Z
t
k)
]
≤ 2E[d(Y t

k ,0)] ≤ 4n.

We thus have

E
[
d(P t+1(ω), P t(ω))

]
≤
∑

k≥1
kE
[
d(Y t

k , Z
t
k)
]

≤
4n∑

k=1

kE
[
d(Y t

k , Z
t
k)
]

+
∑

k>4n

kE
[
d(Y t

k , Z
t
k)
]

≤ 16n2 +
∑

k>4n

kE
[
d(Y t

k , Z
t
k)
]
.

For k > 4n, we refine our analysis of random permutations. The probability that ytijk is at

least 1 is bounded by
1

k
− 1

2k2
≤ P

(
ytijk ≥ 1

)
≤ 1

k
.

Let rk be the number of entries of P t(ω) that are greater than or equal to k. Then

E[d(Y t
k ,0)] =

rk
k
,

and

P(d(Y t
k ,0) = 1) ≥

(
1− 1

k

)rk−1(1

k
− 1

2k2

)
rk

≥
(

1− 2

k

)rk rk
k
.

It is easy to see by a direct calculation that for x > 60 and y/x < 1, we have:

(
1− 1

x

)y
> 1− y

x
.

Taking x = k/2 and y = rk gives

P(d(Y t
k ,0) = 1) ≥

(
1− 2

k

)rk rk
k
≥ rk

k
− 2r2k

k2
.
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The Hyper step has no effect when d(Y t
k ,0) = 1, so (d(Y t

k , Z
t
k)) = 0 when that occurs.

For k > 4n we thus have

kE
[
d(Y t

k , Z
t
k)
]
≤ 2k

(
E[d(Y t

k ,0)] − rk
k

+
2r2k
k2

)
≤ 16n2

k
.

Thus

E
[
d(P t+1(ω)− P t(ω))

]
≤ 16n2 +

∑

k>4n

kE
[
d(Y t

k , Z
t
k)
]

≤ 16n2 +
L∑

k=4n+1

16n2

k
≤ 16n2 + 17n2 logL ≤ 18n2 logL,

as desired.

Our second lemma shows that the `1 distance between tables sampled from the uniform

and hypergeometric distributions is large. We need two results.

Proposition 5.8.2. Let W be the 2×n table whose entries are all L, and let V be a random

table sampled from the hypergeometric distribution. Fix ε > 0. Then

P (d(V,W ) > εnL) ≤ e−εn.

Proof. We construct a sequence of tables W = V0, V1, . . . , Vs = V satisfying

d
(
Vi, Vi+1

)
= 4,

and

d(Vi,W ) = 4 + d
(
Vi+1,W

)
.

In other words, Vi+1 is constructed from Vi via a Diaconis–Gangolli step (1.3.1) that increases

the `1 distance from W . The probability that we sample Vi+1 instead of Vi under the

hypergeometric distribution ω is at most

Pω

(
Vi
)

=

(
1− 1

2L

)2

Pω

(
Vi+1

)
.

For d(V,W ) > εnL, we have s ≥ εnL
2

such moves. Thus, the probability that such a V is

produced by the hypergeometric distribution is bounded above by
(

1− 1

L

)εnL
≤ e−εn,

as desired.
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Proposition 5.8.3. Let W be the 2×n table whose entries are all L, and let U be a random

table sampled from the uniform distribution. Fix ε > 0. Then

P
(
d(U,W ) < (1− ε)nL

)
<

1

ε2n
.

Proof. We approximate the uniform distribution with rejection sampling. Let (w1, w2, . . . , wn−1)

be a sequence of n − 1 independent discrete random variables distributed uniformly on the

interval [0, 2n]. Define u as

u :=
n−1∑

i=1

wi .

We build a table U from w by setting x1i = w1i, for 1 ≤ i ≤ n − 1, x1n = nL − u,

and x2i = 2L− x1i for 1 ≤ i ≤ n. We reject the resulting table if x1n or x2n is forced to be

negative. We have Var(u) = (n − 1)L2/6, so this procedure generates a correct table with

probability

O
(
1/
√
n
)
.

We have E
[
|L− w1i|

]
= L/2 and Var

(
|L− w1i|

)
= L2/12, for all i < n. Bayes’ rule gives:

P
(
|L− w1i| = k | (n− 2)L ≤ u ≤ nL

)
→ 1

2L
as n→∞

for every k. Thus

n−1∑

i=1

E
[
|L− wi| | (n− 2)L ≤ u ≤ nL

]
→ (n− 1)L

2
as n→∞.

Another application of Bayes’ rule shows that, for i 6= j, Cov(|L − wi|, |L − wj|) is small.

Therefore,

Var

(
n−1∑

i=1

|L− wi|

)
= O(nL2).

Chebyshev’s inequality now implies the result.

We can now prove our second lemma.

Lemma 5.8.4. With high probability, d(ω, π) > (1− 2ε)nL.
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Proof. Let Xε be the set of tables V with

d(V,W ) ≤ εnL,

and let Yε be the set of tables U with

d(U,W ) ≥ (1− ε)nL.

By the triangle inequality, for V ∈ Xε and U ∈ Yε we have

d(U, V ) ≥ (1− 2ε)nL.

These sets are disjoint for ε < 1/2. We have for ε fixed as n grows,

1−Pω(Xε)−Pπ(Yε) = 1− e−εn − 1

ε2n
= 1− o(1),

as desired.

5.8.2 Proof of Theorem 5.2.8

Comparing Lemma 5.8.4 to Lemma 5.8.1, we see that the mixing time for our MC must be

at least
L

18n logL
,

as desired. �

5.9 Mixing time of the lazy Diaconis–Gangolli chain

5.9.1 The setup

Recall the comparison theorem for Markov chains, see e.g. [LPW09, §13.5]. We bound the

relaxation time ρ2 for the lazy Diaconis–Gangolli chain via the relaxation time ρ1 for the

SHM chain. Note that the “lazy” condition allows us to avoid the parity consideration since

the chain is reversible and all the eigenvalues are positive.

We will need the following technical lemma estimating relative diameter of the chains.
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Lemma 5.9.1. Every step of the Markov chain SHM can be constructed from at most (N−1)

steps of the Diaconis–Gangolli chain.

The proof is postponed until the next section.

5.9.2 Proof of Theorem 5.2.9

Write each step of the SHM chain as a composition of steps of the DG chain. These can be

viewed as paths in the graph Γ of the DG chain. The lengths L of all these paths is at most

(N − 1) = O(n) by Lemma 5.9.1. The degree D of Γ satisfies

D = 2

(
m

2

)(
n

2

)
= O(n4).

The number of contingency tables satisfies:

T(a,b) ≤
(
n+K − 1

K − 1

)m
= eO(n logn).

Finally, the (total variation) mixing time of the SHM chain in this case is O(1) by Theo-

rem 5.2.5, implying the relaxation time ρ1 = O(1). We thus have:

ρ2 ≤ (N − 1)2Dρ1 = O(n6).

Thus, the mixing time is at most

ρ2 log T(a,b) = O(n7 log n),

as desired. �

5.9.3 Proof of Theorem 5.2.10

We follow the notation and steps of the previous proof. We have D = O(n4), L ≤ (N − 1) =

O
(
nα+1

)
, and

T(a,b) ≤
(
(2n)O(nα)

)m
= expO

(
nα+1 log n

)
.

Since ρ1 = O(nα) by the second part of Theorem 5.2.6, we obtain

ρ2 ≤ L2Dρ1 = O
(
n3α+6

)
.
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Thus, the (total variation) mixing time is at most

ρ2 log T(a,b) = O
(
n4α+7 log n

)
,

as desired. �

5.10 Proofs of technical lemmas

5.10.1 Proof of Lemma 5.3.2

We perform the Split step by generating mn random permutations, each on at most N

elements, then computing their cycle decompositions and storing them. We can generate a

random permutation on N elements in O(N logN) steps. Determining the cycle decompo-

sitions and storing this data takes an additional O(N logN) steps. Thus the total cost of

the Split step is O(mnN logN).

For each of the Hyper steps Yk → Zk, we sample from a permutation on |Yk| ele-

ments, which requires O(|Yk| logN) steps. We then transform the resulting permutation

matrices back into contingency tables by determining which block matrix each 1 in the per-

mutation matrix corresponds to. This requires another O(|Yk| + m + n) steps. We must

perform at most N Hyper steps. Summing over k, the total cost of the Hyper steps

is O ((N +mN + nN) logN).

Finally, in the Merge step, we perform N additions for each of the mn entries, so the

total cost of the Merge step is O(mnN). Thus the total cost of the SHM Markov chain

is O(mnN logN). �

5.10.2 Proof of Lemma 5.9.1

For the purposes of this proof, we consider the Split and Merge steps to be accounting

tools that do not change the underlying table X. We use moves from the Diaconis–Gangolli

chain to reproduce the Hyper steps Yk → Zk, for every k with Yk 6= 0. More formally, we
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construct a sequence of tables X0 = X,X1, X2, . . . with

Xi =
i∑

k=1

kZk +
∑

k>i

kYk ,

and use Diaconis–Gangolli moves to send Xi → Xi+1. By the SHM construction, we can

treat Yk and Zk as permutation matrices of size |Yk|. Every valid Diaconis–Gangolli move

on a permutation matrix corresponds to the action of a transposition on the corresponding

permutation. It requires at most |Yk| − 1 transpositions to change a permutation on |Yk|

elements into some other fixed permutation on |Yk| elements. Since one Diaconis–Gangolli

move (1.3.1) in Yk corresponds to k such moves in X, mapping Xk−1 → Xk requires at

most k|Yk| − k steps, and performing all the Hyper steps requires

∑

k≥1
k|Yk| − k ≤ N − 1

steps of the Diaconis–Gangolli chain. �

5.11 Conclusions

We constructed a new Split-Hyper-Merge (SHM) Markov Chain which converges to the

uniform distribution on contingency tables. We prove that it mixes in time O(log n) time for

near-square matrices with small or smooth margins. This gives polynomial time approximate

counting algorithms in both cases, resolving an important special case of a classical #P-

complete problem. Our results are new even in the well studied case of magic squares. We

view it as a major step towards completely resolving the approximate counting problem for

contingency tables with all margins.

We also apply our results to obtain polynomial time mixing time for the well studied

Diaconis–Gangolli Markov chain on contingency tables with small or smooth margins. This

partially resolves a problem open for over 20 years. In particular, we give a polynomial

time upper bound for constant margins. This is the first subexponential bound towards the

conjecture by Diaconis and Saloff-Coste.
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CHAPTER 6

Phase transition in dense contingency tables

6.1 Introduction

We present and analyze a new probabilistic model for random contingency tables with lin-

ear margins of two types. We establish a sharp phase transition for the number of such

contingency tables, and for their structure.

6.2 Models

Definition 6.2.1. A model M(a, b) for T (a, b) is an m × n matrix of (not necessarily

independent) random variables Xij whose expectations have the same marginal sums ai

and bj. Of course, if we understood the distribution T (a, b), we could take as our Xij’s the

true distribution of cij under the uniform distribution on T (a, b).

The Diaconis-Gangolli Markov chain acts on a modelM(a, b) in the same way it acts on

the set T (a, b). Formally, we consider every choice of two rows i and r, and two columns j

and s, together with the choice of either adding or subtracting the 2× 2 table:

+1 −1

−1 +1
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to the four variables

Xij Xis

Xrj Xrs

if possible. Averaging over these 2
(
n
2

)2
choices gives a new distribution {X ′}ij. We say

that M(a, b) is DG-invariant if Xij = X ′ij for all i and j.

6.3 Main example: Barvinok tables

In [Bar12], Barvinok asks whether a fixed entry of a random contingency table under the

uniform distribution is a geometric random variable. Barvinok considered, as a special case,

tables with margins satisfying a1 = · · · = an−1 = b1 = · · · = bn−1 = Cn and an = bn =

BCn. Because of the symmetry condition, there are only three entries to consider: center

entries Xij, side entries Xin and Xnj and the corner entry Xnn. We write X for the random

variable representing the center entries, Y for the side entries, and Z for the corner entry.

When we need to consider multiple center entries at the same time, we write X ′, X ′′, etc.

Part of our argument relies on considering the conditional distribution P(Xij = a|Z = z).

We refer to this distribution as zXij, and likewise write zX and zY for the distributions of X

and Y conditioned on Z = z.

We need the following low-correlation assumptions on our model M(a, b):

[Different row and column, unconditional]: For Xij and Xrs, with i 6= r and j 6= s we

have
P(Xij = a ∩ Xrs = b)

P(Xij = a)P(Xrs = b)
= (1 +O(1/n2)) (6.3.1)

[Different row and column]: For zXij and zXrs, with i 6= r and j 6= s we have

P(zXij = a ∩ zXrs = b)

P(zXij = a)P(zXrs = b)
= (1 +O(1/n2)) (6.3.2)

[Same row or column]: For X = Xij and X ′ = Xrs, with i = r or j = s and Xij 6= Xnn
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and Xrs 6= Xnn we have

P(zXij = a ∩ zXrs = b)

P(zXij = a)P(zXrs = b)
= (1 +O(1/n)). (6.3.3)

We also require that Var(X), Var(zX), Var(Y ) and Var(zY ) all be O(1). We then prove the

following:

Lemma 6.3.1. Under the low-correlation assumptions given above, we have

P(zX = a+ 1)

P(zX = a)
= (1−P(zX = 0)) +O

(
1

n

)
, (6.3.4)

P(zY = a+ 1)

P(zY = a)
= (1−P(zY = 0)) +O

(
1

n

)
, (6.3.5)

and
P(Z = a+ 1)

P(Z = a)
=

(1−P(aY = 0))2

1−P(X = 0)
+O

(
1

n2

)
. (6.3.6)

Proof. All three results follow from the same style of calculation. We begin with (6.3.6).

Any Diaconis-Gangolli move that alters the distribution Z will act on some table:

X Y

Y ′ Z

There are four cases that can occur to produce Z = a, for a > 0. We can successfully perform

a Diaconis-Gangolli move subtracting on the main diagonal when Z = a + 1 and X > 0,

which occurs with probability P(Z = a + 1)P(aX > 0). We can instead add on the main

diagonal when Z = a − 1 and both Y and Y ′ are not equal to zero, which occurs with

probability:

P(Z = a− 1)
(
1− (1−P(a−1Y = 0))(1−P(a−1Y

′ = 0
∣∣
a−1Y = 0))

)
.

W can also produce Z = a by failing to perform a Diaconis-Gangolli move, because Z = a

and either X = 0 or one of Y and Y ′ is equal to 0. Applying (6.3.1) and (6.3.2) to the

pairs (X,Z) and (aY, aY
′), respectively, allows us to re-express all conditional probabilities

up to a O(1/n2) term.

P(Z = a) = 1
2

[
P(Z = a+ 1)P(X > 0) + P(Z = a)P(X = 0)
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+ P(Z = a− 1)
(
1− (1−P(a−1Y = 0))2

)

+ P(Z = a)(1−P(aY = 0))2
]

+O

(
P(Z = a) + P(Z = a− 1) + P(Z = a+ 1)

n2

)
.

Taking

f(a) = P(Z = a+ 1)(1−P(X = 0))−P(Z = a) (1−P(aY = 0))2

reduces this expression to the much simpler

f(a) = f(a− 1) +O

(
P(Z = a) + P(Z = a− 1) + P(Z = a+ 1)

n2

)
.

The same calculation in the case Z = 0 gives

f(1) = O

(
P(Z = 1) + P(Z = 0)

n2

)
,

and by induction it follows that

f(a) = O

(
P(Z = a)

n2

)
.

The desired result follows immediately. Similarly, with probability (1−O (1/n)), a Diaconis-

Gangolli move that changes some fixed center entry zX will act on a 2 × 2 table of the

form:

zX zX
′

zX
′′

zX
′′′

.

A similar calculation gives:

P(zX = a+ 1)

P(zX = a)
=

(1−P(zX
′ = 0|zX = a))2

1−P(zX = 0)
+O

(
1

n

)
. (6.3.7)

By equation (6.3.3), we have

1−P(zX
′ = 0|zX = a) = 1−P(zX = 0)−O

(
P(zX = 0)

n

)
.

Substituting this into (6.3.7) gives (6.3.4). Likewise, with probability (1 − O (1/n)), a

Diaconis-Gangolli move that changes some fixed side entry Y will act on a 2 × 2 table
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of the form:

zX zY

zX
′

zY
′

.

Again, a calculation gives:

P(zY = a+ 1)

P(zY = a)
= (1−P(zY

′ = 0|zY = a)) +O

(
1

n

)
,

and applying (6.3.3) gives (6.3.5).

6.4 The transition point

The expressions (6.3.4) and (6.3.5) tell us that zX and zY behave approximately like geo-

metric random variables. We make this intuition precise by calculating the expectation:

Lemma 6.4.1. Under the low-correlation assumptions given above,

E[zX] =
1−P(zX = 0)

P(zX = 0)
+O

(
1

nP(zX = 0)

)
, (6.4.1)

and

E[zY ] =
1−P(zY = 0)

P(zY = 0)
+O

(
1

nP(zY = 0)

)
. (6.4.2)

Proof. By direct computation. We write down the expression for E[zX] and apply (6.3.4).

E[zX] =
∞∑

i=0

(i+ 1)P(zX = i+ 1)

=
∞∑

i=0

[
(i+ 1)P(zX = i)(1−P(zX = 0)) +O

(
P(zX = i)

n

)]

=
(
E[zX] + 1

)(
1−P(zX = 0)

)
+O

(
1

n

)
,

so that

E[zX] =
1−P(zX = 0)

P(zX = 0)
+O

(
1

nP(zX = 0)

)
, (6.4.3)

as desired. The same calculation applied to (6.3.5) gives (6.4.2).
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Theorem 6.4.2. Under the low-correlation assumptions given above, Barvinok tables exhibit

a transition point in the distribution and mean of the corner entry at BC = 1 +
√

1 + 1/C.

For B < BC, the corner entry converges to a geometric random variable with mean O(1)

as n → ∞. For B > BC, the corner entry converges to a Gaussian with mean and vari-

ance Θ(n) as n→∞.

Proof. The row and column constraints give us:

(n− 1)E[zX] + E[zY ] = Cn

and

(n− 1)E[zY ] = BCn− z.

Writing z = DCn+ αnβ gives

E[zY ] = (B −D)C −O
(
nβ−1

)

and

E[zX] = C +O(
1

n
).

From (6.4.1) and (6.4.2) we obtain:

P
(
zX = 0

)
=

1

1 + C
+O

(
1

n

)
,

and

P
(
zY = 0

)
=

1

1 + (B −D)C
+O

(
nβ−1

)
.

Returning to (6.3.6), taking a = z gives:

P(Z = a+ 1)

P(Z = a)
=

(B −D)2C(1 + C)

(1 + (B −D)C)2
−O

(
nβ−1

)
.

Setting the leading term equal to 1 gives a quadratic equation in (B −D):

C(B −D)2 − 2C(B −D)− 1 = 0,

with solution

B −D = 1 +
√

1 + 1/C.
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We write BC = 1 +
√

1 + 1/C, where we claim the transition point occurs. For B < BC ,

and for all a, we have

P(Z = a+ 1)

P(Z = a)
=

(B −D)2C(1 + C)

(1 + (B −D)C)2
−O

(
nβ−1

)

<
B2C(1 + C)

(1 +BC)2
< 1.

We conclude that Z has bounded mean and behaves like a geometric random variable.

For B > BC , taking a = (B −BC)n+ αnβ gives

P(Z = a+ 1)

P(Z = a)
=
B2
CC(1 + C)

(1 +BCC)2
−O

(
nβ−1

)
= 1−O

(
nβ−1

)
.

Taking the product of all such terms between a and (B −BC)n gives:

P(Z = a)

P(Z = (B −BC)n)
≥
(
1−O

(
nβ−1

))O(nβ)
= e−O(n2β−1).

Likewise, considering only the terms between a and (B −BC)n+ α
2
nβ gives:

P(Z = a)

P(Z = (B −BC)n)
≤ e−O(n2β−1).

This is precisely the ratio of probabilities arising from a normal distribution with mean (B−

BC)n and variance Θ(n). Thus as n grows, the discrete distribution of Z converges to the

probability density function of a normal random variable, as desired.

6.5 Discussion

We have investigated the low-correlation DG-invariant model for Barvinok tables and found

that it exhibits a phase transition at the transition point BC = 1 +
√

1 + 1/C. To the left

of the transition point, all entries follow a geometric distribution and are O(1). To the right

of the transition point, the center and side entries still follow a geometric distribution. The

corner entry now follows a normal distribution, with mean and variance Θ(n).

We hope that future research gives additional insights into the behavior of low-correlation

models in families of tables that exhibit less symmetry than the Barvinok tables. We also

hope the low-correlation assumptions can be proven mathematically to hold for the Barvinok

tables, which would establish the existence of a transition point unconditionally.
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CHAPTER 7

Experiments and extensions

7.1 Introduction

In this chapter, we describe two extensions of the SHM algorithm and present computational

experiments. In Section 7.2, we explain formally how to use the SHM algorithm to count

the number of tables with given constraints. In Section 7.3, we mention a modification of

the SHM algorithm that samples from a nearly uniform distribution on higher dimensional

tables with constraints on the 1-margins.

Next, we present the results of our computational experiments. In Section 7.4, we give

experimental evidence for fast mixing of the SHM algorithm on five different datasets. In

Section 7.5, we do an “apples-to-apples” type comparison of the SHM and Diaconis-Gangolli

chains on two examples. In Section 7.6 we perform experiments with the counting algorithm

described in Section 7.2. In Section 7.7, we give experiments that agree with the theoretical

results in Chapter 6. These experiments are evidence in support of the low-correlation

assumptions we made in Section 6.3.

7.2 Counting

7.2.1 Overview

The SHM algorithm can be adapted to compute the total number of contingency tables with

given constraints. We give a detailed description of the algorithm in the next subsection.

Here we present an overview of the algorithm together with a proof of correctness:
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Theorem 7.2.1. Let ε > 0 be chosen and let X be a table satisfying the conditions of

Theorem 5.2.6 (or more generally a table for which Algorithm 1 mixes rapidly). Then there

is a FPRAS for computing the number of contingency tables with row and column sums equal

to those of X. Formally, there is an algorithm whose runtime is polynomial in 1
ε

and n such

that with probability greater than 1
2

the output is within a factor of ε of the correct count.

Proof. We prove this by strong induction on N . Order the rows and columns so that the

row and column sums are in non-increasing order and consider the value of x11 in a table

sampled uniformly at random. Then

#(a, b) ·P(x11 ≥ k) = # ((a1 − k, a2, . . . , am), (b1 − k, b2, . . . , bn)) .

We can compute # ((a1 − k, a2, . . . , am), (b1 − k, b2, . . . , bn)) within a factor of ε(N − 1)/N

by the induction hypothesis. We must then choose some k for which we can compute

P(x11 ≥ k)−1

within a factor of ε/2N . In a collection of independent random samples from the uniform

distribution on tables, the number of tables with x11 ≥ k is a binomial random variable. We

use the SHM algorithm to choose some k ≥ 1 so that, with high probability, P(x11 ≥ k) is

bounded away from 0 and 1.

Because the row and column sums are in non-increasing order, we have

P (x11 ≥ 1) ≥ 1

n
.

We can then compute P(x11 ≥ k) within a factor of ε/2N with repeated sampling.

7.2.2 Counting algorithm

We give here the details of our algorithm to approximately count the total number of tables

using our Markov chain.
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Counting

Input: Marginal sums a, b, and some constants ε and γ with ε > 0 and γ ∈ (0, 1).

Output: An estimate of the number of tables with those marginal sums.

begin

T ← d(N
ε

)2e

if {ai, bj} ∈ {0, 1}

n←
∑
ai

return n!

else

sort a, b into non-decreasing order

fori = 1to T do

sample uniformly from tables with marginal sums a, b

record entry in upper right corner

end

c ← (100γ)-th percentile in the distribution of upper-left corner entries

c← min
{
c, a1, b1,max{a1 − 1, b1 − 1}

}

x← fraction of tables with upper right entry ≤ c.

return 1
x
· Counting((a1 − c, a2, a3, . . . ), (b1 − c, b2, b3, . . . ), ε, γ).

end

end

The total run-time is bounded above by NT · t = N3t/ε2, where t is the effective mixing

time defined in §7.4.6. By adjusting the constant ε, the count can be estimated with arbitrary

desired precision. The value of γ affects both run-time and accuracy. Experimentally we

found γ = 0.7 to be a good choice. The speed of the algorithm can be improved by stopping

instead when we have an n×n table with row and column sums all equal to 1 and returning n!.
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It can be further improved by stopping when row and column sums are ≤ k for some fixed k.

A recurrence relation (whose complexity grows rapidly with k) can be used to compute the

number of such tables. In our implementation, we used k = 2.

7.3 Multi-way tables

7.3.1 Constraints

For 2-dimensional contingency tables, we have focused entirely on the sample space T (a, b),

that is, on the set of tables with certain fixed row and column sums. The other natural

possibilities would be to fix only the row sums, or to fix only the total sum N . Both

possibilities do hold interest for statisticians [Kat14, §2.2.1], but in both cases sampling

from the uniform distribution on these sets can already be done with elementary techniques

(see e.g. [DE85, FLL17]). When sampling from multi-way tables, there are many more

possible choices of constraints.

In a multi-way table, there are two families of associated tables. The marginal tables are

produced by summing all possible values of some k variables to produce a (d−k)-dimensional

table. The partial tables are produced by fixing the value of some k variables to produce a

(d− k)-dimensional table (see e.g. [Kat14, §3.3.1]).

Our algorithm can be extended to multi-way tables of dimension d in the case where we

constrain only on the 1-margins, i.e. by fixing the sum of each d − 1 dimensional partial

table. This is different from, and less general than, the SIS algorithm in [CDS06] where they

can constrain on arbitrary sets of margins, dependent on the feasibility of certain algebraic

computations (Markov bases and Gröbner bases). However, the algorithm in [CDS06] (see

also [Sul18+]), seems best fitted for cases constraining on (d − 1)-margins, or perhaps for

(d− k)-margins for k small.1

1This is based on the comment in [CDS06] about the point when the algebraic computations became
infeasible.
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7.3.2 Algorithm

The general structure of a single Markov chain step for multi-way tables is the same as in

the two-dimensional case. In fact, the algorithm is identical after we give a generalization of

the Hyper subroutine to arbitrary dimensions. We give the details below. The only change

in the Split and Merge subroutines is an adjustment in the indices so that the subroutines

act on every entry of the table.

Recall that in the two-dimensional version of Hyper, we give a map from SN to T (a, b).

In the d-dimensional case, we give a similar map from the d−1 term product SN×· · ·×SN to

T1(a1, . . . , ad). The block matrix construction in the two-dimensional case extends naturally

to give a map to T1(a1, . . . , ad) from d-dimensional 0 − 1 tables with size N × . . . × N and

exactly one 1 in each (d − 1)-dimensional partial table. It remains to give a bijection from

such tables to the (d− 1)-term product SN × · · · × SN .

Let T be a d-dimensional 0 − 1 table with exactly one 1 in each (d − 1)-dimensional

partial table, and fix two variables i and j. We observe that the marginal table produced by

summing over the remaining d−2 variables gives a permutation matrix. Indeed, if we fix the

value of i, there is a unique value of j for which the d− 2 dimensional partial table contains

a 1. Taking i = 1 and j = 2, 3, . . . , d gives d−1 elements of SN . To reverse the map, send the

element (σ2, σ3, . . . , σd) ∈ SN × · · · × SN to the 0− 1 table with 1’s at (k, σ2(k), . . . , σd(k)),

for k = 1, 2, . . . , N .

7.4 Examples

7.4.1 Victorian birthday/deathday table

The χ2 value of the table is

Our first example is a 12 × 12 table with the month of birth and death of 82 of the

descendants of Queen Victoria. This data appears first in [AH85], and is studied in [DS98].
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Diaconis and Sturmfels use a Markov chain consisting of

+ −

− +

moves, which samples from the hypergeometric distribution on tables. Their calculations

lead them to estimate that their Markov chain converges to its stationary distribution in 105

steps. Our Markov chain samples from the uniform distribution on the same tables in around

10 steps.

P. DIACONIS AND B. STURMFELS364

TABLE 1
Relationships between birthday and deathday

Month
Month of deathof

birth Jan Feb March April May June July Aug Sept Oct Nov Dec Total

Jan 1 0 0 0 1 2 0 0 1 0 1 0 6
Feb 1 0 0 1 0 0 0 0 0 1 0 2 5
March 1 0 0 0 2 1 0 0 0 0 0 1 5
April 3 0 2 0 0 0 1 0 1 3 1 1 12
May 2 1 1 1 1 1 1 1 1 1 1 0 12
June 2 0 0 0 1 0 0 0 0 0 0 0 3
July 2 0 2 1 0 0 0 0 1 1 1 2 10
Aug 0 0 0 3 0 0 1 0 0 1 0 2 7
Sept 0 0 0 1 1 0 0 0 0 0 1 0 3
Oct 1 1 0 2 0 0 1 0 0 1 1 0 7
Nov 0 1 1 1 2 0 0 2 0 1 1 0 9
Dec 0 1 1 0 0 0 1 0 0 0 0 0 3

Total 13 4 7 10 8 4 5 3 4 9 7 8 82

Ž . Ž .FF r, c be the set of I � J arrays x of nonnegative integers with the giveni j
row sums and column sums. Let

I Jcj NH � , N � c � r ,Ł Ý Ýi jr r ��� rž /x ��� xž / 1 2 I1 j I jj i�1 j�1

Ž .be the hypergeometric distribution on FF r, c . This is the conditional distribu-
Ž .tion of the data, given the sufficient statistics row�column sums for the

classical model of independence.
A Monte Carlo method for generating from H proceeds as follows. Let x be

a table which satisfies the constraints. Modify x by choosing a pair of rows
and a pair of columns at random. These intersect in four entries and x is
modified as

1� � � �or with probability each.2� � � �
The modification adds or subtracts 1 from each of the four entries as
indicated. This does not change the row or column sums. If the modification
forces negative entries, discard it and continue by choosing a new pair of rows

Ž .and columns. This describes a Markov chain on FF r, c . By the usual Metropo-
Ž .lis procedure see Lemma 2.1 the chain is modified to give a connected,

aperiodic, reversible Markov chain with stationary distribution H.
Figure 2 shows a histogram of the chi-square statistic for Table 1. Figure 1

and the counts reported above were derived from this chain. The 106 steps of
the Markov chain took about three minutes to run on a p.c. As explained in
Section 2, there are more direct methods for sampling from H for two-way
tables but for three- and higher way tables the present approach seems to be
the only one.

Figure 7.1: Month of birth and death for descendants of Queen Victoria [DS98, Table 1].

We demonstrate the rapid mixing of our Markov chain with a series of computations.

We choose a random table from the hypergeometric distribution, using a Hyper step, and

then run our Markov chain for a certain number of steps and compute the χ2 value of the

resulting table. We perform 5 ·104 trials and compute the sample mean and sample deviation

of the χ2 values of our sampled tables. The last run, where we ran the Markov chain for 200

steps in each trial, took 204 seconds. 2

2Computations were made with an Intel R© CoreTM i7-3610QM CPU with 2.30GHz, 4 cores and 8Gb of
RAM.
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Steps Sample Mean Sample Standard Deviation

0 (Hyper dist.) 122.49 13.69

2 160.96 20.15

5 169.02 22.03

100 169.74 21.99

200 169.94 22.12

Figure 7.2: Birthday/deathday, χ2 after 5 · 104 trials.

We give a summary of results in Figure 7.2, and a plot of the sample means and sample

standard deviations of the χ2 values in Figure 7.8. We give plots comparing the sampled χ2

values after 200 steps to the sampled χ2 values after 2 and 5 steps in Figure 7.9.

7.4.2 Hair and eye color

Our next example is a 4×4 table with the hair and eye color of 592 people. This data comes

originally from [Snee74], and is also analyzed in [DS98].
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give an overview of available results on the rate of convergence of the chains
to their stationary distribution.

2.1. Markov chains. We first show how to set up a Markov chain for a
general distribution on FF .t

Ž . Ž .LEMMA 2.1. Let � g be a positive function on FF of 1.3 . Given functionst
Ž .f , . . . , f satisfying 1.5 , generate a Markov chain on FF by choosing I1 L t

1� 4uniformly in 1, 2, . . . , L and � � �1 with probability independent of I. If2
Žthe chain is currently at g � FF , it moves to g � � f provided this is nonnega-t I

.tive with probability

� g � � fŽ .I
min , 1 .½ 5� gŽ .

In all other cases the chain stays at g. This is a connected, reversible,
aperiodic Markov chain on FF with stationary distribution proportional tot
Ž .� g .

Ž .PROOF. Call the chain described K g, g . It is easy to check that˜
Ž . Ž . Ž . Ž . Ž .Ž .� g K g, g � � g K g, g . Condition 1.5 b shows that the chain is con-˜ ˜ ˜

Žnected. Since there is some holding probability iterate g � g � f suffi-1
.ciently often to get a negative coordinate , we are done. �

REMARKS. A useful class of measures on FF is specified by choosing at
� Ž . Ž Ž ..function � : � � � for each x � XX . For g � FF , define � g � Ł � g x .x t x x
Ž . aFor example, if � a � � �a! with 0 � � � 1, then � becomes the multiplex x x

hypergeometric distribution which arises when carrying out power calcula-
tions or generating confidence regions. Taking � � 1 gives they hypergeo-x

Ž . Ž . Ž .metric distribution of 1.4 . For this class of measures, the ratio � g �� g˜
involves only a few terms in the product if g and g differ in only a few terms.˜
This always seems to happen, and we have found this method effective in the
examples of Sections 4�6.

�As a nonstandard example, Table 2 gives a 4 � 4 contingency table data
Ž .� 2of Snee 1974 . The chi-square statistic for this table is � � 138.29 on

TABLE 2
A 4 � 4 contingency table

Hair color

Eye color Black Brunette Red Blonde Total

Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64

Total 108 286 71 127 592

Figure 7.3: Hair and eye color [DS98, Table 2].

The distribution appears to be close to uniform after about 40 steps. We took 5 · 104

samples of the χ2 vaues after running our Markov chain for various numbers of steps, as
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in §7.4.1. We give a summary of results in Figure 7.4, and a plot of the sample means

and sample standard deviations of the χ2 values in Figure 7.10. We give plots comparing

the sampled χ2 values after 200 steps to the sampled χ2 values after 10 and 40 steps in

Figure 7.11. Further evidence for the mixing time being close to 40 steps is given in §7.6.2.

Steps Sample Mean Sample Standard Deviation

10 203.33 86.56

40 233.04 96.55

50 233.75 96.42

100 234.44 97.05

200 234.06 96.90

Figure 7.4: Hair and eye color, χ2 values after 5 · 104 trials.

Because the Split stage of our algorithm is based on the cycle decomposition of a random

permutation, we would suspect that, for tables where the average entry was larger, the mixing

time would be larger. Comparing this example to the previous example gives some evidence

in support of that prediction. The apparent mixing time remains small enough, however, for

computations to remain quite fast. It took 488 seconds (≈ 8.1 minutes) to perform 5 · 104

trials, consisting of 200 steps of the Markov chain in each trial.

7.4.3 Titanic survival rates

The RMS Titanic famously crashed on its maiden voyage in 1912 [Cam97]. Records from

that time are well-preserved, and information about the passengers can be readily found

in publicly available datasets [Kag]. We create a five dimensional multi-way table with

variables survival, gender, class (first, second, or third), city of embarkation (Southampton,
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Cherbourg, Queenstown, or not given) and age (0-11, 12-18, 19-48, 48+, or age not given).

We use the data provided in a Kaggle model training data set with N = 891. We present the

marginal sums in the table below. Note that in some dimensions the ratio between marginal

sums is quite large.

Marginal Sums 1st 2nd 3rd 4th 5th

Survival (Y/N) 342 549

Gender (M/F) 577 314

Class (1/2/3) 216 184 591

Embarkation (S/C/Q/NA) 645 168 77 2

Age (0/12/19/48/NA) 68 71 495 80 177

Figure 7.5: Titanic marginal sums.

We perform 104 trials for various numbers of steps, as above, and evaluated the resulting

distributions. The distribution of χ2 after 50 steps is visually indistinguishable from the

distribution after 200 steps, as shown in Figure 7.13. We estimate that the distribution is

somewhat close to uniform after 50 steps, and very close to uniform after 200 steps.

We refine our analysis by looking at the sample mean and sample standard deviation,

plotted in Figure 7.12. We estimate that the distributions after 100 and 200 steps are almost

identical. Using the estimate of the error in sample mean derived from the sample standard

deviation, after 100 steps, our sample mean is 1559.4 ± 2.7. After 200 steps, our sample

mean is 1558.2± 2.8.

Remark 7.4.1. We derive our estimate of the error here and in §7.4.4 by using the estimate

for the standard error of the mean

σx ≈
s√
t
,
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SIS FOR MULTIWAY TABLES 19

Table 3
6-way Czech autoworker data from [18]

B no yes

F E D C A no yes no yes

Negative <3 <140 no 44 40 112 67
yes 129 145 12 23

≥140 no 35 12 80 33
yes 109 67 7 9

≥3 <140 no 23 32 70 66
yes 50 80 (0) 7 13

≥140 no 24 25 73 57
yes 51 63 7 16

Positive <3 <140 no 5 7 21 9
yes (0) 9 17 (0) 1 (0) 4

≥140 no (0) 4 3 11 8
yes 14 17 5 (0) 2

≥3 <140 no 7 (0) 3 14 14
yes 9 16 (0) 2 (0) 3

≥140 no (0) 4 (0) 0 13 11
yes (0) 5 14 (0) 4 4

Example 7.3. Consider the 6-way binary Czech autoworker data in Ta-
ble 3 from a prospective study of probable risk factors for coronary throm-
bosis [18]. There are 1,841 men in a car factory involved in the study. Here
A, B, C, D, E and F indicate different risk factors. One reasonable model is
given by [ACDEF], [ABDEF], [ABCDE], [BCDF], [ABCF], [BCEF] [17]. The
conditional goodness-of-fit test for this model requires fixing the three 5-way
and the three 4-way margins in the above model representation. Implement-
ing SIS for this example requires techniques beyond the basic methods of
Section 3, because the lex basis does not have square-free lead exponents.

In Table 3 (0) indicates that the LP lower bound for that cell entry is
0 with the constraints from the model above; the others are strictly posi-
tive. Identifying these cells is relevant when we apply Propositions 4.1, 5.1
and 5.2, as the (0) cells form the complement of the set SQ (defined in
Proposition 5.1).

The lex basis for the toric ideal with lex order in indeterminates yields 20
elements, the first of which has an exponent of 2 on the lead indeterminate
x111111. Therefore, Proposition 3.1 cannot be applied directly. However, the
ideal generated by the other 19 polynomials saturates in one step with re-
spect to the monomial

∏
s∈S xs, where S is the set of 41 coordinates that

must be positive. Hence, by Lemma 4.2 these 19 moves are a Markov subba-
sis. They are a lex Gröbner basis for themselves, and they have the satura-
tion property required in Proposition 4.1, so the sequential interval property

Figure 7.6: 6-way Czech autoworker data from [CDS06, Table 3].

where σx is the standard error, s is our sample standard deviation and t is the number of

trials.

7.4.4 Czech autoworker dataset

Here we consider the 6-way 2 × · · · × 2 Czech autoworker data which appears originally

in [EH85], and is further analyzed in [CDS06]. The data, given in Figure 7.6, consist of

various risk factors for 1841 Czech autoworkers for coronary thrombosis. We sampled the

value of χ2 after 0, 5, 10, . . . , 100 steps, and performed 104 trials for each case. The sample

mean and sample standard deviation of the χ2 values are given in Figure 7.14. We conducted

one additional run with 100 steps of the Markov chain and 105 trials, and computed the

sample mean of χ2 to be 1443.15± 1.1. We plot the distribution of χ2 after 15 and 50 steps

against the distribution after 100 steps in Figure 7.15. The distribution already appears

appears to be somewhat close to uniform after 15 steps. Considering the plots of sample

mean and sample standard deviation suggest that the distribution is very close to uniform

after 50 steps.

Compared to the example of the Titanic, the dimension has increased by 1, the number
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of entries has decreased by a factor of 4, the average entry value has increased by a factor

of 10, and the range between the marginal sums has decreased dramatically. This suggests

that a greater number of entries or a greater range between marginal sums is one of the

stronger contributors to a greater mixing time.

7.4.5 A 16-way NLTCS table

We next consider the 16-way 2× 2× · · ·× 2 table with N = 21, 574, from the National Long

Term Care Survey (NLTCS), see [Ero02], which was further analyzed in [DF03]. This is near

the edge of what is computationally feasible, at least on a personal computer. Running our

Markov chain for 150 steps, repeating for 2000 trials, took 12, 271 seconds of computing time

(≈ 3.4 hours). Still, even for this large example, the plots of χ2 in Figure 7.16 suggest that

the distribution is close to uniform in between 50 and 75 steps.

7.4.6 Summary of examples

We give a summary of the results from our examples in Figure 7.7. For a m1×m2×· · ·×md

table, we let:

• Dim := d

• Deg := m1m2 · · ·md − (m1 +m2 + . . .+md) + (d− 1)

• N := # of samples

• M := our estimate for the mixing time

• t := M × (CPU per MC step) = CPU time to generate a table (nearly) uniformly
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Example Description Dim Deg N M t (sec.)

Birthday/Deathday §7.4.1 2 121 82 5 0.00010

Hair and Eye Color §7.4.2 2 9 592 40 0.0019

Titanic §7.4.3 5 228 891 100 0.020

Czech Autoworkers §7.4.4 6 57 1841 50 0.015

NLTCS §7.4.5 16 65519 21574 100 6.2

Figure 7.7: Summary of examples in this section.

Birthday/deathday example in §7.4.1
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Figure 7.8: Birthday/deathday. Sample mean and sample standard deviation of χ2.
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Figure 7.9: Birthday/deathday, χ2 values after 5 · 104 trials with 10, 30 and 150 steps of the

MC.

Hair and eye color example in §7.4.2
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Figure 7.10: Hair and eye color. Sample mean and sample standard deviation of χ2.
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Figure 7.11: Hair and eye color, χ2 values after 5 · 104 trials.

Titanic survival example in §7.4.3
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Figure 7.12: The Titanic dataset sample mean and sample standard deviations of χ2 values

after 104 trials with different number of steps of the MC.
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Figure 7.13: The Titanic dataset, χ2 values after 104 trials with 20, 50 and 200 steps of the

MC.

Czech autoworker example in §7.4.4
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Figure 7.14: Czech auto worker sample mean and sample standard deviation of χ2.
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Figure 7.15: Czech autoworkers, χ2 after 104 trials with 15, 50 and 100 steps.

A 16-way NLTCS example in §7.4.5
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Figure 7.16: NLTCS χ2 after 2000 trials with 50, 75 and 150 steps of the MC.
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7.5 Experimental comparison of the SHM and DG chains

To compare the performance of the SHM and Diaconis-Gangolli chains, we perform a “speed

test” on the birthday/deathday example of § 7.4.1 and on a 200 × 200 table with uniform

margins of 1600 (so that the average entry is 8). A single step of the SHM chain is substan-

tially more complex than a step of the DG chain, so comparing the mixing times of the two

chains in terms of steps required is not a particularly useful metric. Instead, we compare

the computer time required for each algorithm to produce a nearly uniform sample.3

More precisely, we measure the time required to produce, given one nearly uniform sam-

ple, a second nearly uniform sample that is nearly independent of the first. We estimate this

by measuring the time required for the `2 distance between the first sample and the second

sample to converge to its limit.

We first perform a calibration step to estimate the average computer time to perform one

step of the SHM chain and one step of the DG chain. For the birthday/deathday example,

we performed 100 trials of 500, 000 DG steps and 1, 000 SHM steps each. For the 200× 200

table we performed 10 trials of 5, 000 DG steps and 10 SHM steps each.

Using the data from the calibration step, we estimate the number of MC steps that can be

performed in various time intervals. For the birthday/deathday table, we use time intervals

of length 0.00005, 0.0001, . . . , .0.01 (i.e. x/20, 000 for x from 1 to 200). For the 200× 200

table, we use time intervals of length 0.1, 0.2, . . . , 2.0 (i.e. x/10 for x from 1 to 20). We

then perform 1,000 runs of each chain for each time interval, and compute the (entry-wise) `2

distance from the final table to the starting table. We initialize to our fixed starting table in

the DG chain, and by performing a Hyper step in the SHM chain, as described in § 5.3.2.

Since the performance of the DG chain depends on the initial table, while the SHM chain

by design generates its own initial table, this is the best “apples to apples” comparison of

the relative time required for the two algorithms to generate a family of nearly independent,

3Both algorithms were written in C++ and run on the same machine, an Intel R© CoreTM i7-3610QM CPU
with 2.30GHz, 4 cores and 8Gb of RAM. With both algorithms, we made reasonable efforts to write the
code efficiently but did not exhaustively optimize by, for example, exploiting the sparseness of the underlying
table.
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nearly uniform samples. We plot the average `2 distance in Figure 7.17.
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Figure 7.17: Birthday/Deathday and 200× 200 speed tests

7.6 Counting experiments

In this section we give the results of tests of our counting algorithm on the birthday/deathday

example from § 7.4.1 and the hair and eye color example from § 7.4.2. Recall from the

discussion in § 7.2.2 that the run time is approximately proportional to t/ε2, where t is our

estimate of the mixing time.

The SHM algorithm is better suited for large, sparse tables than small, dense tables, and

so the birthday/deathday example is a much more natural candidate than the hair and eye

color example. However, as the results below indicate, getting an accurate estimate requires

considerable computational resources in both cases. In contradistinction to the speed tests

of the previous section, the use of the SHM algorithm as a FPRAS for T(a,b) may be more

valuable for its theoretical significance than its practical applications. If the SHM counting

algorithm does offer practical advantages, those advantages are only manifest on much larger

tables or require a different implementation.

7.6.1 Birthday/deathday table

Based on the experimental results for the mixing time of the SHM algorithm for the birth-

day/deathday table in §7.4.1, we assume that running our Markov chain for 20 steps produces
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a truly uniform sample from the space of tables with those marginal sums. We perform 5

trials with ε = 1.0 and γ = 0.7, and 5 trials with ε = 0.1 and γ = 0.7.

For ε = 1.0, our computations lead us to estimate that the total number of tables

is 6.6± 0.5 · 1039. Our trials gave estimates ranging from 6.10 · 1039 to 7.62 · 1039, with the

average 6.58 · 1039. The trials took on average 373.6 seconds (≈ 6.2 minutes) to run, or in

total 1868 seconds (≈ 31.1 minutes).

For ε = 0.1, our computations lead us to estimate that the total number of tables

is 6.2± 0.1 · 1039. Our trials gave estimates ranging from 6.16 · 1039 to 6.29 · 1039, with the

average 6.21 · 1039. The trials took on average 41, 199.8 seconds (≈ 11.4 hours) to run, or in

total 205, 999 seconds (≈ 57.2 hours).

7.6.2 Hair and eye color

We return to the example of hair and eye color considered in [DS98] and above in §7.4.2.

We use our counting algorithm to estimate the number of 4 × 4 tables with the same

marginal sums. We performed 5 trials estimating the number of tables with ε = 1.0

and γ = 0.7, using 20 steps as an estimate of the mixing time. The trials took on aver-

age 5, 764.8 seconds (≈ 1.6 hours) to run and gave estimates of the total number of tables

between 1.45 · 1015 and 1.52 · 1015. Des Jardins computed the actual number of tables to

be exactly 1, 225, 914, 276, 768, 514 ≈ 1.23 · 1015 [DG95]. This provides strong evidence that

after 20 steps, the distribution is biased away from the uniform distribution in some way.

We performed 5 more trials with ε = 4.0 and γ = 0.7, using 40 steps for our mixing time.

These trials took on average 834.4 seconds (≈ 13.9 minutes) to run and gave estimates of the

total number of tables between 1.22 · 1015 and 1.31 · 1015, with the average count 1.26 · 1015.

This still shows a tendency to overcount, but the bias is much smaller. Our estimate of the

count is 1.26± 0.5 · 1015, and the true value is within the margin of error.

We then performed 5 more trials with ε = 2.0 and γ = 0.7, using 50 steps for our

mixing time. These trials took on average 3, 918.8 seconds (≈ 1.1 hours) to run and gave

estimates of the total number of tables between 1.18 · 1015 and 1.24 · 1015, with the average
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count 1.22 · 1015. Our estimate of the count is 1.22± 0.3 · 1015, and the true value is near the

center of our confidence interval.

7.7 Barvinok Experiments

Using the SHM algorithm [DP19+c], we experimentally investigated the distributions (X, Y, Z)

described in Chapter 6 for various choices of n, B and C. Selected plots are given below.
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Figure 7.18: The center entry X and the side entry Y . 1,000 trials

As predicted X and Y follow a geometric distribution, regardless of our choice of B

and C. In the following plots, we see the transition point for Z at C = 1 and at C = 3.

For C = 1 we have BC = 2.42, and for C = 3 we have BC = 2.15.

We next plot the mean and standard deviation of the corner entry Z as B varies. We

show the plot for n = 200, C = 1, and for n = 100, C = 3. We again see the transition

points at B around 2.42 and 2.15, repectively. To the left of the transition point, Z is
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(a) For B < BC , corner is geometric.
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(e) For B > BC , corner is Gaussian.
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Figure 7.19: Plots of the corner entry with 10,000 trials
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approximately geometric, with mean at least equal to B > 1, so that the mean and standard

deviation are close to each other. To the right of the transition point, the standard deviation

grows roughly as fast as the square root of the mean, as predicted.
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Figure 7.20: Corner entry, 1,000 trials
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