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1 Introduction 

Let G be a finite group. A sequcncc of k group c1cmcnt.s 
(91. , ,9~.) is callccl a gens~nting k-t?Lple of G if t,he elements 
generate G (we write (yl, , yk) = G). Let. Ark(G) bc the 
set of all generating k-tuples of G, and let Xk (G) = IAl. (G) 1. 

Wc consider t,wo rclatcd problems on generating k-tuples. 
Given G and k > O? 

1) Determine NA. (G) 

2) Genemte random element of A’k (G), cnch with prob- 
ability l/Nk (G) 

The problem of determining t,he structure of A’k.(G) is 
of int.cJrest. in several contexts. The counting problem goes 
hack to Philip Ha.11: who cxprcssed Xk (G) as ii Mijbius type 
summation of hFA. (H) over all maximal subgroups H c G 
(see [23]). Recently the counting problem has been studied 
for large simple groups where remarkable progress has been 
made (see [25, 271). In this paper we a.nalyze Xk for solvable 
groups iUld products of simple groups. 

The sampling problem. while oft.cn used in theory as a 
tool for approximate counting. rcccnt,ly b(!giHl il life of its 
owl. In this paper we will prrscnt an algorithm for exact 
sampling in case when G is nilpotent.. 

When little about structure of G is known, one (:an onI\ 
hope for approximate sampling. In [ll] Celler et. al. pro- 
posed a product replacement Markov chain on ;tfk (G) which 
is conjectured to be rapidly mixing to a uniform st.ation- 
ary distribution. The subject. was further investigated in 
[6, 12: 17: 161, while the conjecture is fully established only 
whrn G ‘v Z,, p is a prime. 1Ve prove rapid mising for all 
abclian groups G. Also, we disprove the folklore conjecture 
that the group elements in gcncrating k-tuples are (nearly) 
uniformly distribut,ed. 

Finally: we would like to remark t.hat the generating k- 
tuples occur in connection with the so-called random random 
walks. which are the ordinary random walks on G wit,11 ra.n- 
tlom support. The analysis of these ‘.averagc cast” random 
walks was inspired by Aldous and Diaconis in [l] and was 
continued in a number of papers (see e.g. [19: 33; 36, 391). 
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Wc esplain how the sampling problem can be used to test 
convcrgcncc of random random \valks. 

2 Counting problem 

Let, G be a finite group. By IGI den0t.e the order of G. As 
in the introduction, let Xk(G) = I-:VA,(G)I be the number of 
generating k-tuples (91 i , gA.) = G. It is often convenient. 
to consider the probability ,gk (G) t,hat k uniform indcpcn- 
dent group clcmcnts generate G : 

Theorem 2.1 For an9 fin,i.tr: gro?Lp G. 1 > 6 > 0, we 
huve 

$ok(G) > 1 -F 

given k > log, IGI + 1 + log, l/c. 

This is a slight improvcmcnt over a more general classical 
result. by Erdiis and R.Ctnyi in [20]. 

D&w K(G) to be the minimal possible number of gcn- 
craters of G. 111 ot.her words? 

K(G) = min{k I KA,(G) > 0) 

The problem of evaluat.ing h,(G) has been of intcnsc interest 
for classes of groups as well as for individual groups (SW 
P4,. 

It is known that r;(G) = 2 for all simple, nonahelian 
groups, and t.hitt K(G) < 91/2 for G C S,,: wit,h equalit:y 

a&e\-ed when G E ZI:“. and n is CVCII. -41.~0: it is easy to 
see that. K 5 log, IGI; &ith cqualit,p for G N ZG. 

Dcfinc r)(G) to 1JC the smallest k such that at least, l/4 of 
the random k-t,iiplcs (gl, . . i yl;) generate the whole group. 
In other words: 

O(G) = min{k I pk(G) > i} 

Note that Thcorcm 2.1 immediately implies that 

6(G) 5 log, IGI + 1 

I%y drfinition 8 (G)/fi(G) 1 1. It is unclear, however; how 
big this ratio can be. 
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Here are a few known results. When G is simple. it is 
known that 92(G) -+ 1 as IGI + cx. l?or G = -4,,. this is a 
famous result. of Dixon (WC [lS]), while for Chevalley groups 
the! result was conjecturec~ by Kallt~or. Lubotzky (WC [‘q) 

and rcwntly proved 1)~ Lichcck antI Sllal~v (see [2i]). This 
immediately implies that. 21(G) < CT for imy simple gro7lp G 
ilnd SOIIlC universal const.ant, C. Il. WilS illSO noted iu [Ii] 
t,llat if G is a I+gro77p, then D(G) < K.(G) + 1. The follo\ving 
result is a significant. generalizat~ion. 

Theorem 2.2 

3 Sampling problem 

There are several wavs a finibe group G ci177 IJ~ prcscntctl a.s 
an inp77t, to the >7lg<Athm. Regardless of the prcwnt,at~ion of 
G: denote by /I tlw t,ime nec‘essary for group operations (mul- 
tiplication, taking a11 inverse, comparison with itll). Dcnott: 
by p t.hc conip1esit.y of generating a (nearly) 7iniform group 
clcmcnt (call it. rnndom ~~encmlion). It. is iLlSO conveuient 
to denote by 71 1.1~: time t,o check whc$,lwr giwn k gro77p 
rlcmcnts generate a group. Wc call t.his t,lie generation test. 

We start with pc~nrutch'on qrozqs mhich arc tlcfincd as 
suhgro77ps of a permutation group S,, The group is prc- 
sent,ed by a set of gerwrat,ors. This is the best 77ndcwt~ood 
class of groups wit 17 efficient managcmcnt. random elements 
generation, gCweriltiOI1 test? etc., based on t,lie f7mdamenta.l 
algorithms by c’. Sims (SW e.g. [3S, 13. 281. I77 part.icular one 
has p = O(prt), and 71 = O(lrr7,“) b-y reducing the proMem t.0 
group membership. 

.A f7Mtri:X ,97WLp iS R. gIWIlp dPfIld ilS il SUtJgI’OUp of 
GL(,n.; (1). This is a hrder &.s of groups t.0 work wi1.h (see 
[21? 61). Rcccnt,ly there has bee11 SOIIIC dviXIl<~t! work done 
in this sct.t.ing (see [?: 10. 31. 291). St.ill, polynomial time 
nlimxgc?ment for IlliItl.iX groilps is yc‘t, t,o 1.w discovercd. 

Ont: of t,he most, general and widely accepted is t,he blnck 
boz sct,t,ing (see e.g. [6]j in ~vhidi gIYJUp eklIleIlts aI? ml- 

coded by binar,v strings of fixed length ?% (possil)ly in IllMl~ 

\vays). .A black 1~0s can multiplv elements, t.akcb inverses. 
and compare clcmcnts n-it.h ide77tit.y. This pr~SC!Ilt~ilt~iOll Of 
il group gencralizcs both perm77tation and m;wis gr077ps. 

In it pioneering work [4]. Babai wa.s able t.o find a polyno- 
mial time algorit,hm for generating (uearly) uniform groiip 
elements. Tllc product replacemrnt algorithm was designed 
t.0 give a pmcticid algorithm for random generation. These 
algorithms were uscrl~in a n7imher of subsequent works, par- 
ticularly 011 recognition of viwiO71s VlilSses of fiIlitc groups (see 

[8, 9. 26, 311). Following I3aba.i (SW [:l]). there is 110 subcs- 

ponential in 11 algorithm which cm pcyform the generation 
test,. 

Now consider sampling problems (see iIit,rotl77ct,ioll) from 
the computational poinl~ of view. We imnwtliat.el?; ohi,ain 
tlic following rcsiilt~. 

Theorem 3.1 Lel. G 6r, a black 602: group with a pn- 
eration test 07TLclc, (~L7t.d a mdorr1 gene7~ntion, oraclc. Let 

k 1 8(G). Then there exists a randomized alyorithrn for 
.sc~n1yli1a,q from Ark(G) in time O(pk + 11). 

Incleed, given X: > ,8(G), we can always sample from 
5;. (G) 1)~ simply generating a uniform &tuple and testing 
whether 7t gcncratcs the whole group G. At bhe moment. 
the prol~lcm is open for K;(G) < A: < a(G). 1% do not. be- 
lieve that t,hcrr: is an efficicIlt si~IIlpliIlg algorithm for all k 
and for gc:nerill black box gro77ps. Howevcr: such algorithms 
do exist. in cases wlicn the group is alwatly rec~ogr~iz:ctZ~ i.c:.. 
when a black box group is provitlrtl wit.11 an isomorpllism 
x : G + G’ to a group in a canonical form (WC lwlo~). 

Theorem 3.2 Lef G be a jinitc 71ill~~~t~71.l. group defined as 

in the prcccdiny paragraph. Then th,ere ezists CL mndornized 
algorith.m, for su7nyli71,q fwm $k(G) with 7.1~7171~i71c~ tim.c Xp( l+ 
o( 1)). which wqni7~:s k log, IGI (1 + o( 1)) mndom bits. 

B? random hits wf! mean. roughly speaking, t,he number 

of co711 flips required in t,he algorithm. Cl(~arl~, this num- 
lwr cannot he smaller that log? Nk (G). To demonst~rat,c~ the 
st.rength of t.he algorit,llm. consider the case G = Z.Y. Then 
K = 71 and A’,, (G) is in one-t,o-one correspondence with the 
set of nonsing77lar rnatriws GL(7,; Z:‘). It. is known t.hat 
p,,(G) = c > l/4 (WC c.g. [30; 321). The standard ap- 
proach to sampling from GL(n; &) would he sampling (171~~ 

matrix autl then checking by Gaussian elimination whether 
it. is nonsing7llar. The cspcctcd n77mtwr of random bits re- 
quired for that is f [log2(n’)l, while our algorithm requires 
only log, r7’(1 + o(l)) random bits. The problem of saving 
random bibs when sampling from GL( rr; IF,,) was considered 
earlier by R.anclall (see [35]) and t.he first. aut.hor (see [32]). 
Thus Theorem 4 can be t.ho77ght of as an advance general- 
izntion of t~licw rcs7ilts. 

WC: conc~lude with the remark that for large enough k 
sampling from Ai. c:au be d011c in a gcncrality of black 
box groups L-y using t.hc prod7ict rcplaccment, algorit,luu (see 
below). 

4 Product replacement algorithm 

The yr~oduct rqhcenrent algorithm. is an important recent 
advancement in symbolic algcl)ra. In [ll] Celler et al. de- 
fiued a Markov chain St on Ark(G) a.5 follows. Let St = 
(f/l:. ..:!/A.) E N,.(G). Define St.,, = (9,: . . . . 17,,:...>gk): 
where 17 .I = 9.i !I,’ 7 or l/j = $7,f/J: whcrc ttlCb pair (i:.j), 

1 5 i: j 5 k, i # j is cl~oscn u77ifc~rn7ly; the multiplicat.ion or- 
der md he fl degree are dctcrmincd 1)~’ indtrpcndc~lt flips 
of a fair coin. By h’.(G) dcnot.c 1 lie maximum size of t.he 
Illirliln7lIIl gf!Ilf!rilt ing set. (i.e. of the set such that no gen- 
erator cau be ornit.trtl). The authors slmwctl (cf. [16]) that. 
when I; 2 K + E this Yiarkov chain is rcvcrsil~lc, aperiodic 
and irrecl77ciblo~ and has a uniform stationary tlistrit)77tion. 
Thws the &>in is crgotlic ant1 can 1~ 7~~~1 for approximate 
sampling from ;\rk (G)? k > K.(G) + i?,. The cmpiricsl tests 
sccn~ to intlicaW that tlic CllRiIl mixes rapidly (see [ll]). 

.At t.hcn moment. it. is not known whet.her the Markcw chain 
wilverges ill the pOlyIlOllliill of k. log IGl: but this is con- 
joct77rc:d to tw true for suitable val77es of k. Sev(:ral waker 
\-cwions of this cbim has appeared. The only (:asc! ~17~17 
t.h(l wnjccture has been established is dur: t.o Diaconis and 
SillOlI- Ch+ who proved tllc diliII1 for Z, when p is a prime 

(WC! [l’i]). 111 [12] ch7lIlg iLlId GrdlilIIl shwd that the mix- 

ing time is pol~r~mlial in k: and (G(. Babai in [G] sl~o~vcd that 
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t,hr diameter of the untlcrl~iug graph is Ojlog2 ICI) given 
k > 2 log, IGI. At. the morueut. the best general results are 
due to Dixonis and Saloft-Coste (see [l(i]). The authors 
show that the mixing tiiiic is b01111&:t1 IJ~ a poly;110miaI of 

several paranwtcrs~ iucludiug AA.(G). (,,“,,): aud ~/FL.(G), 
where AA.(G) is the mn.xirnnZ dinmeter of gencrat.ing k-tuples 
of G. Cllfort.uila.t,rly. s011le of t,hese parameters can be very 
large (or arc not known to he relatively sinall), ant1 it is easy 
t.O See that. this upper h0lllltl iii [16] is iLl\ViLj% greih?r tllilll 

ill1 upper bound for the lli~t~ll~id randoni walk with arlJ- k 
gmerators. 

We prove the rapid mixing for al>t4iau groups. \VP 
ueed several tlefinitions. Fix a starting generat,iug k-tuple 
(yl, . . , yk). Dcfinc 17~ Q’ the distribution of tlw product re- 
placculcut Markov chain after t stqs. Bp Li denote t.he uni- 
form distributiou on ;\i. (G). Define the total vnrintl:on d%s- 
tcmce d(t) = IIQ’ - C:llt, of the procluct rtrplacenlent~ h4arkov 
Cllilh iLS fOllOWS: 

U’hile Theorem 4.1 prows the conjccturc: that t,he prod- 
uct replaccmcnt Mazkov clmiu mises rapitll~: iu our opinion 
it is soniewliat~ premature to lwlicvct that the coiijmxurc lioltls 
iu the general cast. 

Lvt. us point out t.hat, if one knows how t,o si~ln1>1e geuemt- 
ing k-t.uplesz oue can also test how close tlic ritntk)nl replace- 
lucut, Markov cllaiu is to a st,at,ionary distribution. I~dccd, 
one cm siuql; conq~are an?; given statistics 011 .tyk(G) on 
SkllIlpkS obtained by tllc CXilCt SiLlllpliIlg ad 011 samples Ob- 
taincd by the rantloul replacenw7lt algorit.hm. The authors 
in [ll] use a chi-square statist,ics. while I.his checking ulct,llocl 
allows more frccdoni. 

To conclude, let us returu to the original motivation of 
Ill]. The authors iuvcnted the protluct. replacemrnt. algo- 
rithm with t,he solr purpose of pcrforniing rautlom gt!ll(!ri\- 

lion. Tlw authors proposed to generate a (rmu$) uniforiu 
generating k-tuple awl tlim out,put a unifornll~ chosen c011i- 

ponent. Wliilc the authors ilCkIlO\Vl~!tl~~! t.liat oue cm lw 
sure t.hat this would work only when 9,: (G) is close to 1, it. 
is wideI?; lxlievetl that this would work in practice for all 
1: > K(G) + 1. We confront this Micf by giriug XI csillllple 
when ii0 coiidit.ion k 2 h.(G) + C: where C’ is a llniVt!rsill 
constant, woult~ work. 

C)bservc tlliA there can be two t?;pcs of error whcrl we gw- 
crate a (ncwl~) uniform group clcrneut. as ahovc. The first. 
type tonics from the distribution Q’ being fa.r from the uni- 
form dist~ribution U on .Vk (G). The secoucl one comes from 
1lilViIlg grollp ele~llcmts ii1 gellori~tillg k-tuplcs dist,rihuted 11ot 

iinifornil~. While before wv(: &illt with t.he first tvpc of vr- 
ror, wc will sllow t1la.L Lllc~ second error (:a11 lye large in hoiue 

esarnplcs. Note t.liat by s~ninietr~- all c.lic: clenients in gel,- 

erating k-t.uplcs have the sanw clist.ribut.ion, 80 it. suffices to 
consider the first &inent oiil?. 

Let. G N .A:;(“) wlicw =1,, is an altcrnitt~ing group: ‘77 > 5 
and r(n) is the r&in~al degree suc11 t,lnt G is gencratccl%v 
two elements. It, was shown b?; Hall (we [23]) that r(5) = lj: 
ant1 lo?: Kantor aud Lubotzky (SW [25]); using the result. of 
Dixon (SW [18]) that. l/!/8 2 ~(77) 5 r7!/4. It was ohscrwd 
iu [25] that for /i = O( fi) WC llavcl qc(G) + 0 as 77 + 3~. 
\Ve prow it st,rongcr claim. 

\Vc should a&l t,lia.t the lat.tcr type of error can bc avoicled 
h>- either OII~ of t.hc following tricks. IVe can acid a fisctl 
generating wl: 1.0 our X:-tuple and allow t.lic otlicr c:lcnionl.s 
t.0 lw inull.iplied lx them. This gives us a uniform limiting 
distribiition 011 Gb. Siniilarl~: \V(! (‘Xl ildd ill1 est.ra. group 
element. WC call si77.x:. which we illlO\V to lye niu1tip1icd 1)~ the 
remaining clcnwntsz but. never use it. to riiult.ipl~ t.lic ot.hcrs. 
III t.hc clnd. we out.put~ this siuk elcnwut,. This procwhw \vils 
c:omiiiiliiicat.etl t.0 us I)? Cliarlw L~!~!dllillll-GlW?ll. 

It is intcrcsting t.0 compare these procctlurcs. While the 
former procetlurc SCCIIIS to bvork slowr than the latter? it has 
ali atlvanta.gc that, it. outputs more of (ncarlv) uniform and 
iudclwndcnt. group elenitwt.s, which is uscful‘in a number of 
applications (see t.lie previous section). 

Finally, consiclcr an orientetl graph ou .$I. (G) with cdgcs 
correspo7ic-li7ig to protllwt rc,l)l;iccmcnt mows. \Ve reluark 
that in general casr, wlwn K(G) 5 !C < K(G) + E it. is not 
clear CWII nhc~t~hcr this graph is strongly conrwct,etl. The 
qucstiou has lwt~l ~onlpl&l~ rcsolvvd for ahelian groups lo?; 

Dia.conis and Grallanl (see [l.S]). lt is c:onjec~t.urcvl that the 
graph is alreacly strongly connc:c:t.t~d whrn k = 3 and G = S,, . 
and this 11x l7ccn chcckvd for 77 5 5. WC hope to rct,urn to 
t,liis problem in subseclucnt, pul71icat.ions. 

5 Random random walks 

Let G 1~ a finite group, and let (~1: , ye..) E .kFk.(G) be 
a gencra.ting /i-tuple. -4 ~7undon/. roc~11; -7i! 011 G is defiiied 
by so = id, St+, = S, yi, wlicrc I is chosen uniformly 
in [l: : k]. OIIC can t,llink of t.lx \valk St as of a. nwrest 
ntrighhor rantlonl walk OII a C.Ja+v graph. 

It is known t.hat untler minor conditions t.hc: random \valk 
couvcrgcs to a uniform clist.ril.mtion ou G (SW c:.g. [2]). .-ln 
inlportant. problem is to estinlatc how long will it take to 
converge to st,at.ionary. For111~11y. I(:(, Q’(y) = P(St = 9) lx: 
a probahilit~ distrit7ution of tllcb walk aft.vr t stqs. R(~call 
the total variation distaiicc d(f) = II&’ - Ull,.,.. Csuallv cs- 
tima.ting d(t) is a hart1 prohlcm. from both t.heoret.ical an(l 
c.ompiitatioIial points of view. Cbotl cstiniattcs iii casts of 
importance nornlall~ rcquirr: vcr?; special knowlctlgc of t,llc 
behavior of a rantlonl walk. In [I] :Udous ant1 Diaconis pro- 
posed t0 Stlld~ t:ll(! "illY!riigC CHSf!” ranthull walks, ant1 COW 
jecturcd that tllcv must have filSl convcrgcnrc. Such random 
walks with random support are oft,en (‘itll(!d randowL wndom 
udks. 
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.A breakthrough was rr~adc IJ~ Dou aid Hildebrand. who 
confir~iwd t.lic coIi,ject~ure for sliperlogi~ritliiiiic values of X-. 
Roughly, t,hey showd tl~at after t > C 5 log, IGI steps me 
have E(d(t)) + 0 a.5 IGI + m, given I; > log” IGI. Ditfewnt. 
proofs iilld h!ttCr ~~OuIlds ill special Cases: Such ilS :hehl 

groups. were obt~aiiicd lay siilJscqucut. investigat,ors (see [3: 
33, 34, 36. 391). For fairly sr11a1l h-, such as X: = “(log, ICI), 
the 1Jrobleni is lilQ?l?- unresolved. Say: for G = S,, it. is 
lxliwcd that, t = 12(,/t” logn) iinplies d(t) -+ 0 as II -i cxj 
for n7q gmcrating k-tuple, k = Co~.st > 2 (WC al~ovc). 
However: no pol;nomial bound is known even for random 
randonl \valks: the best OIW IJriug that. of Babai and Hct.yci 
(see [S]). 

Now: given this poor state of t.hc <art for k = o(hg, ICI) 
OIW may wish to collect esperinwnt.al evidence for behavior of 
random random walks. That’s where OIW can aplJly the saw- 
pling procedures. W0t.e also that in general: if we can COJJ~- 
put,c d(t) for random walks generated by r;lndom k-tupleq 
t,licrc is no riced t.0 cheek whcthc~r this is a gcncratirig k-tlqJlC. 
Indeed, if a I:-tuple does not generate G: the corresponding 
Cayley graph is discomectetl mcl s(t) = 1 for all t > 0. Thus 
if k: = R(<)(G) log(l/c)): thm Qa(G) > 1 - F a~~1 if F + 0 
we have the expert,ation over all I;-tuples E(d(t)) + 0 if 
and only if SO dots the expectation takm over all g(~ner;lt.iug 
I;-tuplcs. 

6 Proofs of Theorems 

6.1 Proof of Theorem 2.1 (sketch) 

Fix a finite group G. Consider t.he following randoul IJroccss. 
Pick a uniform group element 91 E G. If HI = (91) # G: 
pick a uniform group elenwnt y? E G. If H2 = (91, y2) # G: 
pick a another groups element, et.c. Denote by T the first 
time wc gcncratc the whole group. \Vc claini that for all X: 
:111d all G, IGI < 2“: the probability P(r = k) is uliniulal 
when G N ZG. Indeed, regardless of the group structure:, 
bhc prolJalJility that. Hi # H, ,+I for a givcu i is 1 - IH;l/lGI. 
Not.ice t.hat then I H,+.I l/lH311 2 2 with the equality alwvavs 
achieved when G 2 Z.;. Therefore P (r = k) is uliuiulimtl ‘in 
this cast. 

Now olJscrvc that, VA.(G) = P(T 5 iz). Thus qk(G) is- 
mininiizc!d when 6’ N zz; and it rcw~ai~ts to compute g/;(zs). 
Think of the I;-tuple of c1e1nent.s of iZ;: k 2 1’. as of a k x r- 
tnat.rix wit,11 elenwnts in (0: 1). Such a mmix corrcqwntls 
to a generating k-tuple if it has rank r. \Ve o&in (cf. [32]): 

Q-&) 
This implies t.lic result. 

6.2 Proof of Theorem 2.2 (sketch) 

Let, G be a solvable groul,. Following [21]: tlcii0t.e by 
FI, , I;,, the diffcrcnt (wit.h rcspcct to G-isoJllorpllisllls) 
tvpes of simple G-groups t,hat, occur anmug t.htr factors in a 
chief scrics of G. Let 0, be l.he number of factors of t,?;pc* F, 
that have a. complcmcwt~, Xld /jl h th nuinlwr of t~hose Of 
t.ype 4 that. tl0 Ilot, l~Ossc:ss ii conil~leincmt. Let. E, bc the 

field of enclo~norl~llis~JJs of F,. Further, let 

c> = 
1 

0 if F, is fiscd clement,-wise by G 
1 otherwise 

r2SSllIll~ IF;\ = I’;\’ : /Ji prime. and w1 is the clegree of tllc 
eiidomorphisni field E, over its lJ.aw field of t:haract.eristic 
IJ~. Thcu Thtrorcm 5 in [21] implies 

We obtain 

When x: 2 /i(G) we have 

\Vheu X: = K(G) + 1 t,his procluct, is hounded from belo\v by 
the product 

whw: the first, 1Jroduct is ta.ken over all primes y. By Euler’s 
pentagonal theorem and using Lwnma 2.3.2 in [32] WC obtain 

which proves the first. part of the t.hcxJrcm. 
The second part follows from a similar analysis based on 

t.hc gcucral results iu [25]. We &urn to this prohlcm in the 
proof of Thcorcm 3.2. 

6.3 Proof of Theorem 3.1 (sketch) 

First,. generat{> k: indcrpcndcnt clerncmts of G. R~IJ~ il gen- 
eration test O(log l/c) t,o cheek with probability of error F 
whether these e1ement.s indwd gencratc G. If not, start over. 
Now. siucc I; 2 K(G) the latter will hapl)en with probabilit>- 
i\t most 3/4 + E. Take E = l/8. The espec:t,ed nurubcr of trial 
beconws l/l - (3/1 + E) = 8. This concludes t.he proof. 

6.4 Proof of Theorem 3.2 (sketch) 

Briefly: the case when G N zl;, y lJrinlc, is dcscrihed in [32]. 
The case when G N Zl;,., is no diffcrcnt since to generatc: 
z ,,~~~ it is suf?icicnt and necessary to gmcrat.e an element, 
Cl. E zp which is uot a zero di+m. This is equivalent, t.o 
gc:nc5lt,ing Z,. 

For a gen(~ral alxlian group G, decc~~npc~sc it as a prod- 
uct of P-groups H), over all primes p. As WC observed in 
the previous pi\r;lgraph, in each caw the problem of gewr- 
ating IY~Ild0IIl gtrricrating k-tuple in II!, is equivalent to the 
problem of generittillg JTi~IldOIll generating k-tuple in Z3;’ for 
some integer rl,. It cau ~JC sliown that. givcu such a set of 



gencmting k-tuplcs for ill1 Ii one call cornliint: them into a 
single generating k-tuple of G. 

Finally, if G is nilpotcnt, it. is i\ knows result. (WC e.g. 
[2x]) that k-tuplcs that gent-trat.c G/[G. G] atso generate the 
whole group. Thus the problen~ is rctlucctl to a correspond- 
ing pro1~lcr11 for t,he group G/[G. G], wllich is ahelian. We 
skip t.lir details. 

6.5 Proof of Theorem 4.1 (sketch) 

Let G be il finit,e abelian group, it. = IGj. Let (!/I : , f/k.) E 
.\rk (G) be a generating k-l,uplc:. Cousidcr a random sulqirotl- 
uct I/ of the following form: 

1) =g;’ . . . . . g;” 

whcrc iutcgcrs (11 arc iutlcpcntlcnt uniform in [O: 1) - 11. \Ve 
claim that h is uniform in G. The proof is an easy iuduct,ion 
011 k. 

Nowz supposr an iut.cgcr scc4ucricc (bl i . . ? bk) satisfies 
t ho couclitiou t.lmt, (/)I mod 1): . ? hk mod p) is (nearly) uni- 
form in [O; p - I]“’ for all prism 11 < 21GI. Coucludc frmu 
t,his that. (bl mod ‘12, , Gk mod n) is also (nearly) uniform 
in [(I, II - 11”‘. 

Let k > [log \Gll + 1 + log(l/e) 2 K(G). Since G is 
abelian, t.he relative order of generators iu each product is 
irrclcvnrit. RUII a product rcplaccmmit~ Markov chain for t 
Sl;C!pS, st.ilrt:illg ilt (gl : . . : gk). SVf! get, WC11 &lllf3lt Of tlW 
form 

1,; = ,$‘J . gp 

Consitlm a k x 1: mat.ris B = (b,, ). 13~ tlcfinition of the 
product replacement, Markov chain, this matrix is a prod- 
uct of t random elenlentary tra.nsvcctions E,,,r E SL(r/, Z) 
which are the matrices with ollcs ml tlw diRgOllR1~ one iIl po- 

sition (r: I)! ;t~Id wros clsc~~lwrc~. Taking a rantlom walk of 
these nmt~rices modp we o1Aain t,hnt tile matrix B modp 
is (llC?iWly) uniform in SL(rL, 1’) after t = O(k” log” 11) steps 
I)\; tlic wsiilt, of [li]. 

N&c: t,hat, for i~l>&ln groups we have K;(G) = c(G): i.e. 
giwu k > h(G) at. least OIW of t,he grnerators can he omitted. 
Delete t.he corresponding CO~UIIIII in B which gives us B’. 
By Theorem 2.1 and abovc argumcnt,s it. is easy to SW that, 
B mody is (nearly) uniform iq Altct(k:p). Thus its rows arc 
(nearly) uuiforul and indcpcwlcut~ in [O,p - l]‘i-‘. By the 
renmks in t,hc first, paragraph t,his imptics t.hat, taken mod 71 
we ol.it,a.in rows tlia t, arc (nt:arly ) uniform and independent 
in [O, 1) - l]“-I which is csactly what. we nwd. 

Using the full powr of Theorrni 4.1 in [li] ilIld after 
sonie &ight~f0rwiml t,echnic:al computa.tions we obtain the 
result 

6.6 Proof of Theorem 4.2 (sketch) 

Consider the structure of Ark(G), where G = -4:. !V = V(YL). 
Let (!/I ? . : .(IL ) E ;\I. (G). Consider tlw uunllwr :I: of pmuu- 
t,a.tions (T> in 91 = (01,. . : a~) such that. o,(l) = 1. Think of 
:I: as of a rantl(>nl mriablc on .:Vk (G). If yl were (nearly) uni- 
form in G: .r woultl be distrilmtfxi RS the nunilwr of successes 
in indcpcmdent Bernoulli t,rials with probal:lility of success 
l/l/. WC C,liliIll t.llat 1’ has it SO~ll~~Wllilt shift,ed distril.mt.iou. 
with tlic probabi1it.y that, a pcrlriutation oi satisfies (T) (1) = 1 
being of t.he order l/r1 - C/,rc“-‘. 

The idea is l.x~sc:d on t,he known results itbo\lt, t.he gener- 
a.ting k-t uples of .-I,, It Cilll he easily clctlucccl froni the rnorc 

general results in [37] that pk (.a,,) N 1 -Cl,&‘, as II. + x: 
and where C is incleyeucleut of 7~. Xot.ice that, conditioned 
on (pi (1) = 1: t.he probability that the Ah permutat.ion in 
all g,j, j = 2: .X: sat~isfies n;(l) = 1: has tlw 8iLllle order 
1 -C/R’-” as the probability i;r.(=1,,). Deduce from t.his that 
Uie proM~ility of o,(l) = 1 is of the order l/n, - C/~c”-‘. 
Note that these events arc ILO longc,r independent. Observe, 
however, that. results in [25] imply that. a generating k-tuple 
(91 i . y.y ) must comain cvcry orbit, of t.ht! action of .A,, OII 
A’k (-4,) ) esactlp once. Tl11ls t,he correlation becon~es espo- 

neutially small and for our purposes these can be viewed as 
iIldcpcrltlcIlt eve11t.s. 

Now gircn two scrirs on length N of Bernoulli trials out- 
conws~ with prohahilitic~s 1~1 = l/?t and p’:! = l/11 - C’/TL”-’ 
one cm distinguish l~cl.wvccn t11cu1 given ?I’ = o(N). Indeed. 
use Cliernoff’ l~ountl to split. t,lie nunilx~r of hoads 1wlow and 
ahovc AI = X(yl + p2)/2: i.e. to show that with high prob- 
ability l,lie first. trial will haw uiorc t.lian .M successes. wllile 
the second less than M successes. This imptics t.hat givcu 
k = o(log,, A’) = o(r).) the total variation distauce + 1 as 
11 + co. This co~~cludes t.he proof. 
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