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Cayley’s problem

Theorem [Cayley, 1889] The number Tn,k of spanning rooted forests

on n vertices with k components is
(
n−1
k−1

)
nn−k.

Borchardt (1860), Sylvester (1857) proved Cayley’s formula:

Tn,1 + . . . + Tn,n = (n + 1)n−1.

Another version: Tn,1 = nn−1. Cayley proved the theorem by induction.

Proof via Prüfer’s bijection is perhaps the most straightforward.

Note: A variation on this proof is due to P. Shor (1995). An elegant generalization

and a double counting version is due to Pitman (1999).
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Prüfer’s bijection

0

1

2
3

4

5

6

(0, 5, 1, 5, 0)

Observe: If k = the degree of 0, then 0 appears in the code exactly

k − 1 times. Then, the number of such codes is Tn,k =
(
n−1
k−1

)
nn−k.
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Rényi’s problem

Theorem [Scoins, 1962] The number of spanning trees in a complete

bipartite graph Km,n is mn−1nm−1.

Theorem [Rényi, 1966] The number of spanning trees in a complete

tripartite graph Kℓ,m,n is (ℓ + m)n−1(ℓ + n)m−1(m + n)ℓ−1(ℓ + m + n).

Proof idea (in the bipartite case): Observe that Prüfer’s code can be
split into two subsequences of length (n−1) and (m−1), corresponding
to vertices of each part. Now check that the inverse bijection is still
well defined.

Note: Rényi extended the result to all multipartite graphs K
n1...nk

.
C. & A. Rényi (1970) modified the bijection to work for k-trees.
Greene–Iba (1975) modified the code to work for multidimensional trees.

Kelmans–P.–Postnikov (1997) extended for weighted graphs with part structure.
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Parking functions

Theorem [Konheim–Weiss, 1966] There are (n + 1)n−1 parking func-

tions on [n] = {1, . . . , n}.

A sequence (a1, . . . , an), 1 ≤ ai ≤ n is a parking function if

#{ai > k} ≤ n− k, for all 1 ≤ k < n.

Thus (1, 1), (1, 2), and (2, 1) are parking functions, while (2, 2) is not.

Best way to think: A sequence is a parking function if its permutation
is majorated by (1, 2, . . . , n).

Example: For n = 3 there are 16 parking functions:

(1, 1, 1), (1, 1, 2) × 3, (1, 1, 3) × 3, (1, 2, 2) × 3, (1, 2, 3) × 6.

Note: Schützenberger (1968) found the first bijective proof between parking func-

tions and rooted spanning forests (with no apparent application in mind).
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Foata–Riordan problem

Theorem [Foata–Riordan, 1974] The number of parking functions on

[n] with k letters 1 is equal to
(
n−1
k−1

)
nn−k.

Example: For n = 3, k = 2, you get
(
2
1

)
31 = 6 such parking functions.

Bijection: rooted forests on [n] −→ parking functions on [n],
which maps the number of components into the number of letters 1.
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First step:
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8

Map: spanning trees −→ labeled binary trees increasing to the left
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Second step:

1

2

3

4

5

6

7

8

(245 ∗ 3 ∗ ∗ ∗ 68 ∗ ∗17 ∗ ∗)

Map:

labeled binary trees increasing to the left −→ labeled Dyck sequences
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Last two steps:

1
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8

(245 ∗ 3 ∗ ∗ ∗ 68 ∗ ∗17 ∗ ∗)

(7, 1, 2, 1, 1, 5, 7, 5)

1 2 3 4 5 6 7 8

Maps: labeled Dyck sequences −→ labeled lattice paths

−→ parking functions
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Shi arrangement

Theorem [Shi, 1986] The number of regions in Rn of the hyperplane

arrangement Qn is equal to (n + 1)n−1.

Shi arrangement :

Qn :=
⋃

i<j

{xi − xj = 0}
⋃

i<j

{xi − xj = 1} ⊂ R
n

Note: J. Y. Shi proved this by studying certain Kazhdan–Lusztig cells of Â
n
.

He generalized it to other root systems and bounded cells.
Many other proofs and generalizations are known now.
Athanasiadis–Linusson (1999) found a simple bijective proof.
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The Shi arrangement Q3

x1 − x2 = 0

x1 − x2 = 1

x2 − x3 = 0

x2 − x3 = 1 x1 − x3 = 0

x1 − x3 = 1

O

Here Q3 has 16 regions.
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Stanley’s problem

Theorem [P.–Stanley, 1995] The number of regions of the Shi arrange-

ment Qn at distance k from the center region is equal to the number of

trees on n + 1 vertices with
(
n
2

)
− k inversions.

Let t be a tree on {0, 1, . . . , n}. Fix a root at 0. Vertices i < j form an
inversion if the path from i to the root goes through j.

There are n! trees with zero inversions. These are increasing trees.

Note: Tree inversions were introduced by Mallows–Riordan (1968).
The PS proof is bijective, but does not go the way one would guess.

It is highly non-trivial and still the only known proof of the theorem.
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Clue to the proof: the Kreveras theorem

Theorem [Kreveras, 1980] The number of spanning trees on n + 1
vertices with k inversions is equal to the number of parking functions

on {1,. . . ,n} with the sum
(
n+1

2

)
− k.

Motivation: Connection to the Tutte polynomial of Kn :

Tn(1, y) =
∑

S⊂E

(y − 1)|S|−n+1 =
∑

t∈Kn

yea(t) ,

where S are connected subsets of edges in Kn. Kreveras observed:

Tn(1, y) =
∑

t∈Kn

yinv(t) .

Note: Original proof: recurrence relations + Mallows–Riordan identities.
No “nice” bijective proof is known for the Kreveras theorem.
No “nice” bijective proof is known for the change of ordering.

For more on the connection with external activities, see below.
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The PS bijection:
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231

221

213 212

312

311 321

132

Q3

The rules:

1) when crossing a pink line, increase the first of the two coordinates by 1

2) when crossing a blue line, increase the second of the two coordinates by 1

Note: Generalizes to other deformed Shi arrangements (Stanley, 1996).
Not to other root systems.
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Haiman’s problem

Theorem [Haiman, 1994] The multiplicity of the irreducible represen-

tation πλ of Sn, λ ⊢ n, in a parking representation Pn is equal to

1

n + 1
sλ(1, 1, . . . , 1), ← (n + 1) ones here.

Parking representation: action of Sn on parking function on [n].

Schur function: sλ(1, . . . , 1) = dimension of the irreducible represen-
tation of GL(N, C), corresponding to partition λ.

Note: Pn is a graded representation and appears in the connection with the diagonal

harmonics, which is naturally bi-graded. It was further studied and refined by Garsia–

Haiman (1996, 1998). The connection was eventually proved by Haiman (2001) by using

Hilbert schemes and Macdonald polynomials.
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Proof idea (which also explains the name “parking”)

Claim: The number of parking functions on [n] = 1
n+1

(n + 1)n.

Think of (a1, . . . , an) as preferred parking spots on a one-way street.

Key observation: This is a parking function if and only if all cars can
park without backtracking.

a1 a2 a3 a
n

123n
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Now make the road circular and add one extra parking spot!

a1 a2 a3 a
n

n+1
123n

Observe that every [n]→ [n+1] function is “parking” in this sense and
the only unoccupied parking spot has equal chance to be anywhere.

Recall that we get an old parking function if the new (n + 1)-th spot is
unoccupied. Thus, there are 1

n+1 (n + 1)n of them. Done!

Note: The basic parking function argument is folklore, sometimes attributed to Pol-

lak (c. 1974). Haiman’s proof is based on this argument and algebraic bookkeeping.
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Dhar’s problem

Theorem [Dhar, 1990] The number G-parking functions is equal to the

number of spanning trees in G.

G = (V, E) is simple graph, V = {0, 1, . . . , n}.

(a1, . . . , an) is a G-parking function, if ai ∈ [n], and for every S ⊂ [n]
there exists i ∈ S, such that #{j ∈ V − S | (i, j) ∈ E} ≥ ai .

For G = Kn+1 these are the usual parking functions.

Note: The G-parking functions originate independently from several diverse sources:
(1) Bak–Tang–Wiesenfeld (1987), Dhar (1990), Gabrielov (1993), sandpile models
(2) Björner–Lovász–Shor (1991), chip-firing games

(3) Bacher–de la Harpe–Nagnibeda (1997), integral flows and cuts on finite graphs
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Depth-first search order on trees:

0

1

2

3

4
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8
t

≺t
(2, 6, 1, 7, 8, 4, 5, 3)

(0, 1, 2, 2, 1, 0, 0, 6)

New bijection: spanning trees in Kn+1 −→ parking functions on [n].

Rule: If i→ j in a tree, let ai = #{ℓ | ℓ ≺t j, 0 ≤ ℓ ≤ n} + 1.

In the example, the corresponding parking function is (3, 1, 7, 1, 1, 2, 3, 2).

Note: This bijection is due to Françon (1975).

The Breadth-first search and certain other orderings also work.
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General case:

G

0

1

2

3

4
5

6

7

8

(2, 6, 1, 7, 8, 4, 5, 3)

(0, 0, 1, 1, 0, 0, 0, 3)

Rule: If i→ j in a tree, let ai = #{ℓ | ℓ ≺t j, (i, ℓ) ∈ E} + 1.

In the example, the corresponding G-parking function is (2, 1, 4, 1, 1, 1, 2, 1).

Note: In this form the bijection is due to Dhar–Majumdar (1992). Dhar used a
version of it to give a linear time test whether a sequence is a G-parking function.
For directed graphs an analogue was given by Chebikin–Pylyavskyy (2005).
The analogue of Kreveras connection to Tutte polynomial was discovered by Biggs.

This was proved by Merino López (1997), and via bijection by Cori–Le Borgne (2003).
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CS problem:

How to generate a uniform random spanning tree in a given graph?

Algorithm [Aldous, 1990; Broder, 1989]

Fix a vertex v in a given simple graph G.

Run a nearest neighbor random walk on G for T = cover time steps.

Output a tree consisting of the edges with first visits to vertices.

Note: For example, in expanders the cover time T = O(n logn), which gives a nearly
linear algorithm for the random tree generation. Broder’s proof is elementary.
Aldous’s proof uses a delicate MC argument. He then obtains new bounds on the
diameter of random spanning trees and on the distribution of the number of leaves.
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What happens for a complete graph Kn

Algorithm [Aldous, 1990]

Let Zi ∈ [n] be uniform and independent r.v., for all i = 2, . . . , n.

Connect i→ min{i− 1, Zi}.

Relabel the vertices according to a random permutation σ ∈ Sn.

Output the resulting random tree.

Theorem [Aldous]
This algorithm outputs a uniform spanning tree in Kn.

Question: Why?
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Loop-erased random walk

Algorithm [D. Wilson, 1996]

Start at 2. Walk until 1 is hit, erasing loops as they are created.

Fix the resulting 2→ 1 path.

Start at 3. Walk until the 2→ 1 path is hit, erasing loops.

Fix the resulting 3→ (2→ 1) path.

Continue in this manner until a uniform spanning tree is obtained.

1

2

3

Note: Wilson’s algorithm is at least as fast as the cover time; sometimes much faster.
Brought an explosion of work on random spanning forests in infinite transitive graphs
(Lawler, Lyons, Pemantle, Peres, Schramm, etc.)
Analyzed by P. Marchal (2000) based on the classical Viennot bijection.


