Tableaux bijections

Igor Pak, UCLA

IPAM workshop, September 11, 2009

Standard Young tableaux

Let λ be a partition, $[\lambda]$ its Young diagram, $|\lambda| = n$. A standard Young tableau of shape λ is an integer function $A : [\lambda] \to \{1, \ldots, n\}$, which increases \downarrow and \rightarrow . SYT (λ) is a set of standard Young tableaux of shape λ .

Observation:

$$|\operatorname{SYT}(\lambda)| = \sum_{\operatorname{corner} s \in \lambda} |\operatorname{SYT}(\lambda - s)|.$$

Hook-length formula

For $(i, j) \in [\lambda]$, $h_{ij} = \lambda_i + \lambda'_j - i - j + 1$ are the hook lengths.

Theorem [Frame–Robinson–Thrall, 1954] For every partition λ , such that $|\lambda| = n$:

$$|\mathrm{SYT}(\lambda)| = \frac{n!}{\prod_{(i,j)\in\lambda} h_{ij}}.$$

Example: $\lambda = (3, 2), n = 5.$

Note: FRT proved the theorem using the Frobenius determinant formula for $\dim(\pi_{\lambda}) = |SYT(\lambda)|$. Now over a dozen different proofs of HLF is known, as well as a variety of generalizations.

Hook walk

Algorithm (hook walk)

Choose a uniform random square $x \in [\lambda]$. Move x to a uniform random square y in the x-hook in $[\lambda]$. Repeat until a corner is reached.

Theorem [Greene–Nijenhuis–Wilf, 1979] The probability $p_{\lambda}(s)$ of reaching a corner $s \in [\lambda]$ is equal to

 $p_{\lambda}(s) = \frac{|\mathrm{SYT}(\lambda - s)|}{|\mathrm{SYT}(\lambda)|}.$

Corollary: One can efficiently sample from $SYT(\lambda)$.

Note: GNW algorithm is a tool in a simple proof of the HLF. The correctness is verified by induction. It is now generalized to q-walk (Kerov), (q, t)-walk (Garsia-Haiman), continuous process (Kerov), etc.

2-dim bubble sorting

Algorithm (NPS bubble sorting) Input: $B \in S_{[\lambda]}$, a permutation of squares in $[\lambda]$ For all $x \in [\lambda]$, from rightmost to leftmost column, from the bottom to top square in the column:

Do: bubble-insert $x \downarrow$ and \rightarrow . Output: $A \in SYT(\lambda)$.

Theorem [Novelli–P.–Stoyanovsky, 1997] The resulting standard Young tableau A is uniform in $SYT(\lambda)$.

Thus, in particular, $|SYT(\lambda)|$ divides n!. This gives another way of sampling.

Note: PS first announced this in 1992. They extended this map to a full bijection: $|S_n| \leftrightarrow |\text{SYT}(\lambda)| \times \prod_x h_x$. Now this bijection is extended and modified a number of times to work for other types of tableaux, trees, etc.

Explanation:

6

Bubble-insert step.

Example of a bubble-insertion of an element in a permutation tableau.

An example:

An example of the NPS bubble-sorting map: $Q \to A$, where $Q \in S_{12}$, $A \in SYT(\lambda)$, and $\lambda = (4, 4, 3, 1)$.

Solid partitions

Theorem [MacMahon, 1912] Let $p_3(n)$ be the number of solid partitions of n. Then

$$1 + \sum_{n=1}^{\infty} p_3(n) t^n = \prod_{i=1}^{\infty} \frac{1}{(1-t^i)^i}.$$

Note: MacMahon conjectured a generalization to higher dimensions, which was later proved incorrect (1967). The reason why this works for 3-dim solid partition is based on symmetric functions and representation theory of S_n and $\operatorname{GL}(n, \mathbb{C})$.

Theorem [MacMahon, 1912; Stanley, 1971; Macdonald, 1979]

Let $B(\ell, m, n)$ be the number of solid partitions which fit box $\ell \times m \times n$. Then:

$$B(\ell, m, n) = \prod_{i=1}^{\ell} \prod_{j=1}^{m} \prod_{k=1}^{n} \frac{i+j+k-1}{i+j+k-2}.$$

There are several common generalizations of these two formulas, which all now have bijective proofs. Below we present an intermediate generalization which gives a complete proof of MacMahon's theorem and an efficient Bolztmann sampling of all solid partitions.

Reverse plane partitions

A reverse plane partition of shape λ is a function $A : [\lambda] \to \{0, 1, 2, ...\}$ which non-decreases \downarrow and \rightarrow .

Denote by $\operatorname{RPP}(\lambda)$ their set, $|A| = \sum_{x \in [\lambda]} A(x)$ the *size* of a rpp.

Theorem [Stanley, 1971]

For every partition λ , we have:

$$1 + \sum_{A \in \operatorname{RPP}(\lambda)}^{\infty} t^{|A|} = \prod_{x \in [\lambda]}^{\infty} \frac{1}{1 - t^{h_x}}.$$

Observation: Stanley's formula implies MacMahon's formula: set $[\lambda] = [N \times N]$ and let $N \to \infty$.

RPP archaeology

Algorithm (Hillman-Grassl bijection) Input: $A \in \operatorname{RPP}(\lambda)$. Set recording tableau B to be zero. For all $x \in [\lambda]$, from leftmost to rightmost column, from the bottom to top square in the column:

Do: remove 1's along the most lower-right ribbon. Add 1 to a square in the in a position corresponding to the ribbon

Output: recording tableau $B : [\lambda] \to \{0, 1, 2, \ldots\}$.

Theorem [Hillman–Grassl, 1976] The above map $A \rightarrow B$ is a bijection which satisfies

$$|A| = \sum_{(ij)\in[\lambda]} B(i,j) \cdot h_{ij}$$

Observation: Stanley's formula immediately follows from the theorem.

Example:

Note: Extensions of this bijection and variations on the theme were obtained by Gansner (1981), Krattenthaler (1995), P. (2001), and others.

Jeu de taquin

Burnside identity:
$$n! = \sum_{\lambda : |\lambda|=n} |SYT(\lambda)|^2$$

Example: $n = 3$, $|SYT(111)| = |SYT(3)| = 1$, $|SYT(21)| = 2$
 $1^1 + 2^2 + 1^2 = 6$

- Jeu de taquin: = French name for the Fifteen puzzle = name for slide rules to prove Burnside identity = equivalent to the Robinson–Schensted–Knuth correspondence
 - = which is itself variation on patience sorting

The construction:

Jeu de Taquin Algorithm [Schützenberger, 1977]

Input: permutation $\sigma \in S_n$. Arrange $\sigma \in S_n$ in boxes diagonally. Slide rules: Push the smaller of the boxes up and left when possible. Stop when a standard Young tableau A is obtained. Do the same for inverse permutation: $\sigma^{-1} \to B$. Output: (A, B).

Theorem [Schützenberger, 1977; Thomas, 1980] Jeu de taquin algorithm is a well-defined bijection.

Littlewood–Richardson rule:

Fix partitions λ, μ . Take all possible $A \in \text{SYT}(\lambda)$ and $B \in \text{SYT}(\mu)$ arranged diagonally. Apply jeu de taquin algorithm to $A \circ B$. The number of times $C \in \text{SYT}(\nu)$ appears is $c_{\lambda,\mu}^{\nu}$.

Theorem [Zelevinsky, 1981; Kerov, 1984]

The integers $c_{\lambda,\mu}^{\nu}$ are well defined (i.e. independent on the choice of C), and are equal to the Littlewood-Richardson coefficients.

 $S_{\lambda} \otimes S_{\lambda} = \sum_{\nu} c_{\lambda,\mu}^{\nu} S_{\nu}$, where S_{λ} is an irreducible GL(n) representation.

Note: The many hidden symmetries of $c_{\lambda,\mu}^{\nu}$ are extremely important. Knutson–Tao (1999) found a new YT bijection which eventually led to the proof of the *saturation* conjecture.