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Standard Young tableaux

Let A be a partition, [A] its Young diagram, || = n.

A standard Young tableau of shape A is an integer function
A: [N —A{1,...,n}, which increases | and — .

SYT()) is a set of standard Young tableaux of shape A.
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10 A € SYT(5441)
Observation:
SYT(N)| = Y [SYT(A—s)|.
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Hook-length formula
For (i,7) € [A], hij = A\i + X} —i — j + 1 are the hook lengths.
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Theorem [Frame-Robinson-Thrall, 1954]
For every partition A, such that |A\| =n :
n!
SYT(\))| = =————.
H(i,j)e)\ hij
Example: \ = (3,2), n =5.
4131
T ISYT(32)| = 35 =5
1 3 4 2|15 1 4 315
4 3 3 215 2|4
Note: FRT proved the theorem using the Frobenius determinant formula for

dim(my) = |[SYT(A)|. Now over a dozen different proofs of HLF is known, as well as
a variety of generalizations.
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Hook walk

Algorithm (hook walk)

Choose a uniform random square x € [A].

Move z to a uniform random square y in the z-hook in [A].
Repeat until a corner is reached.

Theorem [Greene-Nijenhuis-Wilf, 1979

The probability px(s) of reaching a corner s € [A] is equal to
_ISYT(X — 5)|

PA() = Ty

Corollary: One can efficiently sample from SYT()).

Note: GNW algorithm is a tool in a simple proof of the HLF. The correctness is
verified by induction. It is now generalized to ¢g-walk (Kerov), (q,t)-walk (Garsia-
Haiman), continuous process (Kerov), etc.



2-dim bubble sorting

Algorithm (NPS bubble sorting)
Input: B € S}y, a permutation of squares in [A]

For all z € )], from rightmost to leftmost column,
from the bottom to top square in the column:

Do: bubble-insert x | and —.
Output: A € SYT()).

Theorem [Novelli-P.-Stoyanovsky, 1997]
The resulting standard Young tableau A is uniform in SYT(N).

Thus, in particular, [SYT(M)| divides n!.
This gives another way of sampling.

Note: PS first announced this in 1992. They extended this map to a full bijection:
|Sn| < [SYT(N)| x [, he. Now this bijection is extended and modified a number of
times to work for other types of tableaux, trees, etc.
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Explanation:
M M yiX z|y
Z Z Z
X<Yy,zZ y<X,Z Z<X,y
Bubble-insert step.
B 27479 112]4]9 112]4]9 112]4]9 112]4]9
113]5 10 - 30510 ~ |3 510 [ 3]5 10 ~ [3]5]8]10
67813 6|7[8]13 67813 6]7]|8]13 6|7 13
12 [12] 12] 12 12

Example of a bubble-insertion of an element in a permutation tableau.



An example:

12/ 911 3 1219 [11|(3) 12/ 911 12/ 911 12| 9|01
8110/ 5|(D 8(10[ 5 8110| 5 8 [10[(3) 810
6|4(7 6|47 6|4|@) 6|4 6|4
2 Q 2 2 2 2‘
12 12 12/9) 12/ 9 12/ 9
8 8 8|10 8110

- -
(6 6 6 6 |(4)
l 2 2

(8) — —
A

An example of the NPS bubble-sorting map: ) — A, where ) € So,
A e SYT(N), and A = (4,4,3,1).
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Solid partitions

Theorem [MacMahon, 1912]
Let p3(n) be the number of solid partitions of n. Then

L+ ) ps(n)t" = Hﬁ
n=1 1=1

Note: MacMahon conjectured a generalization to higher dimensions, which was
later proved incorrect (1967). The reason why this works for 3-dim solid partition is
based on symmetric functions and representation theory of S,, and GL(n, C).



Theorem [MacMahon, 1912; Stanley, 1971; Macdonald, 1979]
Let B(¢,m,n) be the number of solid partitions which fit box £ X m X n.

Then: ,
. +it+k—1
B(t,m,n) HHHE+§+/¢—2

i=1 j=1k

There are several common generalizations of these two formulas, which
all now have bijective proofs. Below we present an intermediate gener-
alization which gives a complete proof of MacMahon’s theorem and an
efficient Bolztmann sampling of all solid partitions.
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Reverse plane partitions

A reverse plane partition of shape A is a function A : [\] — {0,1,2,..

which non-decreases | and —.
Denote by RPP(A) their set, [A] = >, ., A(x) the size of a rpp.

)
\®)
(O8]

20214 A € RPP(5441), |A| =27

0
0
1
4

Theorem [Stanley, 1971]
For every partition \, we have:

o0 o0 1
L+ ) tw:Hl_tm'
)

AERPP z€[N]

Observation: Stanley’s formula implies MacMahon’s formula:
set [A\] = [V x N] and let N — 0.

}
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RPP archaeology

Algorithm (Hillman—Grassl bijection)

Input: A € RPP(X). Set recording tableau B to be zero.
For all x € [A], from leftmost to rightmost column,

from the bottom to top square in the column:

Do: remove 1’s along the most lower-right ribbon.
Add 1 to a square in the in a position
corresponding to the ribbon

Output: recording tableau B : [A\] — {0,1,2,...}.

Theorem [Hillman-Grassl, 1976]

The above map A — B is a bijection which satisfies

Al = > B(i,j) hy
(ig)e[N]

Observation: Stanley’s formula immediately follows from the theo-
rem.
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Example:

Note: Extensions of this bijection and variations on the theme
Gansner (1981), Krattenthaler (1995), P. (2001), and others.

0l0]2]3 0l0]2]3 0]2]4]5] 0]2]4]5

0[o o[o]s]e 0 2 [o[3]6]7 3l6]7
olo olo 0[3] 6] 0 508
0 0 0 0

¢3

0[o 0[o]o o[o]o o[ofo]o 2[2]2]1
olof2[3] 2 0f[o]o o[o]o olofofo 3]1]3]2

0lo 0lo]o ololo 0lojo 1]2]1

0 0 0 0 1 B

were obtained by



Jeu de taquin

Burnside identity:

nl =375 aen SYT)P

Example: n =3, [SYT(111)| = |SYT(3)| =1, |[SYT(21)| = 2

Jeu de taquin: =

'+224+12=6

French name for the Fifteen puzzle
name for slide rules to prove Burnside identity

equivalent to the Robinson—Schensted—Knuth
correspondence

which is itself variation on patience sorting

13
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The construction:

Jeu de Taquin Algorithm [Schiitzenberger, 1977]
Input: permutation o € S,,. Arrange o € S, in boxes diagonally.

Slide rules: Push the smaller of the boxes up and left when possible.
Stop when a standard Young tableau A is obtained.

Do the same for inverse permutation: ¢! — B.
Output: (A, B).

T T 3 T T )
2] o 5 Mec. I las
Soo 9 10 || 11 | 12
H 13 | 14 || 15
e

Theorem [Schiitzenberger, 1977; Thomas, 1980]

Jeu de taquin algorithm is a well-defined bijection.
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Littlewood—Richardson rule:

Fix partitions A, p.

Take all possible A € SYT(\) and B € SYT(u) arranged diagonally.
Apply jeu de taquin algorithm to A o B.

The number of times C' € SYT(v) appears is cf .

Theorem [Zelevinsky, 1981; Kerov, 1984]

The integers cf , are well defined (i.e. independent on the choice of C),
and are equal to the Littlewood—Richardson coefficients.

Sx@Sx = >, X, Sy, where S is an irreducible GL(n) representation.

Note: The many hidden symmetries of f , are extremely important. Knutson-Tao
(1999) found a new YT bijection which eventually led to the proof of the saturation
conjecture.



