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Standard Young tableaux

Let λ be a partition, [λ] its Young diagram, |λ| = n.

A standard Young tableau of shape λ is an integer function

A : [λ] → {1, . . . , n}, which increases ↓ and → .

SYT(λ) is a set of standard Young tableaux of shape λ.
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A ∈ SYT(5441)

Observation:

|SYT(λ)| =
∑

corner s∈λ

|SYT(λ − s)| .
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Hook-length formula

For (i, j) ∈ [λ], hij = λi + λ′
j − i − j + 1 are the hook lengths.
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Theorem [Frame–Robinson–Thrall, 1954]

For every partition λ, such that |λ| = n :

|SYT(λ)| =
n!∏

(i,j)∈λ hij

.

Example: λ = (3, 2), n = 5.

|SYT(32)| = 5!
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Note: FRT proved the theorem using the Frobenius determinant formula for
dim(πλ) = |SYT(λ)|. Now over a dozen different proofs of HLF is known, as well as
a variety of generalizations.
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Hook walk

Algorithm (hook walk)
Choose a uniform random square x ∈ [λ].
Move x to a uniform random square y in the x-hook in [λ].
Repeat until a corner is reached.

λ

Theorem [Greene–Nijenhuis–Wilf, 1979]

The probability pλ(s) of reaching a corner s ∈ [λ] is equal to

pλ(s) =
|SYT(λ − s)|

|SYT(λ)|
.

Corollary: One can efficiently sample from SYT(λ).

Note: GNW algorithm is a tool in a simple proof of the HLF. The correctness is
verified by induction. It is now generalized to q-walk (Kerov), (q, t)-walk (Garsia-
Haiman), continuous process (Kerov), etc.
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2-dim bubble sorting

Algorithm (NPS bubble sorting)
Input: B ∈ S[λ], a permutation of squares in [λ]

For all x ∈ [λ], from rightmost to leftmost column,

from the bottom to top square in the column:

Do: bubble-insert x ↓ and →.

Output: A ∈ SYT(λ).

Theorem [Novelli–P.–Stoyanovsky, 1997]

The resulting standard Young tableau A is uniform in SYT(λ).

Thus, in particular, |SYT(λ)| divides n!.

This gives another way of sampling.

Note: PS first announced this in 1992. They extended this map to a full bijection:
|Sn| ↔ |SYT(λ)| ×

∏
x hx. Now this bijection is extended and modified a number of

times to work for other types of tableaux, trees, etc.
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Explanation:
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Bubble-insert step.
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Example of a bubble-insertion of an element in a permutation tableau.
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An example:
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An example of the NPS bubble-sorting map: Q → A, where Q ∈ S12,
A ∈ SYT(λ), and λ = (4, 4, 3, 1).
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Solid partitions

Theorem [MacMahon, 1912]

Let p3(n) be the number of solid partitions of n. Then

1 +

∞∑

n=1

p3(n)tn =

∞∏

i=1

1

(1 − ti)i
.

Note: MacMahon conjectured a generalization to higher dimensions, which was

later proved incorrect (1967). The reason why this works for 3-dim solid partition is

based on symmetric functions and representation theory of Sn and GL(n, C).
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Theorem [MacMahon, 1912; Stanley, 1971; Macdonald, 1979]

Let B(ℓ, m, n) be the number of solid partitions which fit box ℓ×m×n.
Then:

B(ℓ, m, n) =

ℓ∏

i=1

m∏

j=1

n∏

k=1

i + j + k − 1

i + j + k − 2
.

There are several common generalizations of these two formulas, which
all now have bijective proofs. Below we present an intermediate gener-
alization which gives a complete proof of MacMahon’s theorem and an
efficient Bolztmann sampling of all solid partitions.
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Reverse plane partitions

A reverse plane partition of shape λ is a function A : [λ] → {0, 1, 2, . . .}

which non-decreases ↓ and →.

Denote by RPP(λ) their set, |A| =
∑

x∈[λ] A(x) the size of a rpp.
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A ∈ RPP(5441), |A| = 27

Theorem [Stanley, 1971]

For every partition λ, we have:

1 +
∞∑

A∈RPP(λ)

t|A| =
∞∏

x∈[λ]

1

1 − thx

.

Observation: Stanley’s formula implies MacMahon’s formula:

set [λ] = [N × N ] and let N → ∞.
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RPP archaeology

Algorithm (Hillman–Grassl bijection)

Input: A ∈ RPP(λ). Set recording tableau B to be zero.

For all x ∈ [λ], from leftmost to rightmost column,

from the bottom to top square in the column:

Do: remove 1’s along the most lower-right ribbon.

Add 1 to a square in the in a position

corresponding to the ribbon

Output: recording tableau B : [λ] → {0, 1, 2, . . .}.

Theorem [Hillman–Grassl, 1976]

The above map A → B is a bijection which satisfies

|A| =
∑

(ij)∈[λ]

B(i, j) · hij

Observation: Stanley’s formula immediately follows from the theo-
rem.
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Example:
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Note: Extensions of this bijection and variations on the theme were obtained by
Gansner (1981), Krattenthaler (1995), P. (2001), and others.
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Jeu de taquin

Burnside identity: n! =
∑

λ : |λ|=n |SYT(λ)|2

Example: n = 3, |SYT(111)| = |SYT(3)| = 1, |SYT(21)| = 2

11 + 22 + 12 = 6

Jeu de taquin: = French name for the Fifteen puzzle

= name for slide rules to prove Burnside identity

= equivalent to the Robinson–Schensted–Knuth
correspondence

= which is itself variation on patience sorting
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The construction:

Jeu de Taquin Algorithm [Schützenberger, 1977]
Input: permutation σ ∈ Sn. Arrange σ ∈ Sn in boxes diagonally.

Slide rules: Push the smaller of the boxes up and left when possible.

Stop when a standard Young tableau A is obtained.

Do the same for inverse permutation: σ−1 → B.

Output: (A, B).
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Theorem [Schützenberger, 1977; Thomas, 1980]

Jeu de taquin algorithm is a well-defined bijection.
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Littlewood–Richardson rule:

Fix partitions λ, µ.

Take all possible A ∈ SYT(λ) and B ∈ SYT(µ) arranged diagonally.

Apply jeu de taquin algorithm to A ◦ B.

The number of times C ∈ SYT(ν) appears is cν
λ,µ.

Theorem [Zelevinsky, 1981; Kerov, 1984]

The integers cν
λ,µ are well defined (i.e. independent on the choice of C),

and are equal to the Littlewood–Richardson coefficients.

Sλ⊗Sλ =
∑

ν cν
λ,µSν , where Sλ is an irreducible GL(n) representation.

Note: The many hidden symmetries of cν
λ,µ are extremely important. Knutson–Tao

(1999) found a new YT bijection which eventually led to the proof of the saturation
conjecture.


