Computability and Enumeration

Igor Pak, UCLA

(joint work with Scott Garrabrant)

Mathematics of Jiř̌í Matoušek Conference
Prague, Czech Republic, July 26, 2016
(1) (2) 5 (14) 42] (132

Integer sequences

Let $\left\{a_{n}\right\}$ be a combinatorial sequence, e.g.

$$
\begin{aligned}
& a_{n}=\# \text { of triangulations of a convex } n \text {-gon } \\
& a_{n}=\# \text { of domino tilings of }[n \times n] \\
& a_{n}=\# \text { of connected labeled graphs on } n \\
& a_{n}=\# \text { of triangulations of a } n \times n \text { grid }
\end{aligned}
$$

vertices

Question 1: Does $\mathcal{A}(t)=\sum_{n} a_{n} t^{n}$ have a formula?
Question 2: Can a_{n} be computed efficiently?
Conjecture [Wilf, 1982]: Number of unlabeled graphs on n vertices
is hard to compute.

Classes of combinatorial sequences

(1) rational g.f. $\mathcal{A}(t)=P(t) / Q(t), P, Q \in \mathbb{Z}[t]$
e.g. $a_{n}=\operatorname{Fib}(n)$, then $\mathcal{A}(t)=1 /\left(1-t-t^{2}\right)$.
(2) algebraic g.f. $c_{0} \mathcal{A}^{k}+c_{1} \mathcal{A}^{k-1}+\ldots+c_{k}=0, c_{i} \in \mathbb{Z}[t]$
e.g. $a_{n}=\operatorname{Cat}(n)$, then $\mathcal{A}(t)=(1-\sqrt{1-4 t}) / 2 t$.
(3) \boldsymbol{D}-finite g.f. $c_{0} \mathcal{A}+c_{1} \mathcal{A}^{\prime}+\ldots+c_{k} \mathcal{A}^{(k)}=0, c_{i} \in \mathbb{Z}[t]$
e.g. $a_{n}=\#$ involutions in S_{n}, then $a_{n}=a_{n-1}+(n-1) a_{n-2}$.

The sequences $\left\{a_{n}\right\}$ are called \boldsymbol{P}-recursive
(4) $\boldsymbol{A D E}$ g.f. $Q\left(t, \mathcal{A}, \mathcal{A}^{\prime}, \ldots, \mathcal{A}^{(k)}\right)=0, Q \in \mathbb{Z}\left[t, x_{0}, x_{1}, \ldots, x_{k}\right]$
e.g. $a_{n}=\#\left\{\sigma(1)<\sigma(2)>\sigma(3)<\ldots \in S_{n}\right\}$, then $\mathcal{A}^{\prime}=$ $\mathcal{A}^{2}+1$.
also $p(n)=\#$ integer partitions of n (Jacobi, Ramanujan).
Inclusions: $(1) \subset(2) \subset(3) \subset(4)$.

General philosophy:

Definition: Sequence $\left\{a_{n}\right\}$ can be computed efficiently if there is an algorithm which computes a_{n} in time $\operatorname{Poly}(n)$.

Proposition: ADE sequences $\left\{a_{n}\right\}$ can be computed efficiently.

- Most combinatorial sequences have nice g.f. (D-finite, ADE, etc.)
- Proving that $\mathcal{A}(t)=\sum_{n} a_{n} t^{n}$ is not D-finite or ADE is difficult.
- Thus, proving non-D-finite and non-ADE are important first steps.

Theorem: (Jacobi, 1848) $\sum_{n} t^{n^{2}}$ is ADE.
Theorem: (Lipshitz, Rubel, 1986) $\sum_{n} t^{2^{n}}$ is not ADE.
Conjecture: $\sum_{n} t^{n^{3}}$ is not ADE.

Permutation classes

Permutation $\sigma \in S_{n}$ contains $\pi \in S_{k}$ if M_{π} is a submatrix of M_{σ}.
Otherwise, σ avoids π. Such π are called patterns.
For example, (4564123) contains (321) but avoids (4321).

Fix a set of patterns $\mathcal{F} \subset S_{k}$. Denote by $C_{n}(\mathcal{F})$ the number of $\sigma \in S_{n}$
which avoids all $\pi \in \mathcal{F}$.
Question 1: Is $\mathcal{A}(t)=\sum_{n} C_{n}(\mathcal{F}) t^{n}$ always D-finite or ADE ?
Question 2: $\operatorname{Can} C_{n}(\mathcal{F})$ always be computed in $\operatorname{Poly}(n)$ time?

Notable results and examples:

(0) $C_{n}(12 \cdots k, \ell \cdots 21)=0, \forall n>(k-1)(\ell-1)$ [Erdős,

Szekeres, 1935]
(1) $C_{n}(123)=C_{n}(213)=\operatorname{Cat}(n) \quad[$ MacMahon, 1915],$\quad[K n u t h$, 1973]
(2) $C_{n}(123,132,213)=\operatorname{Fib}(n+1) \quad[$ Simion, Shmidt, 1985]
(3) $C_{n}(2413,3142)=\operatorname{Shröder}(n) \quad[$ Shapiro, Stephens, 1991]
(4) $C_{n}(1234)=C_{n}(2143)$ has D-finite g.f. [Gessel, 1990]
(5) $C_{n}(1342)=C_{n}(2416385)$ has algebraic g.f. [Bona, 1997]
(6) $C_{n}(\mathcal{F})<K(\mathcal{F})^{n}$ [Marcus, Tardos, 2004], improving [Alon,

Friedgut, 2000]
(7) $K(\pi)=e^{k^{\Omega(1)}}$ w.h.p., for $\pi \in S_{k}$ random [Fox, 2013]
(8) σ contains π is NP-complete [Bose, Buss, Lubiw, 1998]
(9) can be decided in $O(n \log n)$ for π fixed [Guillemot, Marx, 2014]

Main results

Noonan-Zeilberger Conjecture (1996):

The g.f. for $\left\{C_{n}(\mathcal{F})\right\}$ is D-finite, for all fixed $\mathcal{F} \subset S_{k}$.
Theorem 1 [Garrabrant, Pak, 2015]
The NZ Conjecture is false. To be precise, there is a set $\mathcal{F} \subset S_{80}$,
$|\mathcal{F}|<31000$, such that $\sum_{n} C_{n}(\mathcal{F}) t^{n}$ is not D-finite.
Theorem 2 [Garrabrant, Pak, 2016+]
There is a set $\mathcal{F} \subset S_{80}$, such that $\sum_{n} C_{n}(\mathcal{F}) t^{n}$ is not $A D E$.
Historical notes: NZ Conjecture was first stated by Gessel in 1990. In 2005,
Zeilberger changes his mind, conjectures that $\left\{C_{n}(1324)\right\}$ is a counterexample.
In 2014, Zeilberger changes his mind half-way back, writes:
"if I had to bet on it now I would give only a 50% chance."

Computability implications

Theorem 3 [Garrabrant, Pak, 2015]
The problem whether $C_{n}(\mathcal{F})=C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2 \forall n$, is undecidable.

Corollary 1. For all k large enough, there exists $\mathcal{F}, \mathcal{F}^{\prime} \subset S_{k}$, s.t.
the first time $C_{n}(\mathcal{F}) \neq C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2$ is for

Corollary 2. There exist two finite sets of patterns \mathcal{F} and \mathcal{F}^{\prime} in S_{k},
s.t. the problem of whether $C_{n}(\mathcal{F})=C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2$, for all $n \in \mathbb{N}$,
is independent of ZFC.

Complexity result and Wilf's question

Theorem 4 [Garrabrant, Pak, 2015]
If $\mathrm{EXP} \neq \oplus \mathrm{EXP}$, then there exists a finite set of patterns \mathcal{F}, such that
the sequence $\left\{C_{n}(F)\right\}$ cannot be computed in time polynomial in n.

Reminder: EXP = exponential time, $\oplus P=$ parity version of the class of counting problem $\# P$,
$\oplus E X P=$ parity version of the class of counting problem \#EXP.
EXP $\neq \oplus$ EXP assumption is similar to $\mathrm{P} \neq \oplus \mathrm{P}$.

Remark: This answers Wilf's question (1982)
"Can one describe a reasonable and natural family of combinatorial
enumeration problems for which there is provably no polynomial-in-n
time formula or algorithm to compute $f(n)$?"

Simulating Turing Machines

Let \mathbb{X} denote the set of sequences $\left\{\xi_{\Gamma}(n)\right\}$, where Γ is a two-stack automaton with source S and $\operatorname{sink} T$, and $\xi_{\Gamma}(n)$ is the number of balanced $S-T$ paths of length n. (Here balanced means that both stacks are empty at the end).

Main Lemma

Let $\xi: \mathbb{N} \rightarrow \mathbb{N}$ be a function in \mathbb{X}. Then there exist $k, a, b \in$ \mathbb{N}
and sets of patterns $\mathcal{F}, \mathcal{F}^{\prime} \in S_{k}$, such that $\xi(n)=C_{a n+b}(\mathcal{F})-C_{a n+b}\left(\mathcal{F}^{\prime}\right) \bmod 2$, for all $n \geq 1$.

Main Lemma can be used to derive both Theorem 3 and Theorem 4.

Note: Here mod 2 can be changed to any $\bmod p$, but cannot be completely removed.

Proof of Theorem 1.

Lemma 1. Let $\left\{a_{n}\right\}$ be a P-recursive sequence (i.e. with
D-finite g.f.)
Let $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots\right), \bar{\alpha} \in\{0,1\}^{\infty}$ defined by $\alpha_{n}=a_{n} \bmod 2$. Then there is a finite binary word w which is NOT a subword of $\bar{\alpha}$.

Lemma 2. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n)$ is given by the sequence $0,1,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0, \ldots$

Lemma 1, Lemma 2 and the Main Lemma imply Theorem 1.

Proof of Theorem 2.

Lemma $\mathbf{1}^{\prime}$. Let $\left\{a_{n}\right\}$ be a sequence, and let $\left\{n_{i}\right\}$
be the sequence of indices with odd a_{n}. Suppose

1) for all $b, c \in \mathbb{N}$, there exists i such that $n_{i}=b \bmod 2 c$,
2) $n_{i} / n_{i+1} \rightarrow 0$ as $i \rightarrow \infty$.

Then the g.f. for $\left\{a_{n}\right\}$ is not ADE.
Observe: $\left\{a_{n}=n!+n\right\}$ satisfies conditions of Lemma 1^{\prime}.
Lemma 2^{\prime}. There is a two-stack automaton Γ s.t. the number
of balanced paths $\xi_{\Gamma}(n)=n!+n$.

Lemma 1^{\prime}, Lemma 2^{\prime} and the Main Lemma imply Theorem 2.

Main Lemma: proof outline

(0) Allow general partial patterns (rectangular $0-1$ matrices with no two 1's in the same row or column).
(1) Fix a sufficiently large "alphabet" of "incomparable" matrices
Specifically, we take all simple 10-permutations which contain (5674123).

Arbitrarily name them $P, Q, B, B^{\prime}, E, T_{1}, \ldots, T_{v}, Z_{1}, \ldots, Z_{m}$.
(2) Thinking of T_{i} 's as vertices of Γ and Z_{j} as variables x_{p}, y_{q}, select block matrices \mathcal{F} to simulate Γ. Let $\mathcal{F}^{\prime}=\mathcal{F} \cup\left\{B, B^{\prime}\right\}$.
(3) Define involution Ψ on $C_{n}(\mathcal{F}) \backslash C_{n}\left(\mathcal{F}^{\prime}\right)$ by $B \leftrightarrow B^{\prime}$. Check that fixed points of Ψ are in bijection with balanced paths in Γ.

Notes on the proofs:

(i) We use exactly 6854 partial patterns.
(i) Automaton Γ in Lemma 2 uses 31 vertices, which is why the alphabet has size 10×10 only.
(iii) The largest matrix in \mathcal{F} has 8×8 blocks, which is why Theorem 1 has permutations in S_{80}.
(iv) Proof of Lemma 1 has only 2 paragraphs, but it took over a year
to find a statement. Lemma 1^{\prime} took another year.
(v) Condition n_{i} / n_{i+1} in Lemma 1^{\prime} cannot be weakened, e.g. $\operatorname{Cat}(n)$ is odd if and only if $n=2^{m}-1$.

Open problems:

Conjecture 1. The Wilf-equivalence problem of whether $C_{n}\left(\mathcal{F}_{1}\right)=C_{n}\left(\mathcal{F}_{2}\right)$ for all $n \in \mathbb{N}$, is undecidable.

Conjecture 2. The Wilf-equivalence problem for single permutations: $C_{n}(\sigma)=C_{n}(\omega)$ for all $n \in \mathbb{N}$, is decidable.

Conjecture 3. Sequence $\left\{C_{n}(1324)\right\}$ is not P-recursive.
Conjecture 4. There exists a fixed set of patterns \mathcal{F}, s.t. computing $\left\{C_{n}(\mathcal{F})\right\}$ is \#EXP-complete.

Grand finale:

Story how Doron Zeilberger lost $\$ 100$.

Thank you!

