Computability and Enumeration

Igor Pak, UCLA

(joint work with Scott Garrabrant)

Mathematics of Jiří Matoušek Conference

Prague, Czech Republic, July 26, 2016

Integer sequences

vertices

Let $\{a_n\}$ be a combinatorial sequence, e.g.

 $a_n = \#$ of triangulations of a convex *n*-gon $a_n = \#$ of domino tilings of $[n \times n]$ $a_n = \#$ of connected labeled graphs on *n*

 $a_n = \#$ of triangulations of a $n \times n$ grid

Question 1: Does $\mathcal{A}(t) = \sum_{n} a_n t^n$ have a formula?

Question 2: Can a_n be computed efficiently?

Conjecture [Wilf, 1982]: Number of unlabeled graphs on n vertices

is *hard* to compute.

Classes of combinatorial sequences

(1) **rational** g.f.
$$\mathcal{A}(t) = P(t)/Q(t), P, Q \in \mathbb{Z}[t]$$

e.g. $a_n = \operatorname{Fib}(n)$, then $\mathcal{A}(t) = 1/(1 - t - t^2)$.

(2) **algebraic** g.f.
$$c_0 \mathcal{A}^k + c_1 \mathcal{A}^{k-1} + \ldots + c_k = 0, c_i \in \mathbb{Z}[t]$$

e.g. $a_n = \operatorname{Cat}(n)$, then $\mathcal{A}(t) = (1 - \sqrt{1 - 4t})/2t$.

(3) **D-finite** g.f.
$$c_0 \mathcal{A} + c_1 \mathcal{A}' + \ldots + c_k \mathcal{A}^{(k)} = 0, c_i \in \mathbb{Z}[t]$$

e.g. $a_n = \#$ involutions in S_n , then $a_n = a_{n-1} + (n-1)a_{n-2}$.
The sequences $\{a_n\}$ are called ***P*-recursive**

(4) **ADE** g.f.
$$Q(t, \mathcal{A}, \mathcal{A}', \dots, \mathcal{A}^{(k)}) = 0, Q \in \mathbb{Z}[t, x_0, x_1, \dots, x_k]$$

e.g. $a_n = \#\{\sigma(1) < \sigma(2) > \sigma(3) < \dots \in S_n\}$, then $\mathcal{A}' = \mathcal{A}^2 + 1$.

also p(n) = # integer partitions of n (Jacobi, Ramanujan).

Inclusions: $(1) \subset (2) \subset (3) \subset (4)$.

General philosophy:

Definition: Sequence $\{a_n\}$ can be *computed efficiently* if there is an algorithm which computes a_n in time Poly(n).

Proposition: ADE sequences $\{a_n\}$ can be computed efficiently.

- Most combinatorial sequences have *nice* g.f. (D-finite, ADE, etc.)
- Proving that $\mathcal{A}(t) = \sum_{n} a_n t^n$ is *not* D-finite or ADE is difficult.

• Thus, proving non-D-finite and non-ADE are important first steps.

Theorem: (Jacobi, 1848) $\sum_{n} t^{n^2}$ is ADE. **Theorem:** (Lipshitz, Rubel, 1986) $\sum_{n} t^{2^n}$ is not ADE.

Conjecture: $\sum_{n} t^{n^3}$ is not ADE.

Permutation classes

Permutation $\sigma \in S_n$ contains $\pi \in S_k$ if M_{π} is a submatrix of M_{σ} .

Otherwise, σ avoids π . Such π are called *patterns*.

For example, (4564123) contains (321) but avoids (4321).

(.	•	•		1		•)		(.						· \
·														
	•	•	•	•	•	1		•	•	•	•	•	•	•
	•	•	1	•	•	•								·
1	•	•	•	•	•	•			•	•	•	•	•	·
·														•
(.	•	1	•	·	·	•)		(·	•	·	•	•	•	•)

Fix a set of patterns $\mathcal{F} \subset S_k$. Denote by $C_n(\mathcal{F})$ the number of $\sigma \in S_n$ which avoids all $\pi \in \mathcal{F}$.

Question 1: Is $\mathcal{A}(t) = \sum_{n} C_{n}(\mathcal{F})t^{n}$ always D-finite or ADE?

Question 2: Can $C_n(\mathcal{F})$ always be computed in Poly(n) time?

Notable results and examples:

(0) $C_n(12\cdots k, \ell \cdots 21) = 0, \forall n > (k-1)(\ell-1)$ [Erdős, Szekeres, 1935]

(1) $C_n(123) = C_n(213) = \operatorname{Cat}(n)$ [MacMahon, 1915], [Knuth, 1973]

(2) $C_n(123, 132, 213) = \operatorname{Fib}(n+1)$ [Simion, Shmidt, 1985]

(3) $C_n(2413, 3142) = \text{Shröder}(n)$ [Shapiro, Stephens, 1991]

(4) $C_n(1234) = C_n(2143)$ has D-finite g.f. [Gessel, 1990]

(5) $C_n(1342) = C_n(2416385)$ has algebraic g.f. [Bona, 1997]

(6) $C_n(\mathcal{F}) < K(\mathcal{F})^n$ [Marcus, Tardos, 2004], improving [Alon, Friedgut, 2000]

(7) $K(\pi) = e^{k^{\Omega(1)}}$ w.h.p., for $\pi \in S_k$ random [Fox, 2013]

(8) σ contains π is NP-complete [Bose, Buss, Lubiw, 1998]

(9) can be decided in $O(n \log n)$ for π fixed [Guillemot, Marx, 2014]

Main results

Noonan–Zeilberger Conjecture (1996):

The g.f. for $\{C_n(\mathcal{F})\}$ is D-finite, for all fixed $\mathcal{F} \subset S_k$.

Theorem 1 [Garrabrant, Pak, 2015]

The NZ Conjecture is false. To be precise, there is a set $\mathcal{F} \subset S_{80}$,

 $|\mathcal{F}| < 31000$, such that $\sum_{n} C_n(\mathcal{F})t^n$ is not D-finite.

Theorem 2 [Garrabrant, Pak, 2016+]

There is a set $\mathcal{F} \subset S_{80}$, such that $\sum_n C_n(\mathcal{F})t^n$ is not ADE.

Historical notes: NZ Conjecture was first stated by Gessel in 1990. In 2005,

Zeilberger changes his mind, conjectures that $\{C_n(1324)\}$ is a counterexample.

In 2014, Zeilberger changes his mind half-way back, writes:

"if I had to bet on it now I would give only a 50% chance."

Computability implications

Theorem 3 [Garrabrant, Pak, 2015]

The problem whether $C_n(\mathcal{F}) = C_n(\mathcal{F}') \mod 2 \ \forall n, is undecidable.$

Corollary 1. For all k large enough, there exists $\mathcal{F}, \mathcal{F}' \subset S_k$, s.t.

the first time $C_n(\mathcal{F}) \neq C_n(\mathcal{F}') \mod 2$ is for

$$n > 2^{2^{2^{2^{k}}}}.$$

Corollary 2. There exist two finite sets of patterns \mathcal{F} and \mathcal{F}' in S_k ,

s.t. the problem of whether $C_n(\mathcal{F}) = C_n(\mathcal{F}') \mod 2$, for all $n \in \mathbb{N}$,

is independent of ZFC.

Complexity result and Wilf's question

Theorem 4 [Garrabrant, Pak, 2015]

If $\mathsf{EXP} \neq \oplus \mathsf{EXP}$, then there exists a finite set of patterns \mathcal{F} , such that

the sequence $\{C_n(F)\}$ cannot be computed in time polynomial in n.

Reminder: EXP = exponential time,

 $\oplus P$ = parity version of the class of counting problem #P, $\oplus EXP$ = parity version of the class of counting problem #EXP. $EXP \neq \oplus EXP$ assumption is similar to $P \neq \oplus P$.

Remark: This answers Wilf's question (1982)

"Can one describe a reasonable and natural family of combinatorial $% \mathcal{A}(\mathcal{A})$

 $enumeration\ problems\ for\ which\ there\ is\ provably\ no\ polynomial-in-n$

time formula or algorithm to compute f(n)?"

Simulating Turing Machines

Let X denote the set of sequences $\{\xi_{\Gamma}(n)\}$, where Γ is a two-stack automaton with source S and sink T, and $\xi_{\Gamma}(n)$ is the number of balanced S - T paths of length n. (Here *balanced* means that both stacks are empty at the end).

Main Lemma

Let $\xi : \mathbb{N} \to \mathbb{N}$ be a function in X. Then there exist $k, a, b \in \mathbb{N}$

and sets of patterns $\mathcal{F}, \mathcal{F}' \in S_k$, such that $\xi(n) = C_{an+b}(\mathcal{F}) - C_{an+b}(\mathcal{F}') \mod 2$, for all $n \ge 1$.

Main Lemma can be used to derive both Theorem 3 and Theorem 4.

Note: Here mod 2 can be changed to any mod p, but cannot be completely removed.

Proof of Theorem 1.

Lemma 1. Let $\{a_n\}$ be a P-recursive sequence (i.e. with D-finite g.f.)

Let $\overline{\alpha} = (\alpha_1, \alpha_2, \ldots), \overline{\alpha} \in \{0, 1\}^{\infty}$ defined by $\alpha_n = a_n \mod 2$. Then there is a finite binary word w which is NOT a subword of $\overline{\alpha}$.

Lemma 2. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n)$ is given by the sequence 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, ...

Lemma 1, Lemma 2 and the Main Lemma imply Theorem 1.

Proof of Theorem 2.

Lemma 1'. Let $\{a_n\}$ be a sequence, and let $\{n_i\}$ be the sequence of indices with odd a_n . Suppose 1) for all $b, c \in \mathbb{N}$, there exists i such that $n_i = b \mod 2c$, 2) $n_i/n_{i+1} \to 0$ as $i \to \infty$. Then the g.f. for $\{a_n\}$ is not ADE.

Observe: $\{a_n = n! + n\}$ satisfies conditions of Lemma 1'.

Lemma 2'. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n) = n! + n$.

Lemma 1', Lemma 2' and the Main Lemma imply Theorem 2.

Main Lemma: proof outline

(0) Allow general partial patterns (rectangular 0 - 1 matrices with no two 1's in the same row or column).

(1) Fix a sufficiently large "alphabet" of "incomparable" matrices

Specifically, we take all simple 10-permutations which contain (5674123).

Arbitrarily name them $P, Q, B, B', E, T_1, ..., T_v, Z_1, ..., Z_m$.

(2) Thinking of T_i 's as vertices of Γ and Z_j as variables x_p, y_q , select block matrices \mathcal{F} to simulate Γ . Let $\mathcal{F}' = \mathcal{F} \cup \{B, B'\}$.

(3) Define involution Ψ on $C_n(\mathcal{F}) \smallsetminus C_n(\mathcal{F}')$ by $B \leftrightarrow B'$. Check that fixed points of Ψ are in bijection with balanced paths in Γ .

Notes on the proofs:

- (i) We use exactly 6854 partial patterns.
- (i) Automaton Γ in Lemma 2 uses 31 vertices, which is why the alphabet has size 10×10 only.
- (*iii*) The largest matrix in \mathcal{F} has 8×8 blocks, which is why Theorem 1 has permutations in S_{80} .
- (iv) Proof of Lemma 1 has only 2 paragraphs, but it took over a year
 - to find a statement. Lemma 1' took another year.
- (v) Condition n_i/n_{i+1} in Lemma 1' cannot be weakened, e.g. $\operatorname{Cat}(n)$ is odd if and only if $n = 2^m - 1$.

Open problems:

Conjecture 1. The *Wilf-equivalence problem* of whether $C_n(\mathcal{F}_1) = C_n(\mathcal{F}_2)$ for all $n \in \mathbb{N}$, is undecidable.

Conjecture 2. The Wilf-equivalence problem for single permutations: $C_n(\sigma) = C_n(\omega)$ for all $n \in \mathbb{N}$, is decidable.

Conjecture 3. Sequence $\{C_n(1324)\}$ is not P-recursive.

Conjecture 4. There exists a fixed set of patterns \mathcal{F} , s.t. computing $\{C_n(\mathcal{F})\}$ is $\#\mathsf{EXP}$ -complete.

Grand finale:

Story how Doron Zeilberger lost \$100.

Thank you!

