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Integer sequences

Let {an} be a combinatorial sequence, e.g.

an = # of triangulations of a convex n-gon

an = # of domino tilings of [n× n]

an = # of connected labeled graphs on n
vertices

an = # of triangulations of a n× n grid

Question 1: Does A(t) =
∑

n ant
n have a formula?

Question 2: Can an be computed efficiently?

Conjecture [Wilf, 1982]: Number of unlabeled graphs on n
vertices

is hard to compute.



Classes of combinatorial sequences

(1) rational g.f. A(t) = P (t)/Q(t), P,Q ∈ Z[t]

e.g. an = Fib(n), then A(t) = 1/(1− t− t2).

(2) algebraic g.f. c0Ak + c1Ak−1 + . . . + ck = 0, ci ∈ Z[t]

e.g. an = Cat(n), then A(t) = (1−
√

1− 4t)/2t.

(3) D-finite g.f. c0A + c1A′ + . . . + ckA(k) = 0, ci ∈ Z[t]

e.g. an = # involutions in Sn, then an = an−1 + (n− 1)an−2.

The sequences {an} are called P-recursive

(4) ADE g.f. Q
(
t,A,A′, . . . ,A(k)

)
= 0,Q ∈ Z[t, x0, x1, . . . , xk]

e.g. an = #{σ(1) < σ(2) > σ(3) < . . . ∈ Sn}, then A′ =
A2 + 1.

also p(n) = # integer partitions of n (Jacobi, Ramanujan).

Inclusions: (1) ⊂ (2) ⊂ (3) ⊂ (4).



General philosophy:

Definition: Sequence {an} can be computed efficiently if

there is an algorithm which computes an in time Poly(n).

Proposition: ADE sequences {an} can be computed effi-
ciently.

• Most combinatorial sequences have nice g.f. (D-finite,
ADE, etc.)

• Proving that A(t) =
∑

n ant
n is not D-finite or ADE is

difficult.

• Thus, proving non-D-finite and non-ADE are important
first steps.

Theorem: (Jacobi, 1848)
∑

n t
n2

is ADE.

Theorem: (Lipshitz, Rubel, 1986)
∑

n t
2n is not ADE.

Conjecture:
∑

n t
n3

is not ADE.



Permutation classes

Permutation σ ∈ Sn contains π ∈ Sk if Mπ is a submatrix of
Mσ.

Otherwise, σ avoids π. Such π are called patterns.

For example, (4564123) contains (321) but avoids (4321).
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Fix a set of patterns F ⊂ Sk. Denote by Cn(F) the number of
σ ∈ Sn
which avoids all π ∈ F .

Question 1: Is A(t) =
∑

n Cn(F)tn always D-finite or ADE?

Question 2: Can Cn(F) always be computed in Poly(n)
time?



Notable results and examples:

(0) Cn(12 · · · k, ` · · · 21) = 0, ∀n > (k − 1)(` − 1) [Erdős,

Szekeres, 1935]

(1) Cn(123) = Cn(213) = Cat(n) [MacMahon, 1915], [Knuth,

1973]

(2) Cn(123, 132, 213) = Fib(n + 1) [Simion, Shmidt, 1985]

(3) Cn(2413, 3142) = Shröder(n) [Shapiro, Stephens, 1991]

(4) Cn(1234) = Cn(2143) has D-finite g.f. [Gessel, 1990]

(5) Cn(1342) = Cn(2416385) has algebraic g.f. [Bona, 1997]

(6) Cn(F) < K(F)n [Marcus, Tardos, 2004], improving [Alon,

Friedgut, 2000]

(7) K(π) = ek
Ω(1)

w.h.p., for π ∈ Sk random [Fox, 2013]

(8) σ contains π is NP-complete [Bose, Buss, Lubiw, 1998]

(9) can be decided in O(n log n) for π fixed [Guillemot, Marx,

2014]



Main results

Noonan–Zeilberger Conjecture (1996):

The g.f. for {Cn(F)} is D-finite, for all fixed F ⊂ Sk.

Theorem 1 [Garrabrant, Pak, 2015]

The NZ Conjecture is false. To be precise, there is a set
F ⊂ S80,

|F| < 31000, such that
∑

n Cn(F)tn is not D-finite.

Theorem 2 [Garrabrant, Pak, 2016+]

There is a set F ⊂ S80, such that
∑

n Cn(F)tn is not ADE.

Historical notes: NZ Conjecture was first stated by Gessel in 1990.
In 2005,

Zeilberger changes his mind, conjectures that {Cn(1324)} is a coun-
terexample.

In 2014, Zeilberger changes his mind half-way back, writes:

“if I had to bet on it now I would give only a 50% chance.”



Computability implications

Theorem 3 [Garrabrant, Pak, 2015]

The problem whether Cn(F) = Cn(F ′) mod 2 ∀n, is unde-
cidable.

Corollary 1. For all k large enough, there existsF ,F ′ ⊂ Sk,
s.t.

the first time Cn(F) 6= Cn(F ′) mod 2 is for

n > 22222k

.

Corollary 2. There exist two finite sets of patterns F and
F ′ in Sk,

s.t. the problem of whether Cn(F) = Cn(F ′) mod 2, for all
n ∈ N,

is independent of ZFC.



Complexity result and Wilf’s question

Theorem 4 [Garrabrant, Pak, 2015]

If EXP 6= ⊕EXP, then there exists a finite set of patterns F ,
such that

the sequence {Cn(F )} cannot be computed in time polyno-
mial in n.

Reminder: EXP = exponential time,

⊕P = parity version of the class of counting problem #P,

⊕EXP = parity version of the class of counting problem #EXP.

EXP 6= ⊕EXP assumption is similar to P 6= ⊕P.

Remark: This answers Wilf’s question (1982)

“Can one describe a reasonable and natural family of com-
binatorial

enumeration problems for which there is provably no polynomial-
in-n
time formula or algorithm to compute f (n)?”



Simulating Turing Machines

Let X denote the set of sequences {ξΓ(n)}, where

Γ is a two-stack automaton with source S and sink T , and

ξΓ(n) is the number of balanced S − T paths of length n.

(Here balanced means that both stacks are empty at the end).

Main Lemma

Let ξ : N→ N be a function in X. Then there exist k, a, b ∈
N
and sets of patterns F ,F ′ ∈ Sk, such that

ξ(n) = Can+b(F)− Can+b(F ′) mod 2, for all n ≥ 1.

Main Lemma can be used to derive both Theorem 3 and The-
orem 4.

Note: Here mod 2 can be changed to any mod p, but cannot be com-
pletely removed.



Proof of Theorem 1.

Lemma 1. Let {an} be a P-recursive sequence (i.e. with
D-finite g.f.)

Let α = (α1, α2, . . .), α ∈ {0, 1}∞ defined by αn = an mod 2.

Then there is a finite binary word w which is NOT a subword
of α.

Lemma 2. There is a two-stack automaton Γ s.t. the number

of balanced paths ξΓ(n) is given by the sequence

0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, . . .

Lemma 1, Lemma 2 and the Main Lemma imply Theorem 1.



Proof of Theorem 2.

Lemma 1′. Let {an} be a sequence, and let {ni}
be the sequence of indices with odd an. Suppose

1) for all b, c ∈ N, there exists i such that ni = b mod 2c,

2) ni/ni+1 → 0 as i→∞.

Then the g.f. for {an} is not ADE.

Observe: {an = n! + n} satisfies conditions of Lemma 1′.

Lemma 2′. There is a two-stack automaton Γ s.t. the number

of balanced paths ξΓ(n) = n! + n.

Lemma 1′, Lemma 2′ and the Main Lemma imply Theorem 2.



Main Lemma: proof outline

(0) Allow general partial patterns (rectangular 0− 1 matrices

with no two 1’s in the same row or column).

(1) Fix a sufficiently large “alphabet” of “incomparable” ma-
trices

Specifically, we take all simple 10-permutations which contain
(5674123).

Arbitrarily name them P,Q,B,B′, E, T1, ..., Tv, Z1, ..., Zm.

(2) Thinking of Ti’s as vertices of Γ and Zj as variables xp, yq,

select block matrices F to simulate Γ. Let F ′ = F ∪ {B,B′}.

(3) Define involution Ψ on Cn(F)rCn(F ′) by B ↔ B′. Check

that fixed points of Ψ are in bijection with balanced paths in Γ.



M =



◦ ◦ ◦ ◦ T1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ P ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ E ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ T3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Z2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Z2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T2 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T4 ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T2
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Q ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦



.



Notes on the proofs:

(i) We use exactly 6854 partial patterns.

(i) Automaton Γ in Lemma 2 uses 31 vertices, which is why

the alphabet has size 10× 10 only.

(iii) The largest matrix in F has 8× 8 blocks,

which is why Theorem 1 has permutations in S80.

(iv) Proof of Lemma 1 has only 2 paragraphs, but it took over
a year

to find a statement. Lemma 1′ took another year.

(v) Condition ni/ni+1 in Lemma 1′ cannot be weakened,

e.g. Cat(n) is odd if and only if n = 2m − 1.



Open problems:

Conjecture 1. The Wilf-equivalence problem of whether

Cn(F1) = Cn(F2) for all n ∈ N, is undecidable.

Conjecture 2. The Wilf-equivalence problem for single

permutations: Cn(σ) = Cn(ω) for all n ∈ N, is decidable.

Conjecture 3. Sequence {Cn(1324)} is not P-recursive.

Conjecture 4. There exists a fixed set of patterns F , s.t.

computing {Cn(F)}is #EXP-complete.



Grand finale:

Story how Doron Zeilberger lost $100.



Thank you!


