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HIS, EIS and OEIS

OEIS now has over 250,000 sequences!

Our policy has been to include all interesting sequences, no matter

how obscure the reference. [N.J.A. Sloane and S. Plouffe, EIS, 1995]

[The EIS contains] the unrelenting cascade of numbers, [..]

lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]

Question 1: What makes an integer sequence combinatorial?

Question 2: What makes a combinatorial sequence nice?



Selected integer sequences (from OEIS)

A000001: 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, . . . ← finite groups

A000029: 1, 2, 3, 4, 6, 8, 13, 18, 30, 46, 78, 126, 224, 380, 687, . . . ← necklaces

A000037: 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, . . . ← non-squares

A000040: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, . . . ← primes

A000041: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . . ← p(n)

A000042: 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, . . . ← n in unary

A000045: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 232, 375, 610, 987, . . . ← Fn

A000050: 1, 2, 3, 5, 9, 16, 29, 54, 97, 180, 337, . . . ← #k ≤ 2n s.t. k = a2 + b2

A000052: 8, 5, 4, 9, 1, 7, 6, 3, 2, 0, 18, 80, 88, 85, 84, . . . ← alphabetical ordering

A000054: 4, 14, 23, 34, 42, 50, 59, 72, 81, 86, 96, 103, 110, 116, . . . ← NYC A line

A000085: 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, . . . ← involutions in Sn

A000088: 1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, . . . ← graphs



Traditional Answers:

(1) A sequence is combinatorial if it counts combinatorial objects.

(2) Combinatorial sequence is nice if it is given by a nice formula.

(2′) The nicer the formula the nicer the sequence.

(2′′) Nice formulas can be efficiently computed.



What is a formula?

(A) The most satisfactory form of f(n) is a completely explicit closed formula in-
volving only well-known functions, and free from summation symbols. Only in rare
cases will such a formula exist. As formulas for f(n) become more complicated, our
willingness to accept them as “determinations” of f(n) decreases.

We will be concerned almost exclusively with enumerative problems that admit solu-
tions that are more concrete than an algorithm.

Richard Stanley, Enumerative Combinatorics, Vol. 1 (1986)

(B) Formula = Algorithm working in time o(f(n)).

Herb Wilf, What is an answer? (1982)



Cayley’s Formula

Let f(n) denote the number of rooted labeled trees. Then:

(∗) f(n) = nn−1

(∗∗) f(n) = n ·
∑
T⊂Kn
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Observe: These two are both are formulas according to Wilf! Indeed,

log n · nn−2 = o
(
nn−1)

Moral: Time complexity gives a quantitative, not a qualitative difference!



Fibonacci Numbers:

(†) Fn = Fn−1 + Fn−2

(††) Fn =

bn/2c∑
i=0

(
n− i
i

)
(†††) Fn =

1√
5
·
(
φn + φ−n

)
where φ =

√
5 + 1
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Observe: “Closed formula” (†††) is not useful for the exact computation.

Summations can be very helpful.

Moral: What’s a “nice” formula is complicated!



The number of derangements:

Let D(n) denote the number of σ ∈ Sn such that σ(i) 6= i for all 1 ≤ i ≤ n.

(�) D(n) =
[
n!/e

]
(��) D(n) =

n∑
k=0

(−1)k
n!

k!

(� � �) D(n) = nD(n− 1) + (−1)n

Observation: Formula (�) is neither combinatorial nor useful for the

exact computation. Summation formula (��) explains (�), but the

recursive formula (� � �) is most useful for computation.

Note: Formulas (��) and (� � �) are non-positive and thus non-combinatorial !



Ménage Problem

From Wikipedia:

An = number of different ways in which it is possible to seat a set of male-female
couples at a dining table so that men and women alternate and nobody sits next to
his or her partner.

An =
n∑

k=0

(−1)k
2n

2n− k

(
2n− k
k

)
(n− k)!

An = nAn−1 + 2An−2 − (n− 4)An−3 − An−4

(cf. Zeilberger’s “The Past and Future of Combinatorics” rant on YouTube; you must be 18+)



Our Answers:

(1) A sequence is combinatorial if it counts combinatorial objects.

(1′) Objects are combinatorial if they can be verified by an algorithm.

(2) Combinatorial sequence is nice if the corresponding algorithm is efficient.

(2′) The algorithm efficient if it requires Const memory space.



More Precisely:

(3) A sequence {an} is combinatorial and nice if there exists a finite set T

of Wang tiles, so that an = # tilings of an n-rectangle.

Note: Here nice = algorithmically efficient.

Efficient means restrictions on the model of computation.

Motivation: Think of this as a special combinatorial interpretation.

When such an interpretation is found, it in itself can lead to better

understanding AND new algorithmic solutions.



Counting with Wang tiles

Fibonacci numbers:

12112



Wang tilings of a rectangle

n

T

Let an(T ) = the number of tilings of [1× n] with T .

Transfer matrix method:

A(t) =
∞∑
n=0

ant
n =

P (t)

Q(t)

Note: Complete characterization via N-rational functions (the Berstel–Soittola Thm).



Wang tilings of a square



Catalan numbers

a

An example Catalan number matrix, and the corresponding lattice path.

Note: Can be implemented with 169 Wang tiles.



Main Theorem (Garrabrant, P.)

The following functions count Wang Tilings of a square:

(1) The number of integer partitions of n,
(2) The number of set partitions of an n element set (ordered Bell numbers),
(3) The Catalan number Cn,
(4) The Motzkin number Mn.
(5) The number of Gessel walks of length n,
(6) n!,
(7) The number of alternating permutations Alt(n) of length n,
(8) The number of permutations of length n whose assents and descents

follow a given periodic sequence,
(9) The number D(n) of derangements of length n,

(10) The ménage numbers An,
(11) The Menger number L(k, n) of n by k Latin squares for any fixed k,
(12) The number Patk(n) of permutations of length n with no increasing

subsequence of length k,
(13) The number B(n) of Baxter permutations of length n,
(14) The number Alt(n) of alternating sign matrices of size n,
(15) The number G(n) of labeled connected graphs on n vertices.



Permutations and Alternating Permutations:

Permutation σ ∈ Sn is alternating if σ(1) < σ(2) > σ(3) < σ(4) > . . .

a aa

Note: Can be implemented with 405 and 146410 Wang tiles, respectively.



Baxter Permutations:

Baxter permutations are permutations σ ∈ Sn such that there are no indices i < j < k
such that σ(j + 1) < σ(i) < σ(k) < σ(j) or σ(j + 1) > σ(i) > σ(k) > σ(j).

Observation: a given permutation matrix is a Baxter permutation is equivalent to
ensuring that the two given 2× 2 submatrices do not appear.

a

b



Set Partitions:

a

The set partition
{
{1, 2, 5}, {3, 6}, {4}

}
.



Integer Partitions:

a

The matrix corresponding to the partition 42211.



Number of connected graphs g(n) on n+ 1 vertices

Note the asymptotics: g(n) ∼ 2n(n+1)/2 (so, it barely fits).

Lemma:

g(n) =
n∑

k=1

(
n− 1

k − 1

)
(2k − 1)g(k − 1)g(n− k).

There is a way to realize this recurrence relation with Wang tiles.

This is used to prove part (15). Our construction requires over 107 tiles.



Thank you!


