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What is a combinatorial sequence?

OEIS now has over 300,000 sequences!

Our policy has been to include all interesting sequences, no matter

how obscure the reference. [N.J.A. Sloane, S. Plouffe, EIS, 1995]

[The EIS contains] the unrelenting cascade of numbers, [..]

lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]



Selected integer sequences (from OEIS)

A000001: 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, . . . ← finite groups

A000037: 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, . . . ← non-squares

A000040: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, . . . ← primes

A000041: 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . . ← p(n)

A000042: 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, . . . ← n in unary

A000045: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 232, 375, . . . ← Fn

A000052: 8, 5, 4, 9, 1, 7, 6, 3, 2, 0, 18, 80, 88, 85, 84, . . . ← alphabetical ordering

A000054: 4, 14, 23, 34, 42, 50, 59, 72, 81, 86, 96, 103, 110, 116, . . . ← NYC A line

A000085: 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, . . . ← # involutions in Sn

A000088: 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, . . . ← # graphs on n vertices



Combinatorial sequences

Let {an} be a combinatorial sequence, e.g.

an = # of triangulations of a convex n-gon = 1
n+1

(

2n
n

)

an = # of domino tilings of [n× n] = detMn

an = # of connected labeled graphs on n vertices ← RR

an = # of triangulations of a n× n grid = γn
2(1+o(1))

Note: Combinatorial sequences have an ∈ N.



Main Questions

Question 1: Does A(t) = ∑

n ant
n have a formula?

Question 2: Can an be computed efficiently?

Conjecture [Wilf, 1982]:

Number of unlabeled graphs on n vertices is hard to compute.



Fibonacci Numbers:

(1) Fn = Fn−1 + Fn−2

(2) Fn =

⌊n/2⌋
∑

i=0

(

n− i

i

)

(3) Fn =
(

φn + φ−n
)

/
√
5 where φ =

(
√
5 + 1

)

/2

(4)

(

0 1
1 1

)n (

0
1

)

=

(

Fn

Fn+1

)

Note: (1) is a definition, (2) implies {Fn} is N-rational,
(3) gives exact asymptotics, and (4) is good for fast computation.



More Examples:

(1) Dn = [[n!/e]] , where [[x]] denotes the nearest integer

(2) Cn = [tn]
1−
√
1− 4t

2t

(3) En = n! · [tn]y(t), where 2y′ = 1 + y2, y(0) = 1

(4) Tn = (n− 1)! · [tn]z(t), where z = tete
tete

...

(5) p(n) = [tn]
∞
∏

i=1

1

1− ti

(6) π(n) =
n

∑

k=2

(⌊

(k − 1)! + 1

k

⌋

−
⌊

(k − 1)!

k

⌋)

.



Complexity Approach:

Definition: Sequence {an} can be computed efficiently if

there is an algorithm which computes an in time poly(n).

Examples: Fibonacci numbers Fn, Catalan numbers Cn,

derangement numbers Dn, partition numbers p(n), etc.

Theorem: The following sequences can be computed efficiently:

# connected 3-regular graphs on n vertices [Goulden–Jackson, Gessel]

# non-isomorphic trees on n vertices [Goldberg]

# partitions of 2n − 1 into {1, 2, 4, 8, . . .} (Cayley composition numbers)

[P.–Yeliussizov]



Negative Results?

A theory is falsifiable if there exists at least one non-empty class of

[..] basic statements which are forbidden by it. [Karl Popper, 1934]

Note: Wilf’s Conjecture is a potential example (or not?)

Some sequences take too long to write, e.g. an = 22
n
.

Some sequences are essentially open problems in mathematics, e.g. {prime Fn}.

Conjecture: The number of self-avoiding walks in Z2 with n steps starting O

cannot be computes in time poly(n).



What Gives?

P versus NP — a gift to mathematics from computer science. [Stephen Smale]

Note: Sometimes a gift is a Trojan Horse.



Classes of combinatorial sequences

(1) rational g.f. A(t) = P (t)/Q(t), P,Q ∈ Z[t]. E.g. an := Fn, A(t) = 1/(1− t− t2).

(2) algebraic g.f. c0Ak+c1Ak−1+ . . .+ck = 0, ci ∈ Z[t]. E.g. an := Cn, A(t) = (1−
√
1− 4t)/2t.

(3) D-finite g.f. c0A + c1A′ + . . . + ckA(k) = 0, ci ∈ Z[t]. E.g. an := # involutions in Sn,

then an = an−1 + (n− 1)an−2. The sequences {an} are called P-recursive

(4) ADE (also D-algebraic) g.f. Q
(

t,A,A′, . . . ,A(k)
)

= 0, Q ∈ Z[t, x0, x1, . . . , xk]

E.g. an = #{σ(1) < σ(2) > σ(3) < . . . ∈ Sn}, A′′ = A · A′.
Also p(n) = # integer partitions of n (Jacobi, Ramanujan). Then F (t) =

∑

n p(n)t
n satisfies:

4F 3F ′′ + 5tF 3F ′′′ + t2F 3F (4) − 16F 2(F ′)2 − 15tF 2F ′F ′′ − 39t2F 2(F ′′)2

+ 20t2F 2F ′F ′′′ + 10tF (F ′)3 + 12t2F (F ′)2F ′′ + 6t2(F ′)4 = 0.



General philosophy:

Inclusions: (1) ⊂ (2) ⊂ (3) ⊂ (4).

Note: P-recursive sequences {an} can be computed efficiently by definition.

Proposition: ADE sequences {an} can be computed efficiently.

• Most combinatorial sequences have nice g.f. (D-finite, ADE, etc.)

• Proving that A(t) = ∑

n ant
n is not D-finite or ADE is difficult.

• Thus, proving {an} non-D-finite and non-ADE are important first steps.



How hard can that be? Non-combinatorial examples:

Theorem (Jacobi, 1848):
∑

n t
n2 is ADE.

Theorem (Lipshitz, Rubel, 1986):
∑

n t
2n is not ADE.

Conjecture:
∑

n t
n3 is not ADE.

Theorem (Flajolet, Gerhold and Salvy, 2005):
∑

n pnt
n is not D-finite,

where pn is n-th prime.

Conjecture:
∑

n pnt
n is not ADE.



Walks on graphs:

Definition: Let Γ = (V, E) be a graph, O ∈ V fixed.

Let an be the number of x→ y walks in Γ of length n.

Examples:
Fn Cn

OO

Further examples: Γ ⊂ Zd, i.e. a region in the grid

Γ = Cayley(G, S), where G infinite group, G = 〈S〉, S = S−1 finite (cogrowth sequence).

Theorem (folklore): G = Zd, any finite S, then {an} is P-recursive.

Proposition (Furstenberg, 1967): Γ = Z2, then
{

an =
(

2n
n

)2}
is not algebraic.

Theorem (Haiman, 1993): Γ = Fk, S standard, then {an} is algebraic.



Walks on Cayley graphs:

Theorem (Elder, Rechnitzer, Janse, van Rensburg, Wong, 2014)

Cogrowth sequence {an} is P-recursive for G = BS(N,N), S = {x, x−1, y, y−1},
where BS(k, ℓ) = 〈x, y |xky = yxℓ〉.

Theorem (Garrabrant, P., 2017) Cogrowth sequence {an} is not P-recursive for
(1) virtually solvable groups of exponential growth with finite Prüfer rank;

(2) amenable linear groups of superpolynomial growth;

(3) groups of weakly exponential growth

(4) Baumslag–Solitar groups BS(k, 1), where k ≥ 2;

(5) lamplighter groups L(d,H) = H ≀ Zd, where H is finite abelian, d ≥ 1.

Theorem (Bell, Mishna, 2018+) Cogrowth sequence {an} is not P-recursive for
amenable groups of superpolynomial growth.



Walks on Cayley graphs:

Main lemma: (Birkhoff, Trjitzinsky, Katz, . . . )

Let {an} be a P-recursive, an < Cn for some C > 0 and all n ≥ 1. Then

an ∼
m
∑

i=1

Kiλ
n
i n

αi (log n)βi ,

where Ki ∈ R+, λi ∈ Q, αi ∈ Q, and βi ∈ N.

Theorem: (Garrabrant, P., 2017) There is a 〈S〉 = Fk, s.t.

the cogrowth sequence {an} is not P-recursive.

Theorem: (Garrabrant, P., 2018+) There is a 〈S〉 = Fk, s.t.

the cogrowth sequence {an} is not ADE.



Permutation classes

Permutation σ ∈ Sn contains π ∈ Sk if Mπ is a submatrix of Mσ.

Otherwise, σ avoids π. Such π are called patterns.

For example, (4564123) contains (321) but avoids (4321).
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Fix a set of patterns F ⊂ Sk. Denote by Cn(F) the number of σ ∈ Sn

which avoids all π ∈ F .

Question 1: Is A(t) = ∑

n Cn(F)tn always D-finite or ADE?

Question 2: Can Cn(F) always be computed in poly(n) time?



Notable results and examples:

(0) Cn(12 · · · k, ℓ · · · 21) = 0, ∀n > (k − 1)(ℓ− 1) [Erdős, Szekeres, 1935]

(1) Cn(123) = Cn(213) = Cat(n) [MacMahon, 1915], [Knuth, 1973]

(2) Cn(123, 132, 213) = Fib(n + 1) [Simion, Shmidt, 1985]

(3) Cn(2413, 3142) = Shröder(n) [Shapiro, Stephens, 1991]

(4) Cn(1234) = Cn(2143) has D-finite g.f. [Gessel, 1990]

(5) Cn(1342) = Cn(2416385) has algebraic g.f. [Bona, 1997]

(6) Cn(F) < K(F)n [Marcus, Tardos, 2004], improving [Alon, Friedgut, 2000]

(7) K(π) = ek
Ω(1)

w.h.p., for π ∈ Sk random [Fox, 2013]

(8) σ contains π is NP-complete [Bose, Buss, Lubiw, 1998]

(9) can be decided in O(n log n) for π fixed [Guillemot, Marx, 2014]



Our main results

Noonan–Zeilberger Conjecture (1996):

The g.f. for {Cn(F)} is D-finite, for all fixed F ⊂ Sk.

Theorem 1. [Garrabrant, P., 2015]

The NZ Conjecture is false. To be precise, there is a set F ⊂ S80,

|F| < 31000, such that
∑

n Cn(F)tn is not D-finite.

Theorem 2. [Garrabrant, P., 2018+]

There is a set F ⊂ S80, such that
∑

n Cn(F)tn is not ADE.

Historical notes: NZ Conjecture was first stated by Gessel in 1990. In 2005,

Zeilberger changes his mind, conjectures that {Cn(1324)} is a counterexample.

In 2014, Zeilberger changes his mind half-way back, promises $100 bounty, pays up in 2015.



Computability implications

Theorem 3. [Garrabrant, P., 2015]

The problem whether Cn(F) = Cn(F ′) mod 2 ∀n, is undecidable.

Corollary 1. For all k large enough, there exists F ,F ′ ⊂ Sk, s.t.

the first time Cn(F) 6= Cn(F ′) mod 2 is for

n > 22
22
2k

.

Corollary 2. There exist two finite sets of patterns F and F ′ in Sk,

s.t. the problem of whether Cn(F) = Cn(F ′) mod 2, for all n ∈ N,

is independent of ZFC.



Complexity result and Wilf’s question

Theorem 4. [Garrabrant, P., 2015]

If EXP 6= ⊕EXP, then there exists a finite set of patterns F , such that

the sequence {Cn(F)} cannot be computed in time polynomial in n.

Reminder: EXP = exponential time,

⊕P = parity version of the class of counting problem #P,

⊕EXP = parity version of the class of counting problem #EXP.

EXP 6= ⊕EXP assumption is similar to P 6= ⊕P.

Remark: This answers Wilf’s question (1982)

“Can one describe a reasonable and natural family of combinatorial

enumeration problems for which there is provably no polynomial-in-n
time formula or algorithm to compute f(n)?”



Simulating Turing Machines

Let X denote the set of sequences {ξΓ(n)}, where
Γ is a two-stack automaton with source S and sink T , and

ξΓ(n) is the number of balanced S − T paths of length n.

(Here balanced means that both stacks are empty at the end).

Main Lemma

Let ξ : N→ N be a function in X. Then there exist k, a, b ∈ N

and sets of patterns F ,F ′ ∈ Sk, such that

ξ(n) = Can+b(F)− Can+b(F ′) mod 2, for all n ≥ 1.

Main Lemma can be used to derive both Theorem 3 and Theorem 4.

Note: Here mod 2 can be changed to any mod p, but cannot be completely removed.



Proof of Theorem 1.

Lemma 1. Let {an} be a P-recursive sequence (i.e. with D-finite g.f.)

Let α = (α1, α2, . . .), α ∈ {0, 1}∞ defined by αn = an mod 2.

Then there is a finite binary word w which is NOT a subword of α.

Lemma 2. There is a two-stack automaton Γ s.t. the number

of balanced paths ξΓ(n) is given by the sequence

0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, . . .

Lemma 1, Lemma 2 and the Main Lemma imply Theorem 1.



Proof of Theorem 2.

Lemma 1′. Let {an} be a sequence, and let {ni}
be the sequence of indices with odd an. Suppose

1) for all b, c ∈ N, there exists i such that ni = b mod 2c,

2) ni/ni+1→ 0 as i→∞.

Then the g.f. for {an} is not ADE.

Observe: {an = n! + n} satisfies conditions of Lemma 1′.

Lemma 2′. There is a two-stack automaton Γ s.t. the number

of balanced paths ξΓ(n) = n! + n.

Lemma 1′, Lemma 2′ and the Main Lemma imply Theorem 2.



Notes on the proofs:

(i) We use exactly 6854 partial patterns.

(i) Automaton Γ in Lemma 2 uses 31 vertices, which is why

the alphabet has size 10× 10 only.

(iii) The largest matrix in F has 8× 8 blocks,

which is why Theorem 1 has permutations in S80.

(iv) Proof of Lemma 1 has only 2 paragraphs, but it took over a year

to find a statement. Lemma 1′ took another year.

(v) Condition ni/ni+1 in Lemma 1′ cannot be weakened,

e.g. Cat(n) is odd if and only if n = 2m − 1.



Open problems:

Conjecture 1. The Wilf-equivalence problem of whether

Cn(F1) = Cn(F2) for all n ∈ N, is undecidable.

Conjecture 2. The Wilf-equivalence problem for single

permutations: Cn(σ) = Cn(ω) for all n ∈ N, is decidable.

Conjecture 3. Sequence {Cn(1324)} is not P-recursive.

Conjecture 4. There exists a fixed set of patterns F , s.t.
computing {Cn(F)}is #EXP-complete.



Thank you!


