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What is a combinatorial sequence?

OEIS now has over 300,000 sequences!

Our policy has been to include all interesting sequences, no matter
how obscure the reference. [N.J.A. Sloane, S. Plouffe, EIS, 1995]

(The EIS contains| the unrelenting cascade of numbers, |..]
lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]



Selected integer sequences (from OEILS)

A000001: 1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5, ... < finite groups
A000037: 2,3,5,6,7, 8,10, 11, 12, 13, 14, 15, 17, 18, 19, 20, ... < non-squares
A000040: 2, 3,5, 7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, ... <— primes
A000041: 1,2,3,5, 7,11, 15, 22, 30, 42, 56, 77, 101, 135, 176, ... < p(n)
A000042: 1,11, 111, 1111, 11111, 111111, 1111111, 11111111, ... <4 m in unary
A000045: 1,1, 2, 3,5, 8,13, 21, 34, 55, 89, 144, 232, 375, ... <+ F,

A000052: 8,5,4,9,1,7.6, 3,2, 0,18, 80, 88, 85, 84, ... < alphabetical ordering
A000054: 4, 14, 23, 34, 42, 50, 59, 72, 81, 86, 96, 103, 110, 116, ... < NYC A line
A000085: 1, 2.4, 10, 26, 76, 232, 764, 2620, 9496, ... < 7 involutions in .5,
A000088: 1, 2,4, 11, 34, 156, 1044, 12346, 274668, ... < + graphs on n vertices



Combinatorial sequences

Let {a,} be a combinatorial sequence, e.g.

B . . L 1 (2n
a, = #f of triangulations of a convex n-gon = —5 ( n)
a, = # of domino tilings of [n x n] = det M,

a, =  of connected labeled graphs on n vertices < RR
a, = 7 of triangulations of a n x n grid = " (1+o(1)

Note: Combinatorial sequences have a,, € N.



Main Questions

Question 1: Does A(t) = > ant" have a formula?

Question 2: Can a, be computed efficiently?

Conjecture [Wilf, 1982]:

Number of unlabeled graphs on n vertices is hard to compute.



Fibonacci Numbers:

(1) F, = F,_1+ I,

o n=s (77)

1=0

(3) E, = (¢"+ ¢_”)/\[5 where ¢ = (\/5 +1)/2

0 1\" (0 F,
o 0 ()= ()
Note: (1) is a definition, (2) implies {F,,} is N-rational,

(3) gives exact asymptotics, and (4) is good for fast computation.



More Examples:

1) D, = [[n!/e]], where [[z]] denotes the nearest integer
2 . - [
(3) E, = nl-[t"y(t), where 2y =1+ 12 y(0)=1
(4) T, = (n—1)!- [("]2(t), where z — e
5 ) = 0 [ =

1211 _
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Complexity Approach:

Definition: Sequence {a,} can be computed efficiently if
there is an algorithm which computes a,, in time poly(n).

Examples: Fibonacci numbers F;,,, Catalan numbers C),,

derangement numbers D,,, partition numbers p(n), etc.

Theorem: The following sequences can be computed efficiently:
# connected 3-regular graphs on n vertices [Goulden—Jackson, Gessel|
# non-isomorphic trees on n vertices [Goldberg]
# partitions of 2" — 1 into {1,2,4,8, ...} (Cayley composition numbers)

[P—Yeliussizov]



Negative Results?

A theory s falsifiable if there exists at least one non-empty class of

..] basic statements which are forbidden by it. |[Karl Popper, 1934]

Note: Wilf’s Conjecture is a potential example (or not?)
Some sequences take too long to write, e.g. a, = 2% .

Some sequences are essentially open problems in mathematics, e.g. {prime F},}.

Conjecture: The number of self-avoiding walks in Z? with n steps starting O

cannot be computes in time poly(n).



What Gives?

P versus NP — a gift to mathematics from computer science. |Stephen Smale]

Note: Sometimes a gift is a Trojan Horse.




Classes of combinatorial sequences
(1) rational gf. A(t) = P(t)/Q(t), P,Q € Z[t]. E.g. a, :=F,, At)=1/(1—1t—1t°).

(1—+/T—4t)/2t.

(3) D-finite gf. coA+ A+ ...+ A% =0, ¢; € Z[t]. E.g. a, := # involutions in S,,,

then a, = a,_1 + (n — 1)a,_o. The sequences {a,} are called P-recursive

(2) algebraic gf. coA"+ci A1+, 4. =0,¢ € Zlt]. Eg a,:=C,, At)

(4) ADEF (also D-algebraic) g.f. Q(t, A A, ... ,A(k)) =0, Q € Z[t,zp, 1, . .., T
Eg a,=#{c(1)<c(2)>03)<...e S}, A=A A"
Also p(n) = # integer partitions of n (Jacobi, Ramanujan). Then F(t) = > p(n)t" satisfies:

AFSF" + 5tF3F" + 2 F3FW — 16 F2(F"? — 15t F*F'F" — 398 F*(F")?
+ 20 F2F'F" 4+ 10t F(F')? + 126*F (F')*F" + 6t*(F))* = 0.



General philosophy:

Inclusions: (1) C (2) C (3) C (4).
Note: P-recursive sequences {a,} can be computed efficiently by definition.

Proposition: ADE sequences {a,} can be computed efficiently.

e Most combinatorial sequences have nice g.f. (D-finite, ADE, etc.)
e Proving that A(t) = ) ant" is not D-finite or ADE is difficult.
e Thus, proving {a,} non-D-finite and non-ADE are important first steps.



How hard can that be? Non-combinatorial examples:
Theorem (Jacobi, 1848): > " is ADE.
Theorem (Lipshitz, Rubel, 1986): Y. ¥ is not ADE.

Conjecture: ) " is not ADE.

Theorem (Flajolet, Gerhold and Salvy, 2005): > p,t" is not D-finite,

where p,, is n-th prime.

Conjecture: >  p,t" is not ADE.



Walks on graphs:

Definition: Let I' = (V, F) be a graph, O € V fixed.
Let a,, be the number of x — y walks in I' of length n.

Examples:

O—e o & & o
O O

Further examples: I' C Z¢ i.e. a region in the grid
I' = Cayley(G, S), where G infinite group, G' = (S), S = S~ finite (cogrowth sequence).

Theorem (folklore): G = Z<, any finite S, then {a,} is P-recursive.
Proposition (Furstenberg, 1967): I' = Z?*, then {an = (277)2} is not algebraic.

Theorem (Haiman, 1993): ' = Fy, S standard, then {a,} is algebraic.



Walks on Cayley graphs:

Theorem (Elder, Rechnitzer, Janse, van Rensburg, Wong, 2014)
Cogrowth sequence {a,} is P-recursive for G = BS(N, N), S = {z, 271, y,y '},
where BS(k, ) = (z,y|2"y = yab).

Theorem (Garrabrant, P., 2017) Cogrowth sequence {a,} is not P-recursive for
(1) virtually solvable groups of exponential growth with finite Priifer rank;

(2) amenable linear groups of superpolynomial growth;

(3) groups of weakly exponential growth

(4) Baumslag—Solitar groups BS(k, 1), where k > 2;

(5) lamplighter groups L(d, H) = H  Z%, where H is finite abelian, d > 1.
Theorem (Bell, Mishna, 20184) Cogrowth sequence {a,} is not P-recursive for

amenable groups of superpolynomial growth.



Walks on Cayley graphs:

Main lemma: (Birkhoff, Trjitzinsky, Katz, ...)
Let {a,} be a P-recursive, a,, < C" for some C' > 0 and all n > 1. Then

a, ~ Z K; X' (log n)Y
1=1
where K; € Ry, \; € @, a; € Q, and B; € N.

Theorem: (Garrabrant, P., 2017) There is a (S) = Fy, s.t.

the cogrowth sequence {a,} is not P-recursive.

Theorem: (Garrabrant, P., 20184) There is a (S) = Fy, s.t.
the cogrowth sequence {a,} is not ADE.



Permutation classes

Permutation o € §,, contains w € S}, if M, is a submatrix of M,.

Otherwise, o avoids w. Such 7 are called patterns.
For example, (4564123) contains (321) but avoids (4321).

Fix a set of patterns F C Si. Denote by C),(F) the number of o € S,
which avoids all T € F.

Question 1: Is A(t) = > C,(F)t" always D-finite or ADE?
Question 2: Can C,(F) always be computed in poly(n) time?



Notable results and examples:
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Cn(./—" ) < K (./—" )n [Marcus, Tardos, 2004], improving [Alon, Friedgut, 2000]
Q

K(m) =¢é" " whp., for 7 € S, random [Fox, 2013

o contains 7 is NP-complete [Bose, Buss, Lubiw, 1998]

can be decided in O(nlogn) for 7 fixed [Guillemot, Marx, 2014]



Our main results

Noonan—Zeilberger Conjecture (1996):
The g.f. for {C,,(F)} is D-finite, for all fixed F C S.

Theorem 1. [Garrabrant, P., 2015]
The NZ Conjecture s false. To be precise, there is a set F C Sy,
| F| < 31000, such that > C,(F)t" is not D-finite.

Theorem 2. [Garrabrant, P., 2018+]
There is a set F C Sgo, such that ) C,(F)t" is not ADE.

Historical notes: NZ Conjecture was first stated by Gessel in 1990. In 2005,
Zeilberger changes his mind, conjectures that {C),(1324)} is a counterexample.

In 2014, Zeilberger changes his mind half-way back, promises $100 bounty, pays up in 2015.



Computability implications

Theorem 3. [Garrabrant, P., 2015]
The problem whether C,(F) = C,(F') mod 2 Vn, is undecidable.

Corollary 1. For all £ large enough, there exists F, F' C S, s.t.
the first time C,(F) # C,(F') mod 2 is for

2/<:
2
22
n > 2

Corollary 2. There exist two finite sets of patterns F and F' in S},

s.t. the problem of whether C),(F) = C,(F') mod 2, for all n € N,
is independent of ZFC.



Complexity result and Wilf’s question

Theorem 4. |Garrabrant, P., 2015]
If EXP #£ ®EXP, then there exists a finite set of patterns F, such that

the sequence {Cy,(F)} cannot be computed in time polynomial in n.

Reminder: EXP = exponential time,

P = parity version of the class of counting problem #P,
PEXP = parity version of the class of counting problem #EXP.
EXP # @EXP assumption is similar to P # ®P.

Remark: This answers Wilf’s question (1982)
“Can one describe a reasonable and natural family of combinatorial

enumeration problems for which there is provably no polynomial-in-n
time formula or algorithm to compute f(n)?”



Simulating Turing Machines

Let X denote the set of sequences {&p(n)}, where
[' is a two-stack automaton with source S and sink 7", and

ér(n) is the number of balanced S — T paths of length n.
(Here balanced means that both stacks are empty at the end).

Main Lemma
Let £ : N — N be a function in X. Then there exist k,a,b € N

and sets of patterns F,F' € S, such that
E(n) = Copnip(F) — Copip(F') mod 2, for all n > 1.

Main Lemma can be used to derive both Theorem 3 and Theorem 4.

Note: Here mod 2 can be changed to any mod p, but cannot be completely removed.



Proof of Theorem 1.

Lemma 1. Let {a,} be a P-recursive sequence (i.e. with D-finite g.f.)
Let @ = (a1, an, .. .), @ € {0,1}* defined by «,, = a,, mod 2.

Then there is a finite binary word w which is NOT' a subword of a.

Lemma 2. There is a two-stack automaton I' s.t. the number
of balanced paths &r(n) is given by the sequence
0, 1, 0,0, 0,1, 1,0, 1,1, 0,0,0, 0,0,1, 0,1,0, ...

Lemma 1, Lemma 2 and the Main Lemma imply Theorem 1.



Proof of Theorem 2.

Lemma 1'. Let {a,} be a sequence, and let {n;}

be the sequence of indices with odd a,,. Suppose

1) for all b, ¢ € N, there exists ¢ such that n; = b mod 2c,
2) n;/n; — 0as i — oo.

Then the g.f. for {a,} is not ADE.

Observe: {a, = n!+ n} satisfies conditions of Lemma 1'.

Lemma 2'. There is a two-stack automaton I s.t. the number
of balanced paths &p(n) = n! + n.

Lemma 1’, Lemma 2" and the Main Lemma imply Theorem 2.



Notes on the proofs:

(2) We use exactly 6854 partial patterns.

(¢) Automaton I' in Lemma 2 uses 31 vertices, which is why
the alphabet has size 10 x 10 only.

(247) The largest matrix in F has 8 x 8 blocks,

which is why Theorem 1 has permutations in Sg.

(2v) Proof of Lemma 1 has only 2 paragraphs, but it took over a year

to find a statement. Lemma 1’ took another year.

(v) Condition n;/n;y1 in Lemma 1’ cannot be weakened,
e.g. Cat(n) is odd if and only if n = 2™ — 1.



Open problems:

Conjecture 1. The Wilf-equivalence problem of whether
Cy(F1) = Cy(Fp) for all n € N, is undecidable.

Conjecture 2. The Wilf-equivalence problem for single
permutations: Cy (o) = Cy(w) for all n € N, is decidable.

Conjecture 3. Sequence {C},(1324)} is not P-recursive.

Conjecture 4. There exists a fixed set of patterns F, s.t.
computing {C,,(F)}is #EXP-complete.



Thank you!




