Complexity of Combinatorial Sequences

Igor Pak, UCLA

ICM, Rio de Janeiro, August 7, 2018

What is a combinatorial sequence?

OEIS now has over 300,000 sequences!
Our policy has been to include all interesting sequences, no matter how obscure the reference. [N.J.A. Sloane, S. Plouffe, EIS, 1995]
[The EIS contains] the unrelenting cascade of numbers, [..] lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]

Selected integer sequences (from OEIS)

```
A000001: 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5,\ldots \leftarrow finite groups
A000037: 2, 3, 5, 6, 7, 8, 10, 11, 12, 13,14,15,17,18,19,20,\ldots}\leftarrow non-squares
A000040: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,31, 37, 41, 43, 47, 53,\ldots \leftarrow primes
A000041: 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176,\ldots \leftarrowp(n)
A000042: 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111,\ldots \leftarrow 
A000045: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 232,375,\ldots\leftarrow \leftarrowF F
A000052: 8, 5, 4, 9, 1,7,6,3,2,0,18,80,88, 85, 84,\ldots\leftarrow alphabetical ordering
A000054: 4, 14, 23, 34, 42, 50, 59, 72, 81, 86, 96, 103, 110,116,\ldots\leftarrow NYC A line
A000085: 1, 2, 4, 10, 26, 76, 232,764, 2620, 9496,\ldots \leftarrow # involutions in Sn
A000088: 1, 2, 4, 11, 34, 156, 1044, 12346, 274668,\ldots \leftarrow # graphs on }n\mathrm{ vertices
```


Combinatorial sequences

Let $\left\{a_{n}\right\}$ be a combinatorial sequence, e.g.

$$
\begin{aligned}
& a_{n}=\# \text { of triangulations of a convex } n \text {-gon }=\frac{1}{n+1}\binom{2 n}{n} \\
& a_{n}=\# \text { of domino tilings of }[n \times n]=\operatorname{det} M_{n} \\
& a_{n}=\# \text { of connected labeled graphs on } n \text { vertices } \leftarrow \mathrm{RR} \\
& a_{n}=\# \text { of triangulations of a } n \times n \text { grid }=\gamma^{n^{2}(1+o(1))}
\end{aligned}
$$

Note: Combinatorial sequences have $a_{n} \in \mathbb{N}$.

Main Questions

Question 1: Does $\mathcal{A}(t)=\sum_{n} a_{n} t^{n}$ have a formula?
Question 2: Can a_{n} be computed efficiently?

Conjecture [Wilf, 1982]:
Number of unlabeled graphs on n vertices is hard to compute.

Fibonacci Numbers:

$$
\begin{gathered}
\text { (1) } F_{n}=F_{n-1}+F_{n-2} \\
\text { (2) } F_{n}=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n-i}{i} \\
F_{n}=\left(\phi^{n}+\phi^{-n}\right) / \sqrt{5} \quad \text { where } \quad \phi=(\sqrt{5}+1) / 2 \\
\text { (4) } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}\binom{0}{1}=\binom{F_{n}}{F_{n+1}}
\end{gathered}
$$

Note: (1) is a definition, (2) implies $\left\{F_{n}\right\}$ is \mathbb{N}-rational,
(3) gives exact asymptotics, and (4) is good for fast computation.

More Examples:

$$
\begin{equation*}
D_{n}=[[n!/ e]], \quad \text { where }[[x]] \text { denotes the nearest integer } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
C_{n}=\left[t^{n}\right] \frac{1-\sqrt{1-4 t}}{2 t} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
E_{n}=n!\cdot\left[t^{n}\right] y(t), \quad \text { where } 2 y^{\prime}=1+y^{2}, \quad y(0)=1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
T_{n}=(n-1)!\cdot\left[t^{n}\right] z(t), \quad \text { where } z=t e^{t e^{t e^{t e \cdots}}} \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
p(n)=\left[t^{n}\right] \prod_{i=1}^{\infty} \frac{1}{1-t^{i}} \tag{5}\\
\pi(n)=\sum_{k=2}^{n}\left(\left\lfloor\frac{(k-1)!+1}{k}\right\rfloor-\left\lfloor\frac{(k-1)!}{k}\right\rfloor\right) \tag{6}
\end{gather*}
$$

Complexity Approach:

Definition: Sequence $\left\{a_{n}\right\}$ can be computed efficiently if there is an algorithm which computes a_{n} in time $\operatorname{poly}(n)$.

Examples: Fibonacci numbers F_{n}, Catalan numbers C_{n}, derangement numbers D_{n}, partition numbers $p(n)$, etc.

Theorem: The following sequences can be computed efficiently:
\# connected 3 -regular graphs on n vertices [Goulden-Jackson, Gessel]
\# non-isomorphic trees on n vertices [Goldberg]
\# partitions of $2^{n}-1$ into $\{1,2,4,8, \ldots\}$ (Cayley composition numbers)
[P.-Yeliussizov]

Negative Results?

A theory is falsifiable if there exists at least one non-empty class of [.] basic statements which are forbidden by it. [Karl Popper, 1934]

Note: Wilf's Conjecture is a potential example (or not?)
Some sequences take too long to write, e.g. $a_{n}=2^{2^{n}}$.
Some sequences are essentially open problems in mathematics, e.g. $\left\{\right.$ prime $\left.F_{n}\right\}$.

Conjecture: The number of self-avoiding walks in \mathbb{Z}^{2} with n steps starting O cannot be computes in time poly (n).

What Gives?

P versus NP - a gift to mathematics from computer science. [Stephen Smale]

Note: Sometimes a gift is a Trojan Horse.

Classes of combinatorial sequences

(1) rational g.f. $\mathcal{A}(t)=P(t) / Q(t), P, Q \in \mathbb{Z}[t]$. E.g. $a_{n}:=F_{n}, \mathcal{A}(t)=1 /\left(1-t-t^{2}\right)$.
(2) algebraic g.f. $c_{0} \mathcal{A}^{k}+c_{1} \mathcal{A}^{k-1}+\ldots+c_{k}=0, c_{i} \in \mathbb{Z}[t]$. E.g. $a_{n}:=C_{n}, \mathcal{A}(t)=(1-\sqrt{1-4 t}) / 2 t$.
(3) \boldsymbol{D}-finite g.f. $c_{0} \mathcal{A}+c_{1} \mathcal{A}^{\prime}+\ldots+c_{k} \mathcal{A}^{(k)}=0, c_{i} \in \mathbb{Z}[t]$. E.g. $a_{n}:=\#$ involutions in S_{n}, then $a_{n}=a_{n-1}+(n-1) a_{n-2}$. The sequences $\left\{a_{n}\right\}$ are called \boldsymbol{P}-recursive
(4) $\boldsymbol{A D E}$ (also \boldsymbol{D}-algebraic) g.f. $Q\left(t, \mathcal{A}, \mathcal{A}^{\prime}, \ldots, \mathcal{A}^{(k)}\right)=0, Q \in \mathbb{Z}\left[t, x_{0}, x_{1}, \ldots, x_{k}\right]$
E.g. $a_{n}=\#\left\{\sigma(1)<\sigma(2)>\sigma(3)<\ldots \in S_{n}\right\}, \mathcal{A}^{\prime \prime}=\mathcal{A} \cdot \mathcal{A}^{\prime}$.

Also $p(n)=\#$ integer partitions of n (Jacobi, Ramanujan). Then $F(t)=\sum_{n} p(n) t^{n}$ satisfies:

$$
\begin{aligned}
4 F^{3} F^{\prime \prime} & +5 t F^{3} F^{\prime \prime \prime}+t^{2} F^{3} F^{(4)}-16 F^{2}\left(F^{\prime}\right)^{2}-15 t F^{2} F^{\prime} F^{\prime \prime}-39 t^{2} F^{2}\left(F^{\prime \prime}\right)^{2} \\
& +20 t^{2} F^{2} F^{\prime} F^{\prime \prime \prime}+10 t F\left(F^{\prime}\right)^{3}+12 t^{2} F\left(F^{\prime}\right)^{2} F^{\prime \prime}+6 t^{2}\left(F^{\prime}\right)^{4}=0 .
\end{aligned}
$$

General philosophy:

Inclusions: $(1) \subset(2) \subset(3) \subset(4)$.
Note: P-recursive sequences $\left\{a_{n}\right\}$ can be computed efficiently by definition.
Proposition: ADE sequences $\left\{a_{n}\right\}$ can be computed efficiently.

- Most combinatorial sequences have nice g.f. (D-finite, ADE, etc.)
- Proving that $\mathcal{A}(t)=\sum_{n} a_{n} t^{n}$ is not D -finite or ADE is difficult.
- Thus, proving $\left\{a_{n}\right\}$ non-D-finite and non-ADE are important first steps.

How hard can that be? Non-combinatorial examples:

Theorem (Jacobi, 1848): $\sum_{n} t^{n^{2}}$ is ADE.
Theorem (Lipshitz, Rubel, 1986): $\sum_{n} t^{2^{n}}$ is not ADE.
Conjecture: $\sum_{n} t^{n^{3}}$ is not ADE.
Theorem (Flajolet, Gerhold and Salvy, 2005): $\sum_{n} p_{n} t^{n}$ is not D-finite, where p_{n} is n-th prime.

Conjecture: $\sum_{n} p_{n} t^{n}$ is not ADE.

Walks on graphs:

Definition: Let $\Gamma=(V, E)$ be a graph, $O \in V$ fixed.
Let a_{n} be the number of $x \rightarrow y$ walks in Γ of length n.
Examples:

Further examples: $\Gamma \subset \mathbb{Z}^{d}$, i.e. a region in the grid $\Gamma=\operatorname{Cayley}(G, S)$, where G infinite group, $G=\langle S\rangle, S=S^{-1}$ finite (cogrowth sequence).

Theorem (folklore): $G=\mathbb{Z}^{d}$, any finite S, then $\left\{a_{n}\right\}$ is P-recursive.
Proposition (Furstenberg, 1967): $\Gamma=\mathbb{Z}^{2}$, then $\left\{a_{n}=\binom{2 n}{n}^{2}\right\}$ is not algebraic.
Theorem (Haiman, 1993): $\Gamma=\mathbb{F}_{k}, S$ standard, then $\left\{a_{n}\right\}$ is algebraic.

Walks on Cayley graphs:

Theorem (Elder, Rechnitzer, Janse, van Rensburg, Wong, 2014)
Cogrowth sequence $\left\{a_{n}\right\}$ is P-recursive for $G=\mathrm{BS}(N, N), S=\left\{x, x^{-1}, y, y^{-1}\right\}$, where $\operatorname{BS}(k, \ell)=\left\langle x, y \mid x^{k} y=y x^{\ell}\right\rangle$.

Theorem (Garrabrant, P., 2017) Cogrowth sequence $\left\{a_{n}\right\}$ is not P-recursive for
(1) virtually solvable groups of exponential growth with finite Prüfer rank;
(2) amenable linear groups of superpolynomial growth;
(3) groups of weakly exponential growth
(4) Baumslag-Solitar groups $\operatorname{BS}(k, 1)$, where $k \geq 2$;
(5) lamplighter groups $L(d, H)=H \imath \mathbb{Z}^{d}$, where H is finite abelian, $d \geq 1$.

Theorem (Bell, Mishna, 2018+) Cogrowth sequence $\left\{a_{n}\right\}$ is not P-recursive for amenable groups of superpolynomial growth.

Walks on Cayley graphs:

Main lemma: (Birkhoff, Trjitzinsky, Katz, ...)
Let $\left\{a_{n}\right\}$ be a P-recursive, $a_{n}<C^{n}$ for some $C>0$ and all $n \geq 1$. Then

$$
a_{n} \sim \sum_{i=1}^{m} K_{i} \lambda_{i}^{n} n^{\alpha_{i}}(\log n)^{\beta_{i}},
$$

where $K_{i} \in \mathbb{R}_{+}, \lambda_{i} \in \overline{\mathbb{Q}}, \alpha_{i} \in \mathbb{Q}$, and $\beta_{i} \in \mathbb{N}$.
Theorem: (Garrabrant, P., 2017) There is a $\langle S\rangle=\mathbb{F}_{k}$, s.t. the cogrowth sequence $\left\{a_{n}\right\}$ is not P -recursive.

Theorem: (Garrabrant, P., 2018+) There is a $\langle S\rangle=\mathbb{F}_{k}$, s.t.
the cogrowth sequence $\left\{a_{n}\right\}$ is not ADE.

Permutation classes

Permutation $\sigma \in S_{n}$ contains $\pi \in S_{k}$ if M_{π} is a submatrix of M_{σ}.
Otherwise, σ avoids π. Such π are called patterns.
For example, (4564123) contains (321) but avoids (4321).

Fix a set of patterns $\mathcal{F} \subset S_{k}$. Denote by $C_{n}(\mathcal{F})$ the number of $\sigma \in S_{n}$ which avoids all $\pi \in \mathcal{F}$.

Question 1: Is $\mathcal{A}(t)=\sum_{n} C_{n}(\mathcal{F}) t^{n}$ always D-finite or ADE?
Question 2: Can $C_{n}(\mathcal{F})$ always be computed in $\operatorname{poly}(n)$ time?

Notable results and examples:

(0) $C_{n}(12 \cdots k, \ell \cdots 21)=0, \forall n>(k-1)(\ell-1)$ [Erdős, Szekeres, 1935]
(1) $C_{n}(123)=C_{n}(213)=\operatorname{Cat}(n) \quad[M a c M a h o n, 1915]$, [Knuth, 1973]
(2) $C_{n}(123,132,213)=\operatorname{Fib}(n+1)$ [Simion, Shmidt, 1985]
(3) $C_{n}(2413,3142)=\operatorname{Shröder}(n) \quad$ [Shapiro, Stephens, 1991]
(4) $C_{n}(1234)=C_{n}(2143)$ has D-finite g.f. [Gessel, 1990]
(5) $C_{n}(1342)=C_{n}(2416385)$ has algebraic g.f. [Bona, 1997]
(6) $C_{n}(\mathcal{F})<K(\mathcal{F})^{n}$ [Marcus, Tardos, 2004], improving [Alon, Friedgut, 2000]
(7) $K(\pi)=e^{k^{\Omega(1)}}$ w.h.p., for $\pi \in S_{k}$ random [Fox, 2013]
(8) σ contains π is NP-complete [Bose, Buss, Lubiw, 1998]
(9) can be decided in $O(n \log n)$ for π fixed [Guillemot, Marx, 2014]

Our main results

Noonan-Zeilberger Conjecture (1996):
The g.f. for $\left\{C_{n}(\mathcal{F})\right\}$ is D-finite, for all fixed $\mathcal{F} \subset S_{k}$.
Theorem 1. [Garrabrant, P., 2015]
The NZ Conjecture is false. To be precise, there is a set $\mathcal{F} \subset S_{80}$,
$|\mathcal{F}|<31000$, such that $\sum_{n} C_{n}(\mathcal{F}) t^{n}$ is not D-finite.
Theorem 2. [Garrabrant, P., 2018+]
There is a set $\mathcal{F} \subset S_{80}$, such that $\sum_{n} C_{n}(\mathcal{F}) t^{n}$ is not $A D E$.
Historical notes: NZ Conjecture was first stated by Gessel in 1990. In 2005,
Zeilberger changes his mind, conjectures that $\left\{C_{n}(1324)\right\}$ is a counterexample.
In 2014, Zeilberger changes his mind half-way back, promises $\$ 100$ bounty, pays up in 2015 .

Computability implications

Theorem 3. [Garrabrant, P., 2015]
The problem whether $C_{n}(\mathcal{F})=C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2 \forall n$, is undecidable.
Corollary 1. For all k large enough, there exists $\mathcal{F}, \mathcal{F}^{\prime} \subset S_{k}$, s.t. the first time $C_{n}(\mathcal{F}) \neq C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2$ is for

Corollary 2. There exist two finite sets of patterns \mathcal{F} and \mathcal{F}^{\prime} in S_{k}, s.t. the problem of whether $C_{n}(\mathcal{F})=C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2$, for all $n \in \mathbb{N}$, is independent of ZFC.

Complexity result and Wilf's question

Theorem 4. [Garrabrant, P., 2015]
If $\mathrm{EXP} \neq \oplus \mathrm{EXP}$, then there exists a finite set of patterns \mathcal{F}, such that the sequence $\left\{C_{n}(\mathcal{F})\right\}$ cannot be computed in time polynomial in n.

Reminder: EXP = exponential time,
$\oplus \mathrm{P}=$ parity version of the class of counting problem \#P,
$\oplus \mathrm{EXP}=$ parity version of the class of counting problem \#EXP.
EXP $\neq \oplus E X P$ assumption is similar to $P \neq \oplus P$.

Remark: This answers Wilf's question (1982)
"Can one describe a reasonable and natural family of combinatorial enumeration problems for which there is provably no polynomial-in-n time formula or algorithm to compute $f(n)$?"

Simulating Turing Machines

Let \mathbb{X} denote the set of sequences $\left\{\xi_{\Gamma}(n)\right\}$, where
Γ is a two-stack automaton with source S and $\operatorname{sink} T$, and
$\xi_{\Gamma}(n)$ is the number of balanced $S-T$ paths of length n.
(Here balanced means that both stacks are empty at the end).

Main Lemma

Let $\xi: \mathbb{N} \rightarrow \mathbb{N}$ be a function in \mathbb{X}. Then there exist $k, a, b \in \mathbb{N}$
and sets of patterns $\mathcal{F}, \mathcal{F}^{\prime} \in S_{k}$, such that
$\xi(n)=C_{a n+b}(\mathcal{F})-C_{a n+b}\left(\mathcal{F}^{\prime}\right) \bmod 2$, for all $n \geq 1$.

Main Lemma can be used to derive both Theorem 3 and Theorem 4.
Note: Here mod 2 can be changed to any $\bmod p$, but cannot be completely removed.

Proof of Theorem 1.

Lemma 1. Let $\left\{a_{n}\right\}$ be a P-recursive sequence (i.e. with D-finite g.f.)
Let $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots\right), \bar{\alpha} \in\{0,1\}^{\infty}$ defined by $\alpha_{n}=a_{n} \bmod 2$.
Then there is a finite binary word w which is NOT a subword of $\bar{\alpha}$.
Lemma 2. There is a two-stack automaton Γ s.t. the number
of balanced paths $\xi_{\Gamma}(n)$ is given by the sequence
$0,1,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0, \ldots$
Lemma 1, Lemma 2 and the Main Lemma imply Theorem 1.

Proof of Theorem 2.

Lemma 1^{\prime}. Let $\left\{a_{n}\right\}$ be a sequence, and let $\left\{n_{i}\right\}$
be the sequence of indices with odd a_{n}. Suppose

1) for all $b, c \in \mathbb{N}$, there exists i such that $n_{i}=b \bmod 2 c$,
2) $n_{i} / n_{i+1} \rightarrow 0$ as $i \rightarrow \infty$.

Then the g.f. for $\left\{a_{n}\right\}$ is not ADE.
Observe: $\left\{a_{n}=n!+n\right\}$ satisfies conditions of Lemma 1^{\prime}.
Lemma $\mathbf{2}^{\prime}$. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n)=n!+n$.

Lemma 1^{\prime}, Lemma 2^{\prime} and the Main Lemma imply Theorem 2.

Notes on the proofs:

(i) We use exactly 6854 partial patterns.
(i) Automaton Γ in Lemma 2 uses 31 vertices, which is why the alphabet has size 10×10 only.
(iii) The largest matrix in \mathcal{F} has 8×8 blocks, which is why Theorem 1 has permutations in S_{80}.
(iv) Proof of Lemma 1 has only 2 paragraphs, but it took over a year to find a statement. Lemma 1^{\prime} took another year.
(v) Condition n_{i} / n_{i+1} in Lemma 1^{\prime} cannot be weakened, e.g. Cat (n) is odd if and only if $n=2^{m}-1$.

Open problems:

Conjecture 1. The Wilf-equivalence problem of whether $C_{n}\left(\mathcal{F}_{1}\right)=C_{n}\left(\mathcal{F}_{2}\right)$ for all $n \in \mathbb{N}$, is undecidable.

Conjecture 2. The Wilf-equivalence problem for single permutations: $C_{n}(\sigma)=C_{n}(\omega)$ for all $n \in \mathbb{N}$, is decidable.

Conjecture 3. Sequence $\left\{C_{n}(1324)\right\}$ is not P-recursive.
Conjecture 4. There exists a fixed set of patterns \mathcal{F}, s.t. computing $\left\{C_{n}(\mathcal{F})\right\}$ is \#EXP-complete.

Thank you!

