Complexity of Combinatorial Sequences

Igor Pak, UCLA

ICM, Rio de Janeiro, August 7, 2018

What is a combinatorial sequence?

OEIS now has over 300,000 sequences!

Our policy has been to include all interesting sequences, no matter how obscure the reference. [N.J.A. Sloane, S. Plouffe, EIS, 1995]

[The EIS contains] the unreleating cascade of numbers, [..] lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]

Selected integer sequences (from OEIS)

Combinatorial sequences

Let $\{a_n\}$ be a *combinatorial sequence*, e.g.

$$a_n = \#$$
 of triangulations of a convex *n*-gon $= \frac{1}{n+1} {\binom{2n}{n}}$
 $a_n = \#$ of domino tilings of $[n \times n] = \det M_n$
 $a_n = \#$ of connected labeled graphs on *n* vertices $\leftarrow \operatorname{RR}$
 $a_n = \#$ of triangulations of a $n \times n$ grid $= \gamma^{n^2(1+o(1))}$

Note: Combinatorial sequences have $a_n \in \mathbb{N}$.

Main Questions

Question 1: Does $\mathcal{A}(t) = \sum_{n} a_n t^n$ have a formula?

Question 2: Can a_n be computed efficiently?

Conjecture [Wilf, 1982]:

Number of unlabeled graphs on n vertices is *hard* to compute.

Fibonacci Numbers:

(1)
$$F_n = F_{n-1} + F_{n-2}$$

(2) $F_n = \sum_{i=0}^{\lfloor n/2 \rfloor} {\binom{n-i}{i}}$
(3) $F_n = (\phi^n + \phi^{-n})/\sqrt{5}$ where $\phi = (\sqrt{5}+1)/2$
(4) ${\binom{0\ 1}{1\ 1}}^n {\binom{0}{1}} = {\binom{F_n}{F_{n+1}}}$

Note: (1) is a definition, (2) implies $\{F_n\}$ is \mathbb{N} -rational, (3) gives exact asymptotics, and (4) is good for fast computation.

More Examples:

(1) $D_n = [[n!/e]], \text{ where } [[x]] \text{ denotes the nearest integer}$

(2)
$$C_n = [t^n] \frac{1 - \sqrt{1 - 4t}}{2t}$$

(3)
$$E_n = n! \cdot [t^n] y(t)$$
, where $2y' = 1 + y^2$, $y(0) = 1$

(5)
$$p(n) = [t^n] \prod_{i=1}^{\infty} \frac{1}{1-t^i}$$

(6)
$$\pi(n) = \sum_{k=2}^{n} \left(\left\lfloor \frac{(k-1)!+1}{k} \right\rfloor - \left\lfloor \frac{(k-1)!}{k} \right\rfloor \right).$$

Complexity Approach:

Definition: Sequence $\{a_n\}$ can be *computed efficiently* if there is an algorithm which computes a_n in time poly(n).

Examples: Fibonacci numbers F_n , Catalan numbers C_n , derangement numbers D_n , partition numbers p(n), etc.

Theorem: The following sequences can be computed efficiently: # connected 3-regular graphs on n vertices [Goulden-Jackson, Gessel] # non-isomorphic trees on n vertices [Goldberg] # partitions of $2^n - 1$ into $\{1, 2, 4, 8, ...\}$ (Cayley composition numbers) [P.-Yeliussizov]

Negative Results?

A theory is falsifiable if there exists at least one non-empty class of [..] basic statements which are forbidden by it. [Karl Popper, 1934]

Note: Wilf's Conjecture is a potential example (or not?) Some sequences take too long to write, e.g. $a_n = 2^{2^n}$. Some sequences are essentially open problems in mathematics, e.g. {prime F_n }.

Conjecture: The number of self-avoiding walks in \mathbb{Z}^2 with *n* steps starting *O* cannot be computes in time poly(n).

What Gives?

P versus NP — a gift to mathematics from computer science. [Stephen Smale]

Note: Sometimes a gift is a **Trojan Horse**.

Classes of combinatorial sequences

(1) **rational** g.f. $\mathcal{A}(t) = P(t)/Q(t), P, Q \in \mathbb{Z}[t]$. E.g. $a_n := F_n, \mathcal{A}(t) = 1/(1 - t - t^2)$.

(2) **algebraic** g.f. $c_0 \mathcal{A}^k + c_1 \mathcal{A}^{k-1} + \ldots + c_k = 0, c_i \in \mathbb{Z}[t]$. E.g. $a_n := C_n, \mathcal{A}(t) = (1 - \sqrt{1 - 4t})/2t$.

(3) **D-finite** g.f. $c_0 \mathcal{A} + c_1 \mathcal{A}' + \ldots + c_k \mathcal{A}^{(k)} = 0, c_i \in \mathbb{Z}[t]$. E.g. $a_n := \#$ involutions in S_n , then $a_n = a_{n-1} + (n-1)a_{n-2}$. The sequences $\{a_n\}$ are called *P-recursive*

(4) **ADE** (also **D**-algebraic) g.f. $Q(t, \mathcal{A}, \mathcal{A}', \dots, \mathcal{A}^{(k)}) = 0, Q \in \mathbb{Z}[t, x_0, x_1, \dots, x_k]$ E.g. $a_n = \#\{\sigma(1) < \sigma(2) > \sigma(3) < \dots \in S_n\}, \mathcal{A}'' = \mathcal{A} \cdot \mathcal{A}'.$ Also p(n) = # integer partitions of n (Jacobi, Ramanujan). Then $F(t) = \sum_n p(n)t^n$ satisfies:

$$4F^{3}F'' + 5tF^{3}F''' + t^{2}F^{3}F^{(4)} - 16F^{2}(F')^{2} - 15tF^{2}F'F'' - 39t^{2}F^{2}(F'')^{2} + 20t^{2}F^{2}F'F''' + 10tF(F')^{3} + 12t^{2}F(F')^{2}F'' + 6t^{2}(F')^{4} = 0.$$

General philosophy:

Inclusions: $(1) \subset (2) \subset (3) \subset (4)$.

Note: P-recursive sequences $\{a_n\}$ can be computed efficiently by definition.

Proposition: ADE sequences $\{a_n\}$ can be computed efficiently.

- Most combinatorial sequences have *nice* g.f. (D-finite, ADE, etc.)
- Proving that $\mathcal{A}(t) = \sum_{n} a_n t^n$ is *not* D-finite or ADE is difficult.
- Thus, proving $\{a_n\}$ non-D-finite and non-ADE are important first steps.

How hard can that be? Non-combinatorial examples:

Theorem (Jacobi, 1848): $\sum_{n} t^{n^2}$ is ADE.

Theorem (Lipshitz, Rubel, 1986): $\sum_{n} t^{2^n}$ is not ADE.

Conjecture: $\sum_{n} t^{n^3}$ is not ADE.

Theorem (Flajolet, Gerhold and Salvy, 2005): $\sum_{n} p_n t^n$ is *not* D-finite, where p_n is *n*-th prime.

Conjecture: $\sum_{n} p_n t^n$ is not ADE.

Walks on graphs:

Definition: Let $\Gamma = (V, E)$ be a graph, $O \in V$ fixed. Let a_n be the number of $x \to y$ walks in Γ of length n.

Examples:

Further examples: $\Gamma \subset \mathbb{Z}^d$, i.e. a region in the grid $\Gamma = \text{Cayley}(G, S)$, where G infinite group, $G = \langle S \rangle$, $S = S^{-1}$ finite (cogrowth sequence).

Theorem (folklore): $G = \mathbb{Z}^d$, any finite S, then $\{a_n\}$ is P-recursive.

Proposition (Furstenberg, 1967): $\Gamma = \mathbb{Z}^2$, then $\{a_n = \binom{2n}{n}^2\}$ is not algebraic.

Theorem (Haiman, 1993): $\Gamma = \mathbb{F}_k$, S standard, then $\{a_n\}$ is algebraic.

Walks on Cayley graphs:

Theorem (Elder, Rechnitzer, Janse, van Rensburg, Wong, 2014) Cogrowth sequence $\{a_n\}$ is P-recursive for $G = BS(N, N), S = \{x, x^{-1}, y, y^{-1}\},$ where $BS(k, \ell) = \langle x, y | x^k y = y x^\ell \rangle$.

Theorem (Garrabrant, P., 2017) Cogrowth sequence $\{a_n\}$ is *not* P-recursive for (1) virtually solvable groups of exponential growth with finite Prüfer rank; (2) amenable linear groups of superpolynomial growth;

(3) groups of weakly exponential growth

(4) Baumslag–Solitar groups BS(k, 1), where $k \ge 2$;

(5) *lamplighter groups* $L(d, H) = H \wr \mathbb{Z}^d$, where H is finite abelian, $d \ge 1$.

Theorem (Bell, Mishna, 2018+) Cogrowth sequence $\{a_n\}$ is *not* P-recursive for amenable groups of superpolynomial growth.

Walks on Cayley graphs:

Main lemma: (Birkhoff, Trjitzinsky, Katz, ...) Let $\{a_n\}$ be a P-recursive, $a_n < C^n$ for some C > 0 and all $n \ge 1$. Then

$$a_n \sim \sum_{i=1}^m K_i \lambda_i^n n^{\alpha_i} (\log n)^{\beta_i},$$

where $K_i \in \mathbb{R}_+$, $\lambda_i \in \overline{\mathbb{Q}}$, $\alpha_i \in \mathbb{Q}$, and $\beta_i \in \mathbb{N}$.

Theorem: (Garrabrant, P., 2017) There is a $\langle S \rangle = \mathbb{F}_k$, s.t. the cogrowth sequence $\{a_n\}$ is *not* P-recursive.

Theorem: (Garrabrant, P., 2018+) There is a $\langle S \rangle = \mathbb{F}_k$, s.t. the cogrowth sequence $\{a_n\}$ is *not* ADE.

Permutation classes

Permutation $\sigma \in S_n$ contains $\pi \in S_k$ if M_{π} is a submatrix of M_{σ} . Otherwise, σ avoids π . Such π are called *patterns*. For example, (4564123) contains (321) but avoids (4321).

(.				1		. \	(.					•	.)
	•	•	•	•	1	•			•			1	•
.	•	•	•	•		1	.		•			•	•
·	•	•	1	•	•	•			•	1	•	•	•
1	•	•	•	•	•	•	.	•	•	•	•	•	•
·	1	•	•	•	•	•		1	•	•	•	•	•
(.	•	1	•	•	•	•)	(.		•	•	•	•	•)

Fix a set of patterns $\mathcal{F} \subset S_k$. Denote by $C_n(\mathcal{F})$ the number of $\sigma \in S_n$ which avoids all $\pi \in \mathcal{F}$.

Question 1: Is $\mathcal{A}(t) = \sum_{n} C_{n}(\mathcal{F})t^{n}$ always D-finite or ADE? Question 2: Can $C_{n}(\mathcal{F})$ always be computed in poly(n) time?

Notable results and examples:

- (0) $C_n(12\cdots k, \ell \cdots 21) = 0, \forall n > (k-1)(\ell-1)$ [Erdős, Szekeres, 1935]
- (1) $C_n(123) = C_n(213) = \operatorname{Cat}(n)$ [MacMahon, 1915], [Knuth, 1973]
- (2) $C_n(123, 132, 213) = \operatorname{Fib}(n+1)$ [Simion, Shmidt, 1985]
- (3) $C_n(2413, 3142) = \text{Shröder}(n)$ [Shapiro, Stephens, 1991]
- (4) $C_n(1234) = C_n(2143)$ has D-finite g.f. [Gessel, 1990]
- (5) $C_n(1342) = C_n(2416385)$ has algebraic g.f. [Bona, 1997]
- (6) $C_n(\mathcal{F}) < K(\mathcal{F})^n$ [Marcus, Tardos, 2004], improving [Alon, Friedgut, 2000]
- (7) $K(\pi) = e^{k^{\Omega(1)}}$ w.h.p., for $\pi \in S_k$ random [Fox, 2013]
- (8) σ contains π is NP-complete [Bose, Buss, Lubiw, 1998]
- (9) can be decided in $O(n \log n)$ for π fixed [Guillemot, Marx, 2014]

Our main results

Noonan–Zeilberger Conjecture (1996): The g.f. for $\{C_n(\mathcal{F})\}$ is D-finite, for all fixed $\mathcal{F} \subset S_k$.

Theorem 1. [Garrabrant, P., 2015] The NZ Conjecture is false. To be precise, there is a set $\mathcal{F} \subset S_{80}$, $|\mathcal{F}| < 31000$, such that $\sum_{n} C_{n}(\mathcal{F})t^{n}$ is not D-finite.

Theorem 2. [Garrabrant, P., 2018+] There is a set $\mathcal{F} \subset S_{80}$, such that $\sum_n C_n(\mathcal{F})t^n$ is not ADE.

Historical notes: NZ Conjecture was first stated by Gessel in 1990. In 2005, Zeilberger changes his mind, conjectures that $\{C_n(1324)\}$ is a counterexample. In 2014, Zeilberger changes his mind half-way back, promises \$100 bounty, pays up in 2015.

Computability implications

Theorem 3. [Garrabrant, P., 2015]

The problem whether $C_n(\mathcal{F}) = C_n(\mathcal{F}') \mod 2 \ \forall n, is undecidable.$

Corollary 1. For all k large enough, there exists $\mathcal{F}, \mathcal{F}' \subset S_k$, s.t. the first time $C_n(\mathcal{F}) \neq C_n(\mathcal{F}') \mod 2$ is for

Corollary 2. There exist two finite sets of patterns \mathcal{F} and \mathcal{F}' in S_k , s.t. the problem of whether $C_n(\mathcal{F}) = C_n(\mathcal{F}') \mod 2$, for all $n \in \mathbb{N}$, is independent of ZFC.

Complexity result and Wilf's question

Theorem 4. [Garrabrant, P., 2015]

If $\mathsf{EXP} \neq \oplus \mathsf{EXP}$, then there exists a finite set of patterns \mathcal{F} , such that the sequence $\{C_n(\mathcal{F})\}$ cannot be computed in time polynomial in n.

Reminder: EXP = exponential time,

 $\oplus P$ = parity version of the class of counting problem #P, $\oplus EXP$ = parity version of the class of counting problem #EXP. $EXP \neq \oplus EXP$ assumption is similar to $P \neq \oplus P$.

Remark: This answers Wilf's question (1982)

"Can one describe a reasonable and natural family of combinatorial enumeration problems for which there is provably no polynomial-in-n time formula or algorithm to compute f(n)?"

Simulating Turing Machines

Let X denote the set of sequences $\{\xi_{\Gamma}(n)\}$, where Γ is a two-stack automaton with source S and sink T, and $\xi_{\Gamma}(n)$ is the number of balanced S - T paths of length n. (Here *balanced* means that both stacks are empty at the end).

Main Lemma

Let $\xi : \mathbb{N} \to \mathbb{N}$ be a function in X. Then there exist $k, a, b \in \mathbb{N}$ and sets of patterns $\mathcal{F}, \mathcal{F}' \in S_k$, such that $\xi(n) = C_{an+b}(\mathcal{F}) - C_{an+b}(\mathcal{F}') \mod 2$, for all $n \ge 1$.

Main Lemma can be used to derive both Theorem 3 and Theorem 4.

Note: Here mod 2 can be changed to any mod p, but cannot be completely removed.

Proof of Theorem 1.

Lemma 1. Let $\{a_n\}$ be a P-recursive sequence (i.e. with D-finite g.f.) Let $\overline{\alpha} = (\alpha_1, \alpha_2, \ldots), \overline{\alpha} \in \{0, 1\}^{\infty}$ defined by $\alpha_n = a_n \mod 2$. Then there is a finite binary word w which is NOT a subword of $\overline{\alpha}$.

Lemma 2. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n)$ is given by the sequence 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ...

Lemma 1, Lemma 2 and the Main Lemma imply Theorem 1.

Proof of Theorem 2.

Lemma 1'. Let $\{a_n\}$ be a sequence, and let $\{n_i\}$ be the sequence of indices with odd a_n . Suppose 1) for all $b, c \in \mathbb{N}$, there exists i such that $n_i = b \mod 2c$, 2) $n_i/n_{i+1} \to 0$ as $i \to \infty$. Then the g.f. for $\{a_n\}$ is not ADE.

Observe: $\{a_n = n! + n\}$ satisfies conditions of Lemma 1'.

Lemma 2'. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n) = n! + n$.

Lemma 1', Lemma 2' and the Main Lemma imply Theorem 2.

Notes on the proofs:

- (i) We use exactly 6854 partial patterns.
- (i) Automaton Γ in Lemma 2 uses 31 vertices, which is why the alphabet has size 10×10 only.
- (*iii*) The largest matrix in \mathcal{F} has 8×8 blocks, which is why Theorem 1 has permutations in S_{80} .
- (iv) Proof of Lemma 1 has only 2 paragraphs, but it took over a year to find a statement. Lemma 1' took another year.
- (v) Condition n_i/n_{i+1} in Lemma 1' cannot be weakened, e.g. $\operatorname{Cat}(n)$ is odd if and only if $n = 2^m - 1$.

Open problems:

Conjecture 1. The Wilf-equivalence problem of whether $C_n(\mathcal{F}_1) = C_n(\mathcal{F}_2)$ for all $n \in \mathbb{N}$, is undecidable.

Conjecture 2. The Wilf-equivalence problem for single permutations: $C_n(\sigma) = C_n(\omega)$ for all $n \in \mathbb{N}$, is decidable.

Conjecture 3. Sequence $\{C_n(1324)\}$ is not P-recursive.

Conjecture 4. There exists a fixed set of patterns \mathcal{F} , s.t. computing $\{C_n(\mathcal{F})\}$ is $\#\mathsf{EXP}$ -complete.

Thank you!

