Counting Contingency Tables

Igor Pak, UCLA

Combinatorics Seminar, OSU, September 17, 2020

Contingency tables

Fix $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right), \quad \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right), a_{i}, b_{j}>0$, s.t.

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}=N
$$

A contingency table with margins (\mathbf{a}, \mathbf{b}) is an $m \times n$ matrix $X=\left(x_{i j}\right)$, s.t.

$$
\sum_{j=1}^{n} x_{i j}=a_{i}, \quad \sum_{i=1}^{m} x_{i j}=b_{j}, \quad x_{i j} \geq 0 \quad \forall i, j
$$

We denote by $\mathcal{T}(\mathbf{a}, \mathbf{b})$ the set of all such matrices, and $\mathrm{T}(\mathbf{a}, \mathbf{b}):=|\mathcal{T}(\mathbf{a}, \mathbf{b})|$.

Main problem: Compute $\mathrm{T}(\mathbf{a}, \mathbf{b})$.
That means: formula, algorithm, asymptotics, bounds, etc.
More precisely: Do your best!

Examples:

$\mathbf{a}=\mathbf{b}=(1,1,1) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b})=6$
$\mathbf{a}=\mathbf{b}=(100,100,100) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b})=13268976 \approx 1.3 \times 10^{7}$
$m=n=10, \mathbf{a}=\mathbf{b}=(20, \ldots, 20) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b}) \approx 1.1 \times 10^{59}$ [Canfield-McKay, 2010]
$m=n=30, \mathbf{a}=\mathbf{b}=(3, \ldots, 3) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b}) \approx 2.2 \times 10^{92}$
$m=n=9, \mathbf{a}=\mathbf{b}=\left(10^{5}, \ldots, 10^{5}\right) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b}) \approx 6.1 \times 10^{279}$ [Beck-Pixton, 2003]
$m=n=9, \mathbf{a}=(220,215,93,64), \mathbf{b}=(108,286,71,127) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b})=1225914276768514 \approx 1.2 \times 10^{15}$ [Des Jardins, 1994]
$\mathbf{a}=(13070380,18156451,13365203,20567424), \mathbf{b}=(12268303,20733257,17743591,14414307) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b}) \approx 4.3 \times 10^{61}$ [De Loera, 2009]
$m=n=15, \mathbf{a}=\mathbf{b}=\left(10^{5}, \ldots, 10^{5}\right) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b}) \approx 1.7 \times 10^{819}$ [good estimate]
$m=n=100, \mathbf{a}=\mathbf{b}=\left(10^{3}, \ldots, 10^{3}\right) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b}) \approx 6.3 \times 10^{33470}$ [good estimate]
$m=n=100$, nonuniform margins average $10 \longrightarrow$??? [can be done via SHM in under 200h CPU time] $m=n=1000$, nonuniform margins average $100 \longrightarrow$??? [currently cannot be done in our lifetime]

More Examples:

Permutations: $m=n, \mathbf{a}=\mathbf{b}=(1, \ldots, 1) \longrightarrow \mathrm{T}(\mathbf{a}, \mathbf{b})=n!$
Magic squares: $m=n, \mathbf{a}=\mathbf{b}=(k, \ldots, k)$ [when k fixed, $\mathrm{T}(\mathbf{a}, \mathbf{b})$ is P-recursive]
$k=2 \longrightarrow \mathrm{~T}(\mathbf{a}, \mathbf{b})=c(n)$, where $c(n)=n^{2} c(n-1)-\frac{1}{2} n(n-1)^{2} c(n-2)$, so

$$
c(n) \sim \frac{\sqrt{e}(n!)^{2}}{\sqrt{\pi n}}
$$

$k=3 \longrightarrow \mathrm{~T}(\mathbf{a}, \mathbf{b})=n!v(n)$, where
$576 n \cdot v(n)=\left(2880 n^{2}-5760 n+3456\right) v(n-1)+\left(324 n^{5}-3564 n^{4}+14148 n^{3}-26028 n^{2}+21312 n-6192\right) v(n-2)$
$+\left(81 n^{6}-1377 n^{5}+7209 n^{4}-13203 n^{3}-3402 n^{2}+32076 n-21384\right) v(n-3)$
$+\left(-81 n^{7}+1944 n^{6}-20232 n^{5}+115578 n^{4}-383283 n^{3}+724230 n^{2}-708372 n+270216\right) v(n-4)$
$+\left(-72 n^{6}+1440 n^{5}-10890 n^{4}+40500 n^{3}-78678 n^{2}+75780 n-28080\right) v(n-5)$
$+\left(81 n^{9}-3321 n^{8}+59004 n^{7}-594054 n^{6}+3718687 n^{5}-14927199 n^{4}+38152096 n^{3}-59311746 n^{2}+50236612 n-17330160\right) v(n-6)$
$+\left(72 n^{8}-2520 n^{7}+37347 n^{6}-304479 n^{5}+1484133 n^{4}-4394565 n^{3}+7642248 n^{2}-7039116 n+2576880\right) v(n-7)$
$+\left(-198 n^{9}+8712 n^{8}-165175 n^{7}+1764196 n^{6}-11643772 n^{5}+48965728 n^{4}-130257475 n^{3}+209370724 n^{2}-182126340 n+64083600\right) v(n-8)$
$+\left(36 n^{10}-1944 n^{9}+45884 n^{8}-621504 n^{7}+5330892 n^{6}-30123576 n^{5}+112954596 n^{4}-275612976 n^{3}+415021552 n^{2}-343920960 n+116928000\right) v(n-9)$
$+\left(-9 n^{11}+585 n^{10}-16800 n^{9}+280800 n^{8}-3027357 n^{7}+22034565 n^{6}-110039130 n^{5}+375129450 n^{4}-849926784 n^{3}+1208298600 n^{2}-958439520 n+315705600\right) v(n-10)$
$+\left(-7 n^{10}+385 n^{9}-9240 n^{8}+127050 n^{7}-1104411 n^{6}+6314385 n^{5}-23918510 n^{4}+58866500 n^{3}-89275032 n^{2}+74400480 n-25401600\right) v(n-11)$
$+\left(n^{11}-66 n^{10}+1925 n^{9}-32670 n^{8}+357423 n^{7}-2637558 n^{6}+13339535 n^{5}-45995730 n^{4}+105258076 n^{3}-150917976 n^{2}+120543840 n-39916800\right) v(n-12)$,
so

$$
v(n) \sim e^{2} \sqrt{\frac{3 \pi n}{2}}\left(\frac{3 n^{3}}{4 e^{3}}\right)^{n}
$$

Complexity aspects: bad news all around

Theorem [Narayanan, 2006]
Computing $\mathrm{T}(\mathbf{a}, \mathbf{b})$ is \#P-complete.

Theorem [P.-Panova, 2020+, former folklore conjecture]
Computing $\mathrm{T}(\mathbf{a}, \mathbf{b})$ is strongly \#P-complete (i.e. for the input a_{i}, b_{j} in unary).

Corollary [P.-Panova, 2020+] Computing:

- Kostka numbers $K_{\lambda \mu}$ and Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$ is strongly \#P-complete
- Schubert coefficients is \#P-complete
- Kronecker coefficients $g(\lambda, \mu, \nu)$ and reduced Kronecker coefficients $\bar{g}(\lambda, \mu, \nu)$ is \#P-hard

Note: The last part is known [Ikenmeyer-Mulmuley-Walter, 2017] and [P.-Panova, 2020], resp.

Moral: Asymptotic formulas and approximate counting is the best one can hope for.

Connections and Applications

- Random networks: contingency tables \leftrightarrow bipartite graphs with fixed degrees

Note: graphs with fixed degrees \leftrightarrow symmetric binary (0-1) CTs with 0 diagonal, numerous papers on all aspects of these, see e.g. [Wormald, 2018 ICM survey]

- Statistics

Key observation: Random sampling \longleftrightarrow approximate counting Self-reduction:

$$
\mathbb{P}\left(x_{11} \geq t\right)=\frac{\mathrm{T}\left(a_{1}-t, a_{2}, \ldots ; b_{1}-t, b_{2}, \ldots\right)}{\mathrm{T}\left(a_{1}, a_{2}, \ldots ; b_{1}, b_{2}, \ldots\right)}
$$

Descendants of Queen Victoria (1819-1901)

Month of birth	Month of death												
	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Jan	1	0	0	0	1	2	0	0	1	0	1	0	6
Feb	1	0	0	1	0	0	0	0	0	1	0	2	5
March	1	0	0	0	2	1	0	0	0	0	0	1	5
April	3	0	2	0	0	0	1	0	1	3	1	1	12
May	2	1	1	1	1	1	1	1	1	1	1	0	12
June	2	0	0	0	1	0	0	0	0	0	0	0	3
July	2	0	2	1	0	0	0	0	1	1	1	2	10
Aug	0	0	0	3	0	0	1	0	0	1	0	2	7
Sept	0	0	0	1	1	0	0	0	0	0	1	0	3
Oct	1	1	0	2	0	0	1	0	0	1	1	0	7
Nov	0	1	1	1	2	0	0	2	0	1	1	0	9
Dec	0	1	1	0	0	0	1	0	0	0	0	0	3
Total	13	4	7	10	8	4	5	3	4	9	7	8	82

Question: Is there a dependence between Birthday and Deathday of the 82 (dead) descendants?

Testing correlation for $X=\left(x_{i j}\right)$ (after Diaconis-Efron, 1985):

- Sample large number N of random samples, compute their χ^{2},
- Output fraction a / N, where $a=$ number of samples with $\chi^{2} \leq \chi(X)$.

Birthday-Deathday example analysis:

Figure 1. Plot of χ^{2} from [Diaconis-Sturmfels] and [Dittmer-Pak]
Setup: $\chi^{2}(X) \approx 115.56$, so p-value $=\%$ of tables have $\chi^{2} \leq 115.56$
Hypothesis: There is NO dependence between Birthday and Deathday.
[Diaconis-Sturmfels, 1998]: From the 10^{6} trials of Diaconis-Gangolli $M C$, they get $p \approx 37.75 \% \longrightarrow$ Accept! [Dittmer-P., 2019+]: From the 5×10^{4} trials using our new $S H M M C$, we get $p \approx 0.10 \% \longrightarrow$ Reject!

First Moral: It's important to get good uniform samples from $\mathcal{T}(\mathbf{a}, \mathbf{b})$. Otherwise, you might actually start to believe that there is NO dependence.

Second Moral: Dependence, really??? Ah, well, the model was faulty...

Exact and approximate counting results

Below: $m \leq n, a_{1} \geq \ldots \geq a_{m}, b_{1} \geq \ldots \geq b_{n}$.

- Exact counting in poly-time for $m, n=O(1)$ [Barvinok'93]
- Exact counting in poly-time for $a_{1}, b_{1}=O(1)$ via dynamic programming.
- Quasi-poly time approx counting for $a_{1} / a_{m}, b_{1} / b_{n}<1.6$ and $m=\Theta(n)$ [Barvinok et al, 2010].
- Poly-time approx counting for $m=O(1)$ [Cryan, Dyer 2003]
- Poly-time approx counting for $a_{m}=\Omega\left(n^{3 / 2} m \log m\right)$ and $b_{n}=\Omega\left(m^{3 / 2} n \log n\right)$
[Dyer-Kannan-Mount, 1997], [Morris, 2002]
- Poly-time approx counting for $a_{1}, b_{1}=\Omega\left(n^{1 / 4-\varepsilon}\right), \varepsilon>0$ and $m=\Theta(n)$ [Dittmer-P., 2019+]
- Poly-time approx counting for all $a_{i}, b_{j}=\Theta\left(n^{1-\varepsilon}\right), \varepsilon>0$ and $m=\Theta(n)$ [Dittmer-P., 2019+]

Note: These four are all MCMC based FPFAS.

Diaconis-Gangolli Markov chain (1995)

STEP: choose a random 2×2 submatrix, and make either of the following changes:

$$
\begin{array}{llll}
+1 & -1 \\
-1 & +1
\end{array} \quad \text { or } \quad \begin{array}{ll}
-1 & +1 \\
+1 & -1
\end{array}
$$

(stay put if this is impossible). Note: Use hit-and-run for large a_{1}, b_{1}.
Note: Early theoretical results in [Diaconis - Saloff-Coste, 1995], [Chung-Graham-Yau, 1996]

Split-Hyper-Merge (SHM) Markov chain [Dittmer-P., 2019+]
Idea: Use Burnside processes [Jerrum, 1993] \leftarrow probabilistic version of the Burnside Lemma.
Lemma: $\mathcal{T}(\mathbf{a}, \mathbf{b})$ is in bijection with the set of orbits of group

$$
\Sigma:=\operatorname{Sym}\left(a_{1}\right) \times \ldots \times \operatorname{Sym}\left(a_{m}\right) \times \operatorname{Sym}\left(b_{1}\right) \times \ldots \times \operatorname{Sym}\left(b_{n}\right)
$$

acting on $S_{N}=N \times N$ permutation matrices.

Conjecture: For $a_{1} b_{1} \leq \operatorname{poly}(m n)$, both DG and SHM Markov chains mix in polynomial time.

Why contingency tables are orbits:

Here $X \in \mathcal{T}(3,2 ; 3,2)$ corresponds to orbit representative $M \in S_{5}$ under the action of $\Sigma=S_{3} \times S_{2} \times S_{3} \times S_{2}$.

Testing SHM chain on the Birthday-Deathday example (plot of χ^{2})

Independence heuristic [Good, 1950]: $T(\mathbf{a}, \mathbf{b}) \approx \mathrm{G}(\mathbf{a}, \mathbf{b})$, where

$$
\mathrm{G}(\mathbf{a}, \mathbf{b}):=\binom{N+m n-1}{m n-1}^{-1} \prod_{i=1}^{m}\binom{a_{i}+n-1}{n-1} \prod_{j=1}^{n}\binom{b_{j}+m-1}{m-1} .
$$

Good's reasoning [Good, 1976]: Let $\mathcal{S}(N, m, n)$ be the set of $m \times n$ tables with total sum N, so

$$
|\mathcal{S}(N, m, n)|=\binom{N+m n-1}{m n-1}
$$

Observe:

$$
\begin{aligned}
\mathbb{P}(X \text { has row sums a }) & =\frac{1}{|\mathcal{S}(N, m, n)|} \prod_{i=1}^{m}\binom{a_{i}+n-1}{n-1}, \\
\mathbb{P}(X \text { has column sums } \mathbf{b}) & =\frac{1}{|\mathcal{S}(N, m, n)|} \prod_{j=1}^{n}\binom{b_{j}+m-1}{m-1} .
\end{aligned}
$$

If these events are asymptotically independent:

$$
\begin{aligned}
\frac{\mathrm{T}(\mathbf{a}, \mathbf{b})}{|\mathcal{S}(N, m, n)|} & =\mathbb{P}(X \text { has row sums a, column sums } \mathbf{b}) \\
& \approx \frac{1}{|\mathcal{S}(N, m, n)|} \prod_{i=1}^{m}\binom{a_{i}+n-1}{n-1} \times \frac{1}{|\mathcal{S}(N, m, n)|} \prod_{j=1}^{n}\binom{b_{j}+m-1}{m-1} .
\end{aligned}
$$

"the conjecture appears to be confirmed" [...] "leaving aside finer points of rigor".

Does the independence heuristic work?

For the Birthday-Deathday example with $N=592: \mathrm{T}(\mathbf{a}, \mathbf{b})=1.226 \times 10^{15}$ vs. $\mathrm{G}(\mathbf{a}, \mathbf{b})=1.211 \times 10^{15}$
For the large 4×4 case with $N=65159458$ [De Loera]: $T(\mathbf{a}, \mathbf{b})=4.3 \times 10^{61}$ vs. $\mathrm{G}(\mathbf{a}, \mathbf{b})=3.7 \times 10^{61}$

Theorem [Canfield-McKay, 2010] For $m=n, \mathbf{a}=\mathbf{b}=(k, \ldots, k), k=\omega(1), k=O(\log n)$:

$$
\mathrm{T}(\mathbf{a}, \mathbf{b}) \sim \sqrt{e} \cdot \mathrm{G}(\mathbf{a}, \mathbf{b}) \text { as } n \rightarrow \infty .
$$

Theorem [Greenhill-McKay, 2008] For $m=n, a_{1} b_{1}=o\left(N^{2 / 3}\right)$:

$$
\mathrm{T}(\mathbf{a}, \mathbf{b}) \sim \sqrt{e} \cdot \mathrm{G}(\mathbf{a}, \mathbf{b}) \quad \text { as } n \rightarrow \infty
$$

Theorem [Barvinok, 2009] For $m=n, \mathbf{a}=\mathbf{b}=(B n, \ldots, B n, n, \ldots, n)$, with θn sums $B n$

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log T(\mathbf{a}, \mathbf{b})>\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log G(\mathbf{a}, \mathbf{b}) \text { for all } B>1 .
$$

Two valued margins: second order phase transition

Theorem [Lyu-P., 2020+]
Let $m=n, \mathbf{a}=\mathbf{b}=(B n, \ldots, B n, n, \ldots, n)$, with n^{δ} sums $B n, 0<\delta<1$ fixed.
Let $B_{c}=1+\sqrt{2}$. Then:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathrm{~T}(\mathbf{a}, \mathbf{b})=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathrm{G}(\mathbf{a}, \mathbf{b})=2 \log 2 .
$$

On the other hand:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{1+\delta}} \log \frac{\mathrm{T}(\mathbf{a}, \mathbf{b})}{\mathrm{G}(\mathbf{a}, \mathbf{b})}=\left\{\begin{aligned}
0 & \text { for } 1 \leq B<B_{c} \\
\left(B-B_{c}\right) \log B_{C}-2 f(B)+2 f\left(B_{c}\right) & \text { for } B>B_{c}
\end{aligned}\right.
$$

where $f(x):=(x+1) \log (x+1)-x \log x$.
The proof is based on [Barvinok, 2009] and [Dittmer-Lyu-P., 2020].

Combinatorial optimization approach

Theorem [Barvinok'09, Barvinok-Hartigan'12]

$$
N^{-7(m+n)} g(\mathbf{a}, \mathbf{b}) \lesssim \mathrm{T}(\mathbf{a}, \mathbf{b}) \leq g(\mathbf{a}, \mathbf{b})
$$

for some $\gamma>0$, where

$$
g(\mathbf{a}, \mathbf{b}):=\inf _{\substack{x_{i} \in(0,1) \\ 1 \leq i \leq m}} \inf _{\substack{j_{j} \in(0,1) \\ 1 \leq j \leq n}}\left[\prod_{i=1}^{m} x_{i}^{a_{i}} \prod_{j=1}^{m} y_{j}^{b_{j}}\right]^{-1} \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{1-x_{i} y_{j}}
$$

The lower bound is hard, but made explicit. The upper bound is immediate from the GF:

$$
\prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{1-x_{i} y_{j}}=\sum_{\mathbf{a} \in \mathbb{N}^{m}, \mathbf{b} \in \mathbb{N}^{n}} \mathrm{~T}(\mathbf{a}, \mathbf{b}) \prod_{i=1}^{m} x_{i}^{a_{i}} \prod_{j=1}^{m} y_{j}^{b_{j}}
$$

Theorem [Brändén-Leake-P., 2020+] For all margins (a, b) we have:

$$
\left[\frac{1}{e^{m+n-1}} \prod_{i=2}^{m} \frac{1}{a_{i}+1} \prod_{j=1}^{n} \frac{1}{b_{j}+1}\right] g(\mathbf{a}, \mathbf{b}) \leq \mathrm{T}(\mathbf{a}, \mathbf{b}) \leq g(\mathbf{a}, \mathbf{b})
$$

The proof involves the technology of (denormalized) Lorentzian polynomials [Brändén-Huh, 2019], and the approach in [Gurvits '08, '09, '15].

Applications of the New LB

For the Birthday-Deathday example with $N=592$: $\mathrm{T}(\mathbf{a}, \mathbf{b})=1.2 \times 10^{15}$, New $\mathrm{LB}=9.5 \times 10^{12}$, Old $\mathrm{LB}=4.6 \times 10^{8}$
For the large 4×4 case with $N=65159458: T(\mathbf{a}, \mathbf{b})=4.3 \times 10^{61}$, New $\mathrm{LB}=5.8 \times 10^{58}$, Old $\mathrm{LB} \leftarrow$ hard to compute.

Volumes of transportation polytopes:

Observe that $\mathcal{T}(\mathbf{a}, \mathbf{b})$ are integer points in $Q(\mathbf{a}, \mathbf{b}):=\mathcal{T}_{\mathbb{R}}(\mathbf{a}, \mathbf{b}) \subset \mathbb{R}_{+}^{m n}$. Then:

$$
\operatorname{vol} Q(\mathbf{a}, \mathbf{b})=\sqrt{m^{n-1} n^{m-1}} \cdot \lim _{M \rightarrow \infty} \frac{\mathrm{~T}(M \mathbf{a}, M \mathbf{b})}{M^{(m-1)(n-1)}}
$$

[Canfield-McKay, 2009] \longrightarrow asymptotics for the volume of the Bikrhoff polytope $Q(\mathbf{1}, \mathbf{1})$.
[Brändén-Leake-P., 2020+] \longrightarrow new lower bounds for the volume of general transportation polytopes $Q(\mathbf{a}, \mathbf{b})$.

Note: Barvinok and $[\mathrm{BLP}]$ results generalize to all subsets of zeros in $[m \times n]$. These give lower bounds for all bipartite flow polytopes. Using [Baldoni et al., 2004] these give lower bounds for all flow polytopes.

Thank you!

