Polyhedral Domes

Igor Pak, UCLA

(joint work with Alexey Glazyrin, UTRGV)

Colloquium, King's College London, UK (May 4, 2021)

Platonic solids

ELEMENTS BOOK 13

The Platonic solids †

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces

Question 1: How do you know the *icosahedron* really exists?

Question 2: And if it does, how do you know it's *inscribed into a sphere*?

Answer: That depends on how icosahedron is defined!

MAGAZINE ATHENS LITERATURE PLATO

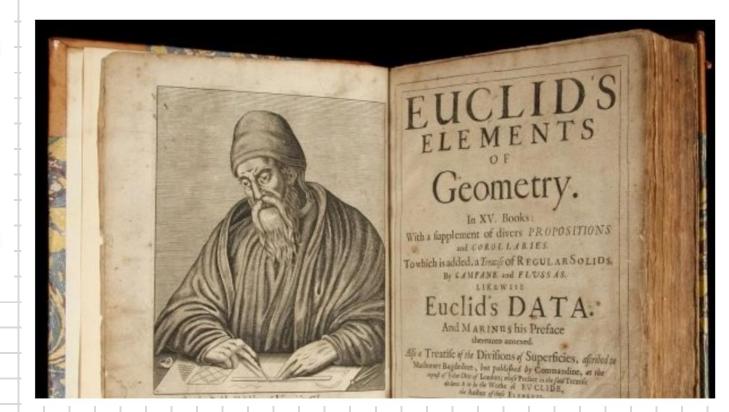
Plato got virtually everything wrong

Big brain, big mistakes

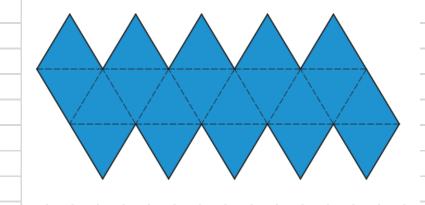
By Julian Baggini September 20, 2018 OCTOBER 2018 Prospect

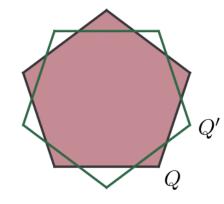
Euclid Was Wrong

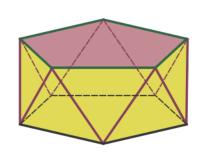
JOURNAL ARTICLE

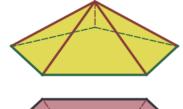

What is wrong with Euclid?

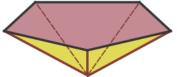
A. E. MEDER JR.

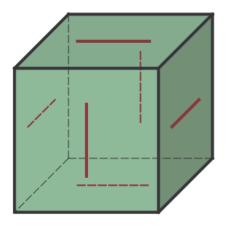

The Mathematics Teacher Vol. 51, No. 8 (December 1958), pp. 578-584 (7

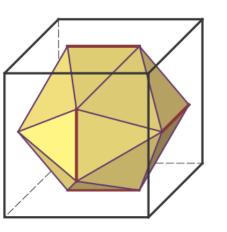

AUG 12, 2015 JOHN-ERIK PERSSON MATHEMATICS, PHILOSOPHY 0 COMMENT




Platonic solids


Definition 1: *Regular polytopes* = convex polytopes where all sides are regular polygons with the same number of sides, and where every vertex has the same degree





Need: *Alexandrov Unfolding Theorem* Works by continuity. **Question:** Is it inscribed into a sphere?

Platonic solids

Definition 2: *Regular polytopes* = convex polytopes *P* whose group of symmetries acts transitively on complete flags of *P*.

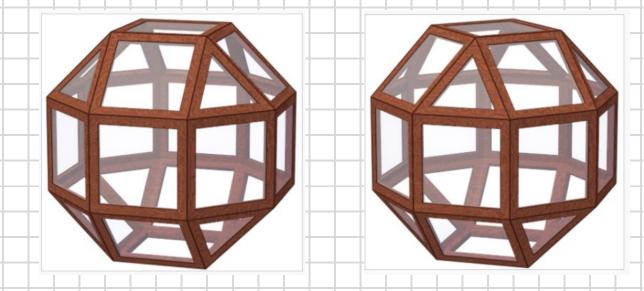
 $(0, \pm 1, \pm \phi), (\pm 1, \pm \phi, 0), \text{ and } (\pm \phi, 0, \pm 1),$ $\phi = \frac{-1 \pm \sqrt{5}}{2}$ is the golden ratio

Note: Still need a calculation to check Def. 2

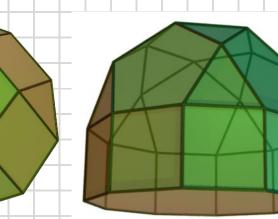
Adrien-Marie Legendre

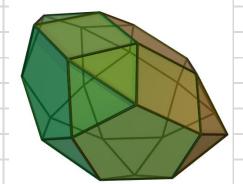
Discovered and fixed the mistake in his translation of

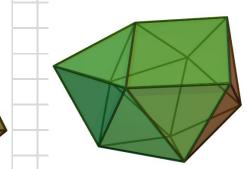
Éléments de géométrie, 1794

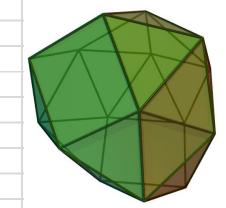


Modern day approach: Cauchy Rigidity Theorem (1813)


Archimedean solids

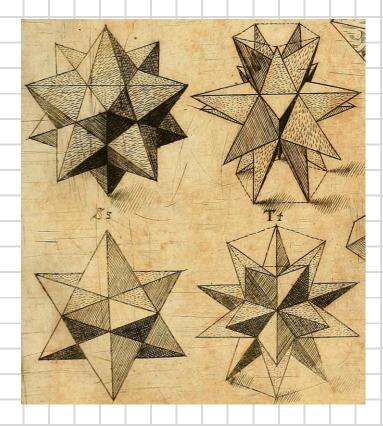

Definition: all faces are regular polygons, and symmetry group acts transitively on vertices

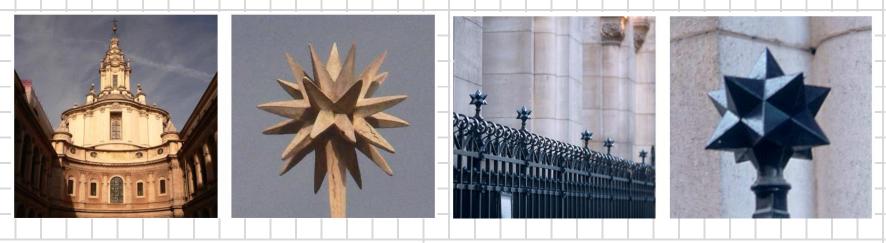

Note: Archimedes did not miss one! (don't trust *Wikipedia*)



Johnson solids

Norman Johnson 1966


Victor Zalgaller 1969 (218 pages, habilitation)


Proof ingredients:

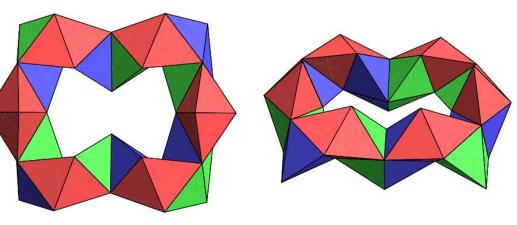
Alexandrov unfolding theorem, variation on Volkov stability theorem, heavy computer calculations (BESM-3M at S.Pb. University)

Kepler–Poinsot polyhedra

The church Sant'Ivo alla Sapienza in Rome_Grande Synagogue de Paris, rue de la Victoire,

The Exhibition Centre in Beijing

Johannes Kepler *Harmonices Mundi* 1619



Steinhaus problem (Scottish book, 1957)

(1) Does there exist a closed tetrahedral chain? \leftarrow Coxeter helix

(2) Are the end-triangles dense in the space of all triangles?

Art Tower Mito

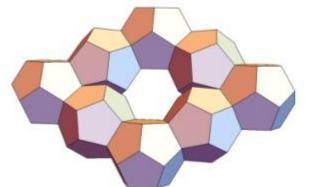
A length-36 fake tetratorus with a final gap of about 0.0005 cm.

Part (1) was resolved negatively by Świerczkowski (1959)

Part (2) was partially resolved by Elgersma–Wagon (2015) and Stewart (2019)

Idea: The group of face reflections is isomorphic to $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ which is dense in $O(3, \mathbb{R})$

General surfaces with regular polyhedral faces

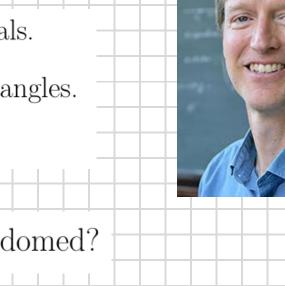

Square surfaces: Dolbilin–Shtanko–Shtogrin (1997)

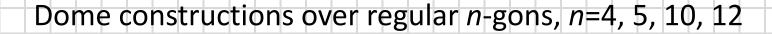
(no new polyhedra of this kind)

Pentagonal surfaces: Alevy (2018+)

(for small genus all such polyhedra are comprised of dodecahedra attached along faces)

Many ad hoc examples:


Integral curves


A PL-curve $\gamma \subset \mathbb{R}^3$ is called *integral* if comprised of unit length intervals.

A dome is a 2-dim PL-surface $S \subset \mathbb{R}^3$ comprised of unit equilateral triangles.

Integral curve γ can be domed if there is a dome S s.t. $\partial S = \gamma$.

Problem [Kenyon, c. 2005]: Can every closed integral curve be domed?

Other domes

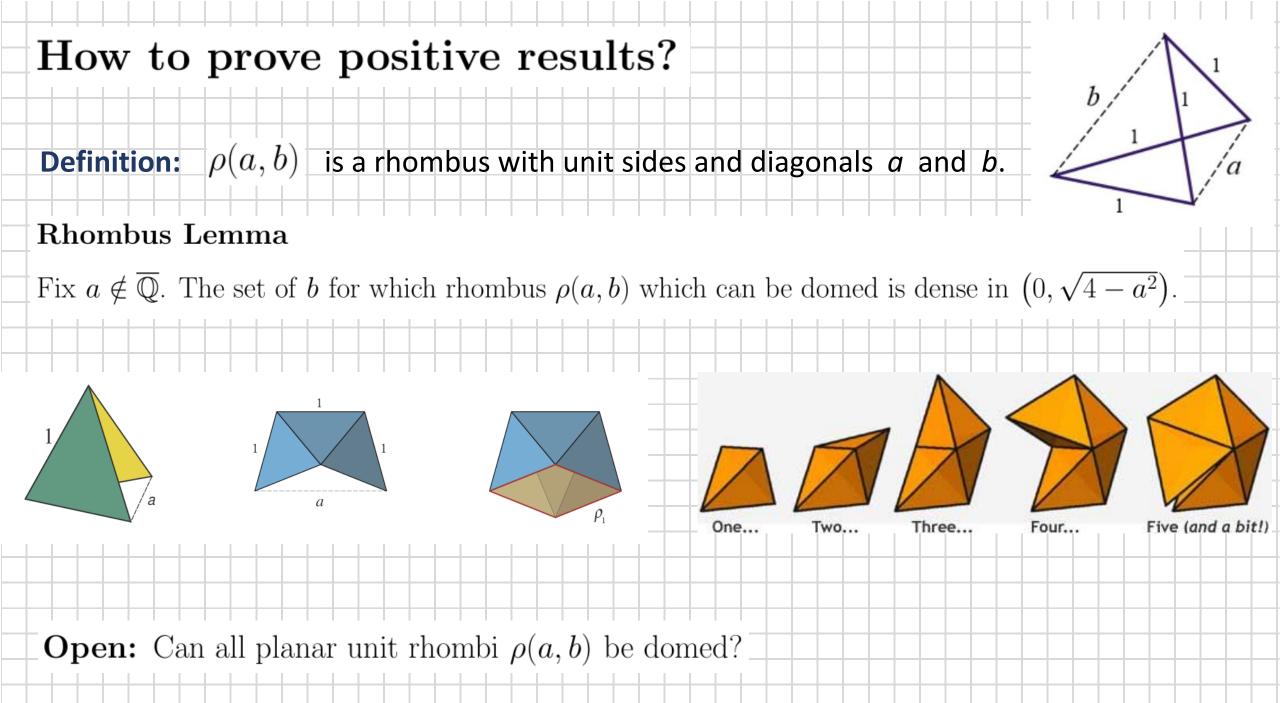
Question: Is this a dome

over a planar n-gon?

Buckminster Fuller's real dome and his sketch of the Dome over Manhattan (1960)

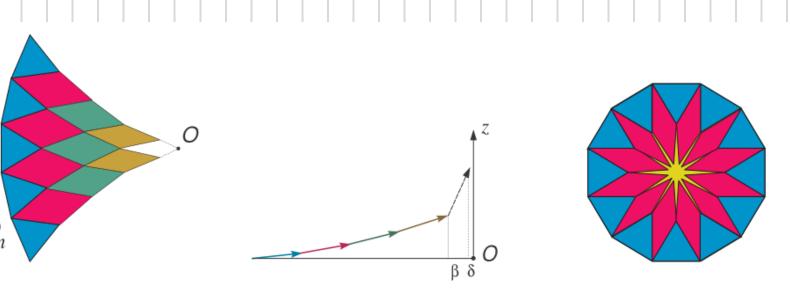
Positive results:

Theorem 1 [Glazyrin–P., 2020+]


For every integral curve $\gamma \subset \mathbb{R}^3$ and $\varepsilon > 0$, there is an integral curve $\gamma' \subset \mathbb{R}^3$,

such that $|\gamma| = |\gamma'|, |\gamma, \gamma'|_F < \varepsilon$ and the curve γ' can be domed.

Here $|\gamma, \gamma'|_F$ is the *Fréchet distance* $|\gamma, \gamma'|_F = \max_{1 \le i \le n} |v_i, v'_i|$.


Theorem 2 [Glazyrin–P., 2020+]

Every regular integral n-gon in the plane can be domed.

Domes over regular polygons

Construction sketch:

Wayman AME Church Minneapolis, MN

Tilt blue triangles by $\angle \theta$. Make near-planar rhombi until the center is overshot.

Use continuity to find θ for which the tip of the slice is on the vertical axis.

Negative results:

Theorem 3 [Glazyrin–P., 2020+]

Let $\rho(a,b) \subset \mathbb{R}^3$ be a unit rhombus with diagonals a, b > 0. Suppose $\rho(a,b)$ can be domed.

Then there is a nonzero polynomial $P \in \mathbb{Q}[x, y]$, such that $P(a^2, b^2) = 0$.

Theorem 4 [Glazyrin–P., 2020+]

Let $\rho(a, b) \subset \mathbb{R}^3$ be a unit rhombus with diagonals a, b > 0.

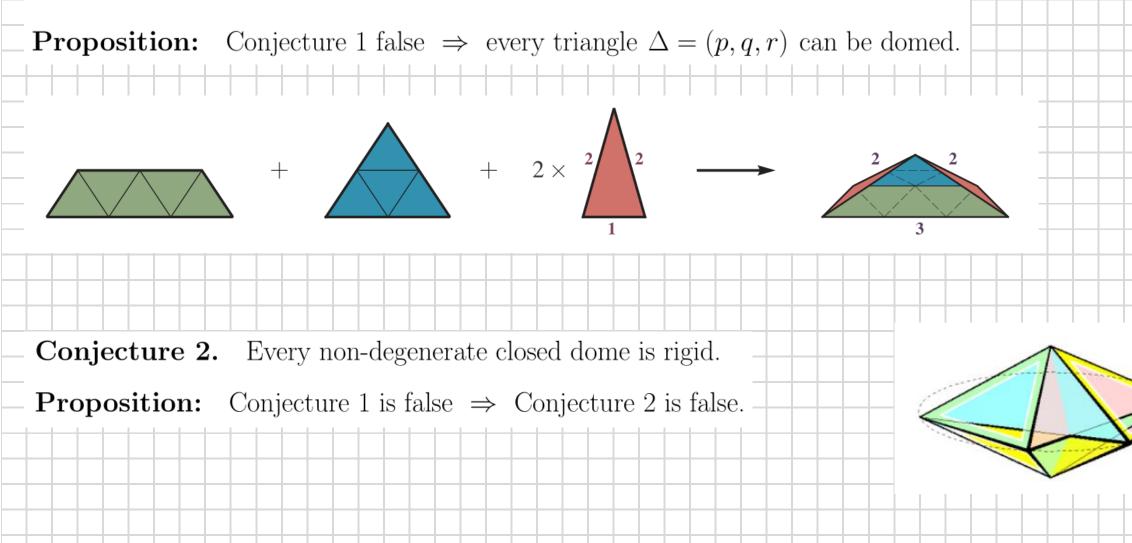
If $a \notin \overline{\mathbb{Q}}$ and $a/b \in \overline{\mathbb{Q}}$, then $\rho(a, b)$ cannot be domed.

Examples:

 $\rho\left(\frac{1}{\pi}, \frac{e^{\pi}}{\sqrt{97}}\right) \leftarrow \text{Thm } 3,$

 $\rho\left(\frac{1}{\pi}, \frac{1}{\pi}\right)$ and $\rho\left(\frac{e}{\sqrt{17}}, \frac{e}{\sqrt{19}}\right) \leftarrow \text{Thm 4.}$

Proof ingredients:


- heavy use of theory of places
- technical inductive topological argument

[Conelly–Sabitov–Walz, 1997], –[Connelly, 2009],

[Gaifullin–Gaifullin, 2014]

Conjectures and open problems

Conjecture 1. An isosceles triangle $\Delta = (2, 2, 1)$ cannot be domed.

Conjectures and open problems

Conjecture 3:

The set of a, s.t. planar rhombus $\rho(a, \sqrt{4-a^2})$ can be domed, is countable.

Conjecture 4:

There are unit triangles $\Delta_1, \Delta_2 \subset \mathbb{R}^3$, such that $\Delta_1 \cup \Delta_2$ cannot be domed.

 $\label{eq:conjecture 5 ("cobordism for domes"]:} Conjecture 5 ["cobordism for domes"]:$

For every integral curve $\gamma \in \mathbb{R}^3$, there is a unit rhombus ρ , and a dome over $\gamma \cup \rho$.

