Igor Pak, UCLA

April 15, 2021

What is a combinatorial interpretation?

Experimental Mathematics Seminar

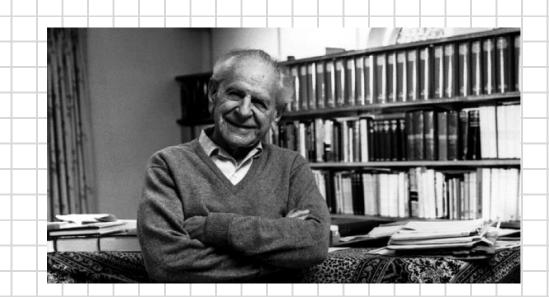
Rutgers University

zoom

What it does not exist?

"In so far as a scientific statement speaks about reality, it must be falsifiable: and in so far as it is not falsifiable, it does not speak about reality."

Karl R. Popper, The Logic of Scientific Discovery



Three Deep Problems in Enumerative Combinatorics

(1) What is a (good) bijection?

(2) What is a (good) formula?

(3) What is a (good)

combinatorial interpretation?

Rogers-Ramanujan bijection?

Garsia-Milne (1980), Boulet-P. (2006) based on Bressoud-Zeilberger (1989)

P., asymptotic approach (2004) Konvalinka-P. (2009)

Wilf (1982), What is an answer?

Garrabrant-P. (2015) ← disproof of the Noonan-Zeilberger Conjecture, Negative answer to Kontsevich problem

P. (2018) ← ICM survey

Super Catalan numbers

 $S(m,n) := \frac{(2m)! (2n)!}{m! n! (m+n)!} \qquad \text{defined by E. Catalan in 1874}$

$$S(m,n) = \sum_{k} (-1)^{k} \binom{2m}{m+k} \binom{2n}{n+k} \xrightarrow{\text{von Szily identity (1894)}}$$

 $S(1,n)/2 = C_n$ is the usual Catalan number

Ira M. Gessel, Guoce Xin

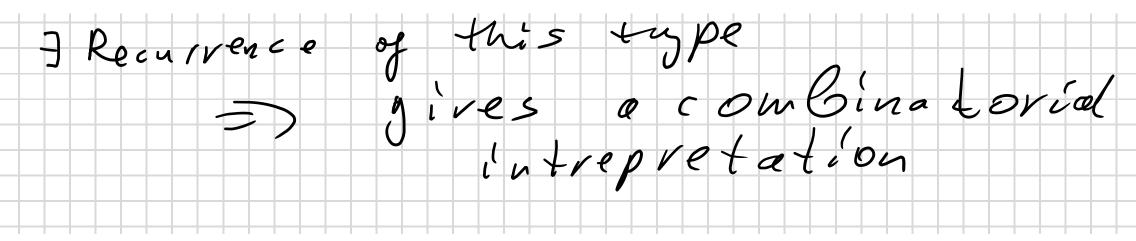
ABSTRACT. It is well known that the numbers (2m)! (2n)!/m! n! (m+n)! are integers, but in general there is no known combinatorial interpretation for them. When m = 0 these numbers are the middle binomial coefficients $\binom{2n}{n}$, and when m = 1 they are twice the Catalan numbers. In this paper, we give combinatorial interpretations for these numbers when m = 2 or 3.

arXiv:math/0401300

Super Catalan numbers (continued)

$$S(m, m + \ell) = \sum_{k} 2^{\ell - 2k} \binom{\ell}{2k} S(m, k).$$

I. M. Gessel, Super ballot numbers, J. Symbolic Comput. 14 (1992), 179–194.



G. Schaeffer: "What is clearly left open by Gessel type interpretation of Super Catalan numbers is the constructive division issue about their multiplicative factorial form." (2018)

Unimodality of *q*-binomial coefficients

A sequence (a_1, a_2, \ldots, a_n) is called *unimodal*, if for some k we have $a_1 \leq a_2 \leq \ldots \leq a_k \geq a_{k+1} \geq \ldots \geq a_n$ The *q*-binomial (Gaussian) coefficients are defined as: $\binom{m+\ell}{m}_{a} = \frac{(q^{m+1}-1)\cdots(q^{m+\ell}-1)}{(q-1)\cdots(q^{\ell}-1)} = \sum_{k=0}^{m} p_{k}(\ell,m) q^{k}_{-}$ Sylvester's theorem establishes unimodality of the sequence (1878) $p_0(\ell, m), p_1(\ell, m), \ldots, p_{\ell m}(\ell, m).$ M **Question:** Is there a combinatorial interpretation of Q Ń $p_k(\ell, m) - p_{k-1}(\ell, m), 1 \le k \le \ell m/2$ # portitions 2+n which fit K [m×l

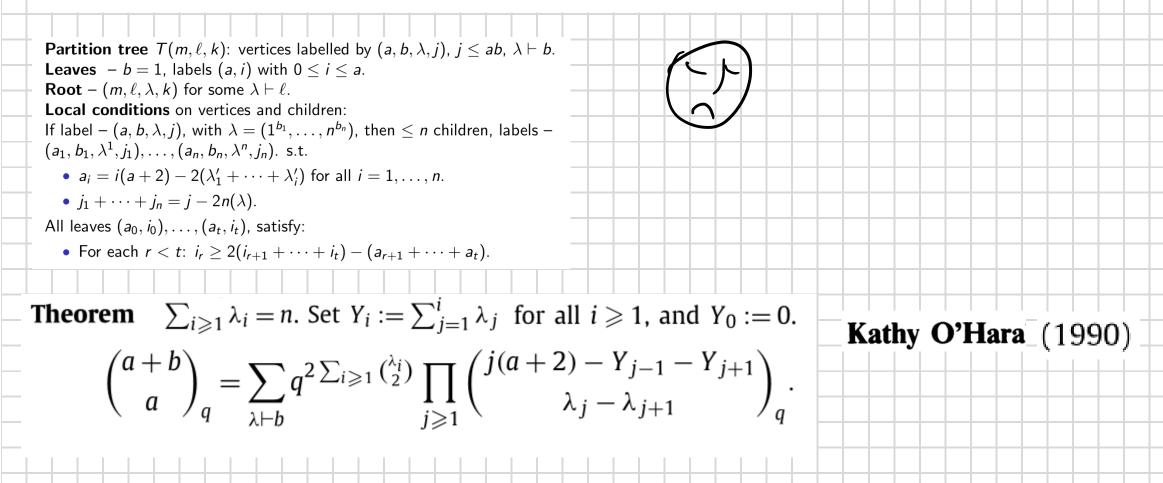
Unimodality of *q*-binomial coefficients (continued)

Theorem

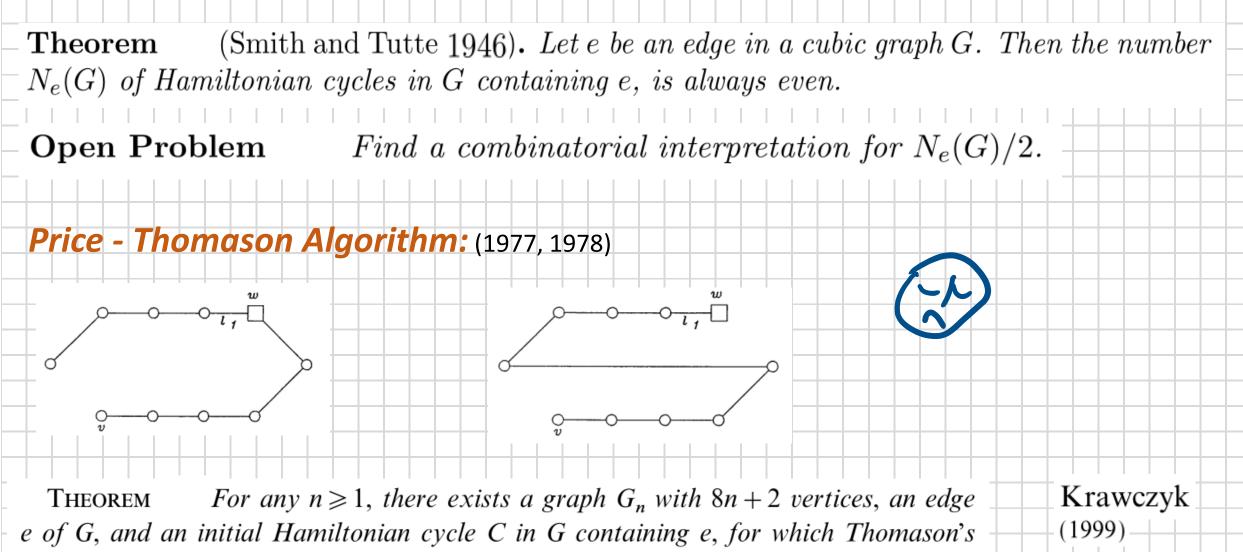
(Pak–Panova, 2015). Fix $\ell, m \geq 1$. The sequence

 $\{p_k(\ell, m) - p_{k-1}(\ell, m), 1 \le k \le \ell m/2\}$

 $has \ a \ combinatorial \ interpretation$



Hamiltonian cycles in cubic graphs



algorithm makes 2^n steps.

Question: Is there a combinatorial interpretation?

RemarkThe (metamathematical) Schützenberger principle states that all combinatorialsequences with rational GFs must be \mathbb{N} -rational

J. Berstel and C. Reutenauer, 2011.

MI-val Coual

Kronecker Coefficients

$$\chi^{\lambda} \cdot \chi^{\mu} = \sum_{\nu \vdash n} g(\lambda, \mu, \nu) \chi^{\nu}, \qquad \text{where } \lambda, \mu \vdash n, \\ \text{and } \chi^{\lambda}, \chi^{\mu}, \chi^{\nu} \text{ are irreducible characters of } S_n.$$

$$g(\lambda, \mu, \nu) := \langle \chi^{\lambda} \chi^{\mu}, \chi^{\nu} \rangle = \frac{1}{n!} \sum_{\sigma \in S_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma), \\ \sum_{\lambda, \mu, \nu} g(\lambda, \mu, \nu) s_{\lambda} s_{\mu} s_{\nu} = \prod_{i, j, k} \frac{1}{1 - x_i y_j z_k} \qquad Schur's theorem$$

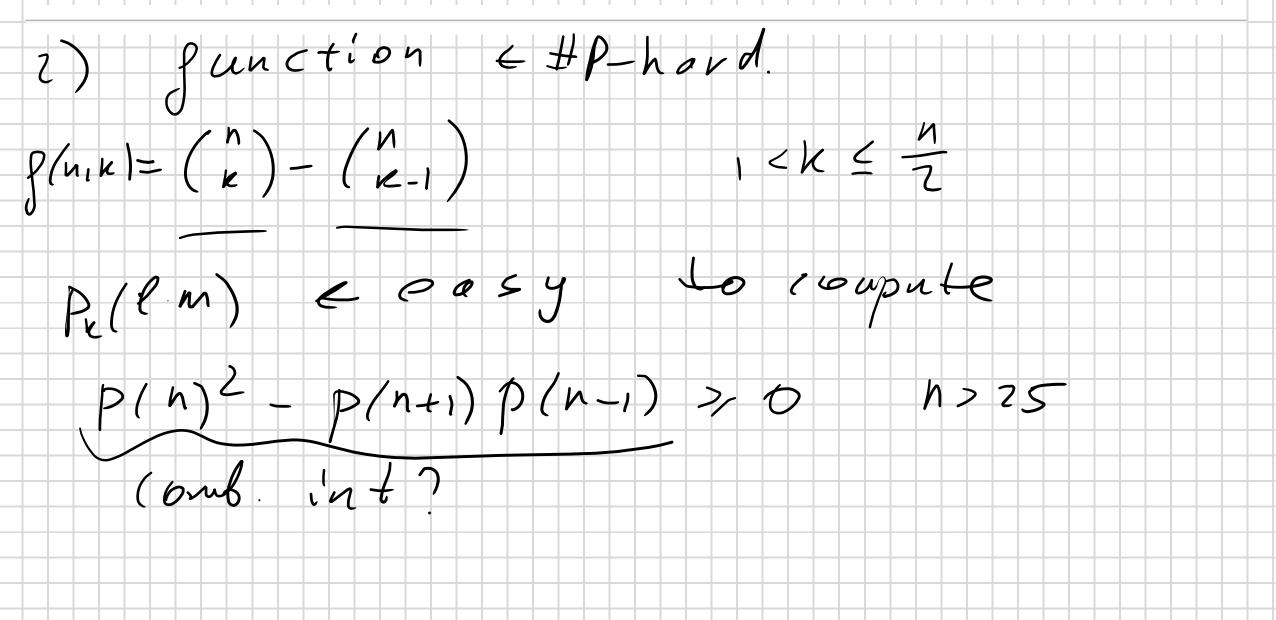
$$g(\lambda, \mu, \nu) = \sum_{\omega \in S_\ell} \sum_{\pi \in S_m} \sum_{\tau \in S_r} \operatorname{sign}(\omega \pi \tau) \cdot \operatorname{CT}(\lambda + 1_\ell - \omega, \mu + 1_m - \pi, \lambda + 1_r - \tau)$$
where $\operatorname{CT}(\alpha, \beta, \gamma) = \#[3\text{-dim contingency tables with marginals } \alpha, \beta, \gamma].$

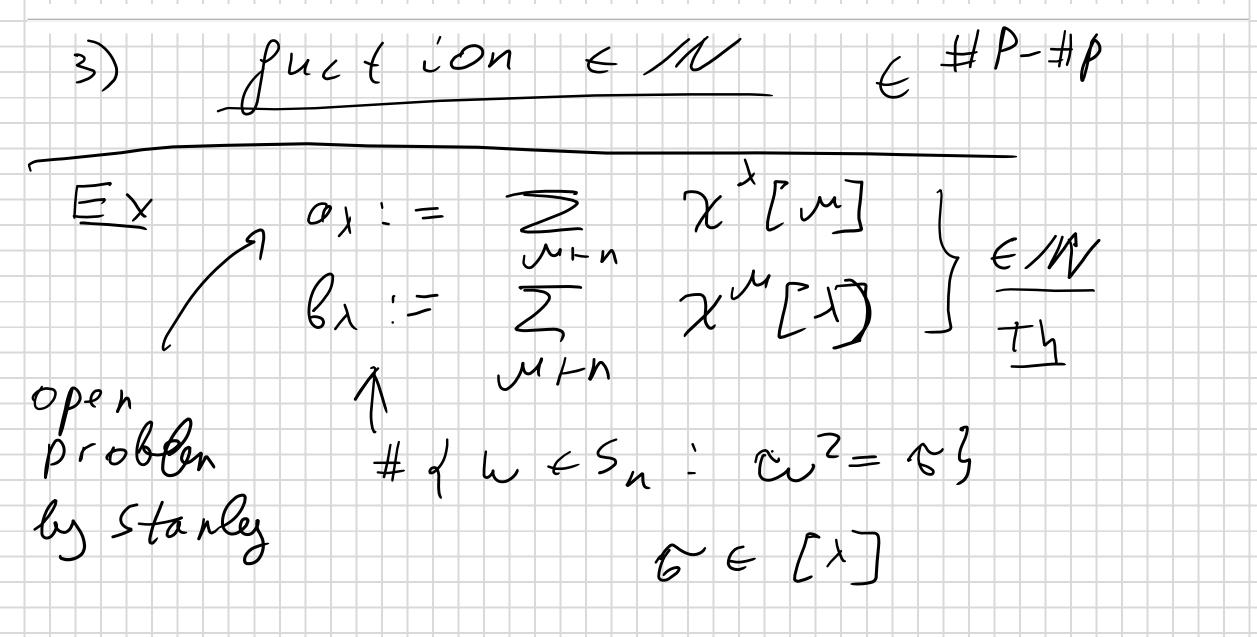
Kronecker Coefficients

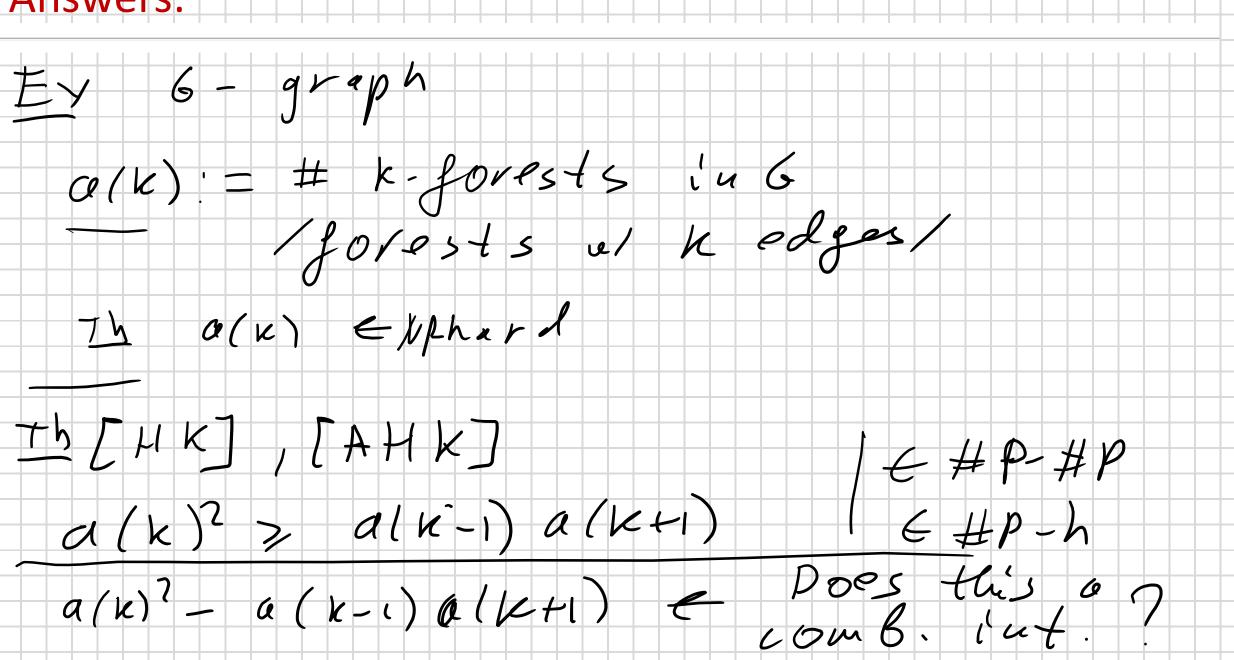
where $\lambda, \mu \vdash n, _$ $\chi^{\lambda} \cdot \chi^{\mu} = \sum g(\lambda, \mu, \nu) \, \chi^{\nu},$ and $\chi^{\lambda}, \chi^{\mu}, \chi^{\nu}$ are irreducible characters of S_n . $\nu \vdash n$ **Open Problem** Find a combinatorial interpretation for the Kronecker coefficients Murnaghan (1938) $\{g(\lambda,\mu,\nu),\,\lambda,\mu,\nu\vdash n\,\}.$ Let $n = \ell m$, $\tau_k = (n - k, k)$, where $0 \le k \le n/2$ and set $p_{-1}(\ell, m) = 0$. Then Lemma $q(m^{\ell}, m^{\ell}, \tau_k) = p_k(\ell, m) - p_{k-1}(\ell, m).$ Theorem For all $\ell, m \geq 8$, we have the following strict inequalities: (o) $p_1(\ell,m) < \ldots < p_{\lfloor \ell m/2 \rfloor}(\ell,m) = p_{\lceil \ell m/2 \rceil}(\ell,m) > \ldots > p_{\ell m-1}(\ell,m).$

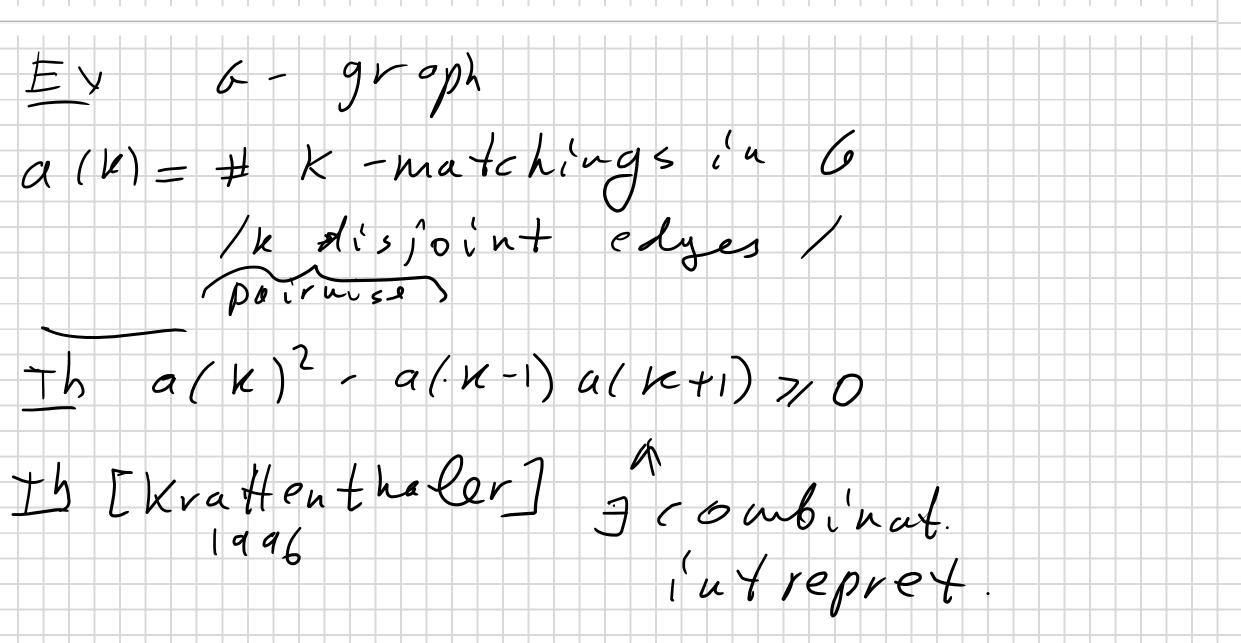
Note: Many other special cases are known.

comb. interpre. 10h principles Y 3 ₽ unction ₽ e # D # # オ # Æ Z # 146 6 $\leq \rho$ Μ 4 -00 1# MC cu @ [] Z #p 4 l 2 \mathcal{I}









6 inquality FK Th, 6 . le 1 of # 5 Sakgrup are planar uhi ch Suby rophs S D 6 and 4/ 2 plan graphs 5 ineq 6 # К. in has Q Lou

Thank you!

