
CHAPTER S i x  

Combinatorics 

COMBINATORIAL ANALYSIS--Or, as it is coming to be called, 
combinatorial t h e o r y - i s  both the oldest and one of the least 
developed branches of mathematics. The reason for this appar- 
ent paradox will become clear toward the end of the present 
account. 

The vast and ill-defined field of applied mathematics is rapidly 
coming to be divided into two clear-cut branches with little 
overlap. The first covers the varied offspring of what in the past 
century was called "analytical mechanics" or "rational mech- 
anics," and includes such t ime-honored and distinguished en- 
deavors as the mechanics of continua, the theory of elasticity, 
and geometric optics, as well as some modern offshoots such 
as plasmas, supersonic flow, and so on. This field is rapidly being 
transformed by the use of high-speed computers. 

The second branch centers on what may be called "discrete 
phenomena" in both natural science and mathematics. The word 
"combinatorial," first used by the German  philosopher and 
scientist G. W. Leibniz in a classic treatise, has been in general 
use since the seventeenth century. Combinatorial  problems are 
found nowadays in increasing numbers  in every branch of 
science, even in those where mathematics is rarely used. It is 
now becoming clear that, once the life sciences develop to the 
stage at which a mathematical apparatus becomes indispensable, 
their main support will come from combinatorial theory. This 
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is already apparent in those branches of biology where the wealth 
of experimental data is gradually allowing the construction of 
successful theories, such as molecular biology and genetics. 
Physics itself, which has been the source of so much mathemati-  
cal research, is now faced, in statistical mechanics and such fields 
as elementary particles, with difficult problems that will not be 
surmounted until entirely new theories of a combinatorial nature 
are developed to understand the discontinuous structure of the 
molecular and subatomic worlds. 

To these stimuli we must again add the impact of high-speed 
computing. Here combinatorial theories are needed as an essen- 
tial guide to the actual practice of computing. Furthermore,  
much interest in combinatorial problems has been stimulated 
by the possibility of testing on computers heretofore inacces- 
sible hypotheses. 

These symptoms alone should be sufficient to forecast an in- 
tensification of work in combinatorial theory. Another indica- 
tion, perhaps a more important one, is the impulse from within 
mathematics toward the investigation of things combinatorial.  

The earliest glimmers of mathematical understanding in civi- 
lized man were combinatorial. The most backward civilization, 
whenever it let fantasy roam as far as the world of numbers  and 
geometric figures, would promptly come up with binomial 
coefficients, magic squares, or some rudimentary classification 
of solid polyhedra. Why then, given such ancient history, is 
combinatorial theory just now beginning to stir itself into a 
self-sustaining science? The reasons lie, we believe, in two very 
unusual circumstances. 

The first is that combinatorial theory has been the mother  
of several of the more active branches of today's mathematics,  
which have become independent sometimes at the cost of a 
drastic narrowing of the range of problems to which they can 
be applied. The t y p i c a l - a n d  perhaps the most successful -  
case of this is algebraic topology (formerly known as combina- 
torial topology), which, from a status of little more than recrea- 
tional mathematics in the nineteenth century, was raised to an 
independent geometric discipline by the French mathematician 
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Henri Poincarfi, who displayed the amazing possibilities of 
topological reasoning in a series of memoirs written in the latter 
part of his life. Poincar~'s message was taken up by several 
mathematicians, among whom were outstanding Americans 
such as Alexander, Lefschetz, Veblen, and Whitney. Homotopy 
theory, the central part of contemporary topology, stands today, 
together with quantum mechanics and relativity theory, as one 
of the great achievements in pure thought in this century, and 
the first that bears a peculiarly American imprint. The combina- 
torial problems that topology originally set out to solve are still 
largely unsolved. Nevertheless, algebraic topology has been 
unexpectedly successful in solving an impressive array of long- 
standing problems ranging over all mathematics. And its appli- 
cations to physics have great promise. 

What we have written of topology could be repeated about 
a number of other areas in mathematics. This brings us to 
the second reason why combinatorial theory has been aloof 
from the rest of mathematics (and that sometimes has pushed 
it closer to physics or theoretical chemistry). This is the extra- 
ordinary wealth of unsolved combinatorial problems, often 
of the utmost importance in applied science, going hand-in- 
hand with the extreme difficulty found in creating standard 
methods or theories leading to their solution. Yet relatively 
few men chose to work in combinatorial mathematics compared 
with the numbers active in any of the other branches of mathe- 
matics that have held the stage in recent years. One is reminded 
of a penetrating remark by the Spanish philosopher Jos6 Ortega 
y Gasset, who, in commenting upon the extraordinary achieve- 
ments of physics, added that the adoption of advanced and 
accomplished techniques made possible "the use of idiots" in 
doing successful research work. While many scientists of today 
would probably shy away from such an extreme statement, it 
is nevertheless undeniable that research in one of the better 
developed branches of mathematics was often easier, especially 
for the beginner, than original work in a field like combinatorial 
theory, where sheer courage and a strong dose of talent of a very 
special kind are indispensable. 
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Thus, combinatorial theory has been slowed in its theoretical 
development by the very success of the few men who have solved 
some of the outstanding combinatorial problems of their day, 
for, just as the man of action feels little need to philosophize, 
so the successful problem-solver in mathematics feels little need 
for designing theories that would unify, and thereby enable the 
less talented worker to solve, problems of comparable and similar 
difficulty. But the sheer number  and the rapidly increasing 
complexity of combinatorial problems have made this situation 
no longer tolerable. It is doubtful that one man alone could solve 
any of the major combinatorial problems of our day. 

Challenging Problems 

Fortunately, most combinatorial problems can be stated in every- 
day language. To give an idea of the present state of the field, 
we have selected a few of the many problems that are now being 
actively worked upon. Each of the problems has applications 
to physics, to theoretical chemistry, or to some of the more 
"businesslike" branches of discrete applied mathematics such as 
programming, scheduling, network theory, or mathematical 
economics. 

1. The Ising Problem 

A rectangular (m x n)-grid is made up of unit squares, each 
colored either red or blue. How many different color patterns 
are there if the number of boundary edges between the red 
squares and the blue squares is prescribed? 

This frivolous-sounding question happens to be equivalent 
to one of the problems most often worked upon in the field of 
statistical mechanics. The issue at stake is big: It is the explana- 
tion of the macroscopic behavior of matter on the basis of known 
facts at the molecular or atomic levels. The Ising problem, of 
which the above statement is one of many equivalent versions, 
is the simplest model that exhibits the macroscopic behavior 
expected from certain natural assumptions at the microscopic 
level. 
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A complete and rigorous solution of the problem was not 
achieved until recently, although the main ideas were initiated 
many years before. The three-dimensional analog of the Ising 
problem remains unsolved in spite of many attacks. 

2. Percolation Theory 

Consider an orchard of regularly arranged fruit trees. An infec- 
tion is introduced on a few trees and spreads from one tree to 
an adjacent one with probability p. How many trees will be 
infected? Will the infection assume epidemic proportions and 
run through the whole orchard, leaving only isolated pockets 
of healthy trees? How far apart should the trees be spaced to 
ensure that p is so small that any outbreak is confined locally? 

Consider a crystalline alloy of magnetic and nonmagnetic ions 
in proportions p to q. Adjacent magnetic ions interact, and so 
clusters of different sizes have different magnetic susceptibilities. 
If the magnetic ions are sufficiently concentrated, infinite clusters 
can form, and at a low enough temperature long-range ferro- 
magnetic order can spread through the whole crystal. Below a 
certain density of magnetic ions, no such ordering can take place. 
What  alloys of the two ions can serve as permanent  magnets? 

It takes a while to see that these two problems are instances 
of one and the same problem, which was brilliantly solved by 
Michael Fisher, a British physicist now at Cornell University. 
Fisher translated the problem into the language of the theory 
of graphs and developed a beautiful theory at the borderline 
between combinatorial theory and probability. This theory has 
now found application to a host of other problems. One of the 
main results of percolation theory is the existence of a critical 
probability p~ in every infinite graph G (satisfying certain con- 
ditions which we omit) that governs the formation of infinite 
clusters G. If the probability p of spread of the "epidemic" from 
a vertex of G to one of its nearest neighbors is smaller than the 
critical probability p~, no infinite clusters will form, whereas if 
P > pe, infinite clusters will form. Rules for computing the 
critical probability pe were developed by Fisher from ingenious 
combinatorial arguments.  
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3. The Number of Necklaces, and Polya's Problem 

Necklaces of n beads are to be made out of an infinite supply 
of beads in k different colors. How many distinctly different 
necklaces can be made? 

This problem was solved quite a while ago, so much so that 
the priority is in dispute. Letting the number  of different neck- 
laces be c(n,k), the formula is 

1 )kn/d = - ;  d 

Here, 4) is a numerical function used in number  theory, first 
introduced by Euler. Again, the problem as stated sounds rather 
frivolous and seems to be far removed from application. And 
yet, this formula can be used to solve a difficult problem in the 
theory of Lie algebras, which in turn has a deep effect on con- 
temporary physics. 

The problem of counting necklaces displays the typical diffi- 
culty of enumeration problems, which include a sizable number  
of combinatorial problems. This difficulty can be described as 
follows. A finite or infinite set S of objects is given, and to each 
object an integer n is a t t a c h e d - i n  the case of necklaces, the 
number  of beads- - in  such a way that there are at most a finite 
number  a, of elements of S attached to each n. Furthermore,  
an equivalence relation is given on the set S - i n  this case, two 
necklaces are to be considered equivalent, or "the same," if they 
differ only by a rotation around their centers. The problem is 
to determine the number  of equivalence classes, knowing only 

the integers a, and as few combinatorial  data as possible about 
the set S. 

This problem was solved by the Hungarian-born mathemati-  
cian George Polya (now at Stanford) in a famous memoir  pub- 
lished in 1936. Polya gave an explicit formula for the solution, 
which has since been applied to the most disparate problems 
of enumeration in mathematics, physics, and chemistry (where, 
for example, the formula gives the number  of isomers of a given 
molecule). 

Polya's formula went a long way toward solving a great many 
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problems of enumera t ion ,  and is being applied almost daily to 
count more and more complicated sets of objects. It is never- 
theless easy to give examples of impor tant  enumera t ion  prob- 
lems that have defied all efforts to this day, for instance the one 
described in the next paragraph.  

4. Nonself-intersecting Random Walk 

The problem is to give some formula for the number  R, of 
r andom walks of n steps that never cross the same vertex twice. 
A random walk on a flat rectangular  grid consists of a sequence 
of steps one unit  in length, taken at r andom either in the x- or 
they-direct ion,  with equal probabil i ty in each of the four direc- 
tions. Very little is known about this problem, al though physi- 
cists have amassed a sizable amoun t  of numerical  data.  It is 
likely that this problem will be at least partly solved in the next 
few years, if interest in it stays alive. 

5. The Traveling Salesman Problem 

Following R. Gomory,  who has done some of the deepest work 
on the subject, the problem can be described as follows. "A 
traveling salesman is interested in only one thing, money. He 
sets out to pass through a number  of points, usually called cities, 
and then returns to his starting point. When  he goes from the 
ith city to the j th  city, he incurs a cost co. His problem is to find 
that tour of all the points (cities) that minimizes the total cost." 

This problem clearly illustrates the influence of comput ing  
in combinatorial  theory. It is obvious that a solution exists, 
because there is only a finite n u m b e r  of possibilities. Wha t  is 
interesting, however, is to determine the min imum number  S(n) 
of steps, depending on the n u m b e r  n of cities, required to find 
the solution. (A "step" is defined as the most e lementary opera- 
tion a computer  can perform.)  If the n u m b e r  S(n) grows too 
fast (for example if S(n) - n!) as the integer n increases, the 
problem can be considered unsolvable since no computer  will 
be able to handle the solution for any but small values of n. By 

55 



Discrete Thoughts 

extremely ingenious arguments,  it has been shown that S(n) 
<-- cn22 ~, where c is constant, but it has not yet been shown that 
this is the best one can do. 

Attempts to solve the traveling salesman problem and related 
problems of discrete minimizat ion have led to a revival and a 
great development of the theory of polyhedra in spaces of n 
dimensions, which lay practically un touched-excep t  for isolated 
resu l t s - s ince  Archimedes. Recent work has created a field of 
unsuspected beauty and power, which is far from being ex- 
hausted. Strangely, the combinatorial study of polyhedra turns 
out to have a close connection with topology, which is not yet 
understood. It is related also to the theory behind linear pro- 
gramming and similar methods widely used in business and 
economics. 

The idea we have sketched, of considering a problem S(n) 
depending on an integer n as unsolvable if S(n) grows too fast, 
occurs in much the same way in an entirely different context, 
namely, number  theory. Current  work on Hilbert 's tenth prob- 
lem (solving Diophantine equations in integers) relies on the 
same principle and uses similar techniques. 

6. The Coloring Problem 

This is one of the oldest combinatorial  problems and one of the 
most difficult. It is significant because of the work done on it 
and the unexpected applications of this work to other problems. 
The statement of the problem is deceptively simple: Can every 
planar map (every region is bounded by a polygon with straight 
sides) be colored with at most four colors, so that no two adjacent 
regions are assigned the same color? 

It is true that recently a computer  program has been discov- 
ered by Haken and Apel that verifies this conjecture. Neverthe- 
less, mathematicians have not given up hope for a solution that 
can be followed logically. Thanks to the initiative of H. Whitney of 
the Institute for Advanced Study and largely to the work of W. T. 
Tut te  (English-Canadian) a new and highly indirect approach 
to the coloring problem is being developed, called "combinatorial 
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geometry" (or the theory of matroids). This is the first theory of 
a general character that has been completely successful in 
understanding a variety of combinatorial problems. The theory 
is a generalization of Kirchhoffs laws of circuit theory in 
a completely unforeseen-  and untopological-  direction. The 
basic notion is a closure relation with the MacLane-Steinitz ex- 
change property. The exchange property is a closure relation, 
A --* A, defined on all subsets A of a set S such that, if x and 
y are elements of S and xEA Uy but x ~ A, theny E A U x. In 
general, one does not have A U B = A U B-, so that the result- 
ing structure, called a combinatorial geometry, is not a topo- 
logical space. The theory bears curious analogies with both 
point-set topology and linear algebra and lies a little deeper than 
either of them. 

The most striking advance in the coloring problem is a 
theorem due to Whitney. To state it, we require the notion of 
"planar graph," which is a collection of points in the plane, called 
vertices, and nonoverlapping straight-line segments, called 
edges, each of them joining a pair of vertices. Every planar graph 
is the boundary of a map dividing the plane into regions. Whitney 
makes the following assumptions about the planar graph and 
the associated map: (a) Exactly three boundary edges meet at 
each vertex; (b) no pair of regions, taken together with any 
boundary edges separating them, forms a multiply connected 
region; (c) no three regions, taken together with any boundary 
edges separating them, form a multiply connected region. Under 
these assumptions, Whitney concludes that it is possible to draw 
a closed curve that passes through each region of the map once 
and only once. Whitney's theorem has found many applications 
since it was discovered. 

7. The Pigeonhole Principle and Ramsey's Theorem 

We cannot conclude this brief list of combinatorial problems 
without giving a typical example of combinatorial argument. 
We have chosen a little,known theorem of great beauty, whose 
short proof we shall give in its entirety. The lay reader who can 
follow the proof on first reading will have good reason to consider 
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himself combinatorially inclined. 
THEOREM" Given a sequence of (n 2 + 1) distinct integers, it 

is possible to find a sequence of (n + 1) entries which is either 
increasing or decreasing. 

Before embarking upon the proof, let us see some examples. 
F o r n  - 1, w e h a v e n  2 + 1  - 2 a n d n + l  - 2; the conclusion 

is trivial since a sequence of two integers is always either in- 
creasing or decreasing. Let n - 2, so that n2+ 1 - 5 and 
n + 1 = 3, and say the integers are 1,2,3,4,5. The theorem 
states that no matter  how these integers are arranged,  it is 
possible to pick out a string of at least three (not necessarily 
consecutive) integers that are either increasing or decreasing, 
for example, 

1 2 3 4 5 .  

The  subsequence 1 2 3 will do (it is increasing). Acutally, in 
this case every subsequence of three elements is increasing. 
Another  example is 

3 5 4 2 1 .  

Here  all increasing subsequences, such as 3 4 and 3 5, have 
at most two integers. There  is, however, a wealth of decreasing 
subsequences of three (or more) integers such as 5 4 2, 5 2 1. 

One  last example is 

5 1 3 4 2 .  

Here  there is one increasing subsequence with three integers, 
namely 1 3 4, and there are two decreasing subsequences with 
three integers, namely 5 3 2 and 5 4 2; hence, the statement 
of the theorem is again confirmed. 

Proceeding in this way, we could eventually verify the state- 
ment  for all permutat ions  of five integers. There  are altogether 
5! = 120 possibilities. For n = 3, we have to take n2+ 1 = 
10 integers, and the amount  of work to be done to verify the 
conjecture case by case is overwhelming since the possibilities 
total 10! = 3,628,800. We begin to see that an a rgument  of an 
altogether different kind is needed if we are to establish the 
conclusion for all positive integers n. 
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The proof goes as follows. Let the sequence of integers (in 
the given order) be 

al, a2, a3 ,..., a~+ 1 (1) 

We are to find a subsequence of Sequence 1, which we shall label 

ail , ai2~ " " ,  ain + l 

where the entries are taken in the same order as Sequence 1 
but with one of the following two properties: either 

ail ~ ai2 ~ " ' "  ~---- ain+ 1 , (2 )  

o r  

ail ~ a i 2  ~ " ' "  ~--ain+ l ,  (3 )  

The argument  is based on a reductio ad absurdum. Suppose that 
there is no subsequence of the type of Sequence 2, that is, no 
increasing subsequence of (n + 1) or more entries. O u r  argu- 
ment  will then lead to the conclusion that, under  this assump- 
tion, there must  be a sequence of the type of Sequence 3, that 
is, a decreasing sequence with (n + 1) entries. 

Choose an arbitrary entry ai of Sequence 1, and consider all 
increasing subsequences of Sequence 1 whose first element is 
ai. Among these, there will be one with a max imum number  
of entries. Say this number  is l ( = length). Under  our additional 
hypothesis, the number  l can be 1, 2, 3 , . . . ,  or n, but not n + 1 

or any larger integer. 
We have, therefore, associated to each entry ai of  Sequence 

4 an integer 1 between 1 and n; for example, l = 1 if all subse- 
quences of two or more integers starting with ai are decreas- 
ing. We come now to the crucial part of the argument .  I_.et F( l )  

be the number  of entries of Sequence 1 with which we have 
associated the integer l, by the procedure just  described. Then  

F(1) + F(2) + F ( 3 ) +  . . . +  F(n) = n 2 + 1. (4) 

Identity 4 is just  another  way of saying that with each one 
of the (n 2 + 1) entries, ai of Sequence 1 we have associated a 
number  between 1 and l. We claim that at least one of the 
summands  on the left-hand side of Identity 4 must be an integer 
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greater than or equal to n + 1. For if this were not so, then we 

should have 

F(1) <- n, F(2) <- n , . . . , F ( n )  <-n. 

Adding all these n inequalities, we should have 

F(1) + F(2) + . . .  + F(n)  <- n + n + . . .  + n = n 2 
Y 

n times 

and this contradicts Identity 4, since n 2 < n 2 + 1. Therefore, 
one of the summands  on the left-hand side of Identity 4 must  
be at least n + 1. Say this is the /th summand" 

F ( l )  >- n + 1. 

We now go back to Sequence 1 and see what this conclusion 
means.  We have found (n + 1) entries of Sequence 1, call them 
(in the given order) 

ail, ai2, '",  ain+ 1 (5) 

with the property that each one of these entrles is the begin- 
ning entry of an increasing subsequence of l entries of Sequence 
1 but  is not the beginning entry of any longer subsequence of 

Sequence 1. 
From this we can immediately conclude that Sequence 5 is 

a decreasing sequence. Let us prove, for example, that ai 1 > ai 2. 

If this were not true, then we should have ai 1 < ai 2. The entry 
ai 2 is the beginning entry of an increasing subsequence of Se- 
quence 1 containing exactly l entries. It would follow that ail 

would be the beginning entry of a sequence of (l + 1) entries, 
namely ail itself followed by the sequence of 1 entries starting 

w i t h  ai 2. But this contradicts our choice of ai 1. We conclude that 

ai 1 > ai 2. In the same way, we can show that ai 2 > ai3 ,  etc., 
and complete the proof that Sequence 5 is decreasing and, with 
it, the proof of the theorem. 

Looking over the preceding proof, we see that the crucial step 
can be restated as follows" If a set of (n2+ 1) objects is parti- 
tioned into n or fewer blocks, at least one block shall contain 
(n + 1) or more objects or, more generally, if a set of n objects 
is part i t ioned into k blocks and n > k, at least one block shall 
contain two or more objects. This statement,  generally known 
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as the "pigeonhole" principle, has rendered good service to 
mathematics. Although the statement of the pigeonhole principle 

is evident, nevertheless the applications of it are often startl- 
ing. The reason for this is that the principle asserts that an object 
having a certain property exists, without giving us a means for 
finding such an object; however, the mere existence of such an 
object allows us to draw concrete conclusions, as in the theorem 
just  proved. 

Some time ago, the British mathemat ic ian and philosopher 
F. P. Ramsey  obtained a deep generalization of the pigeonhole 
principle, which we shall now state in one of its forms. Let S 
be an infinite set, and let Pt(S) be the family of all finite 
subsets of S containing l elements. Parti t ion Pz(S) into k 
blocks, say B~, B2 ,..., Bk; in other words, every/-element  sub- 
set of S is assigned to one and only one of the blocks Bi for 
1 _< i _< k. Then  there exists an infinite subset R C S with the 
property that Pt(R) is contained in one block, say Pz(R) C B, 
for some i, where 1 _< i _< k; in other words, there exists an 
infinite subset R of S with the property that all subsets of R con- 
taining 1 elements are contained in one and the same of the Bi. 

The Coming Explosion 
It now seems that both physics and mathematics, as well as those 
life sciences that aspire to becoming mathematical ,  are conspir- 
ing to make further work in combinatorial  theory a necessary 
condition for progress. For this and other reasons, some of which 
we have stated, the next few years will probably witness an 
explosion of combinatorial  activity, and the mathematics of the 
discrete will come to occupy a position at least equal to that of 
the applied mathematics  of continua,  in university curricula as 
well as in the importance of research. Already in the past years, 
the amount  of research in combinatorial  theory has grown to 
the point that several specialized journals  are being published. 
In the last few years, several textbooks and mongraphs  in the 
subject have been published, and several more are now in print. 

Before concluding this brief survey, we shall list the main 
subjects in which current work in combinatorial  theory is being 
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done. They are the following: 
1. Enumerative Analysis, concerned largely with problems of 

efficient counting of (in general, infinite) sets of objects like 
chemical compounds, subatomic structures, simplicial complexes 
subject to various restrictions, finite algebraic structures, various 
probabilistic structures such as runs, queues, permutations with 
restricted position, and so on. 

2. Finite Geometries and Block Designs. The work centers on 
the construction of finite projective planes and closely related 
structures, such as Hadamard  matrices. The techniques used 
at present are largely borrowed from number  theory. Thanks  
to modern computers,  which allowed the testing of reasonable 
hypotheses, this subject has made great strides in recent years. 
It has significant applications to statistics and to coding theory. 

3. Applications to Logic. The development of decision theory 
has forced logicians to make wide use of combinatorial methods. 

4. Statistical Mechanics. This is one of the oldest and most 
active sources of combinatorial work. Some of the best work 
in combinatorial theory in the last twenty years has been done 
by physicists or applied mathematicians working in this field, 
for example in the Ising problem. Close connections with num- 
ber theory, through the common medium of combinatorial 
theory, have been recently noticed, and it is very likely that the 
interaction of the two fields will produce striking results in the 
near future. 

In conclusion, we should like to caution the reader who might 
gather the idea that combinatorial theory is limited to the study 
of finite sets. An infinite class of finite sets is no longer a finite 
set, and infinity has a way of getting into the most finite of 
considerations. Nowhere more than in combinatorial theory do 
we see the fallacy of Kronecker's well-known saying that "God 
created the integers; everything else is man-made."  A more 
accurate description might be: "God created infinity, and man, 
unable to understand infinity, had to invent finite sets." In the 
ever-present interaction of finite and infinite lies the fascina- 
tion of all things combinatorial.  

1969 
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