Kronecker coefficients: combinatorics, complexity and beyond

Greta Panova
University of Pennsylvania

Porto 2015

The Kronecker coefficients: definitions

Irreducible representations of the symmetric group S_{n} :

$$
\text { (group homomorphisms } \quad S_{n} \rightarrow G L_{N}(\mathbb{C}) \text {) }
$$

— the Specht modules \mathbb{S}_{λ}, indexed by partitions $\lambda \vdash n$
Tensor product decomposition:

$$
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\oplus ? ?}
$$

The Kronecker coefficients: definitions

Irreducible representations of the symmetric group S_{n} :

$$
\text { (group homomorphisms } \quad S_{n} \rightarrow G L_{N}(\mathbb{C}) \text {) }
$$

- the Specht modules \mathbb{S}_{λ}, indexed by partitions $\lambda \vdash n$

Tensor product decomposition:

$$
\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}=\oplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\oplus g(\lambda, \mu, \nu)}
$$

Kronecker coefficients:
$g(\lambda, \mu, \nu)$ - multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$
Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$:
Tensor products of $G L_{N}$ representations:

$$
V_{\mu} \otimes V_{\nu}=\oplus_{\lambda \vdash|\mu|+|\nu|} v_{\lambda}^{\oplus c_{\mu \nu}^{\lambda}}
$$

Characters of S_{n}

characters: \quad char $\mathbb{S}_{\lambda}=\chi^{\lambda}: S_{n} \rightarrow \mathbb{C}$

$\chi^{\lambda}[\alpha]$ - value at permutation of cycle type $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$

$$
g(\lambda, \mu, \nu)=\left\langle\chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu}\right\rangle
$$

Characters of S_{n}

$$
\text { characters: } \quad \text { char } \mathbb{S}_{\lambda}=\chi^{\lambda}: S_{n} \rightarrow \mathbb{C}
$$

$\chi^{\lambda}[\alpha]$ - value at permutation of cycle type $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$

$$
g(\lambda, \mu, \nu)=\left\langle\chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu}\right\rangle
$$

Murnaghan-Nakayama rule:

$$
\chi^{\lambda}[\alpha]=\quad \sum \quad(-1)^{h t(T)}
$$

$T=$| 1 | 1 | 1 | 3 | 3 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 2 | 3 | 4 | 4 | |
| 2 | 2 | 3 | 3 | 4 | | |

$$
\begin{aligned}
& \lambda=(7,6,5), \alpha=(4,4,5,5) \\
& h t(T)=(2-1)+(2-1)+(3-1)+(3-1)=6 .
\end{aligned}
$$

Characters of S_{n}

$$
\text { characters: } \quad \text { char } \mathbb{S}_{\lambda}=\chi^{\lambda}: S_{n} \rightarrow \mathbb{C}
$$

$\chi^{\lambda}[\alpha]$ - value at permutation of cycle type $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$

$$
g(\lambda, \mu, \nu)=\left\langle\chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu}\right\rangle
$$

Murnaghan-Nakayama rule:

$$
\chi^{\lambda}[\alpha]=\quad \sum \quad(-1)^{h t(T)}
$$

$$
T=\begin{array}{ll|ll|lll}
1 & 1 & 1 & 3 & 3 & 4 & 4 \\
\hline 1 & 2 & 2 & 3 & 4 & 4 \\
2 & 2 & 3 & 3 & 4 &
\end{array}
$$

$$
\begin{aligned}
& \lambda=(7,6,5), \alpha=(4,4,5,5) \\
& h t(T)=(2-1)+(2-1)+(3-1)+(3-1)=6 .
\end{aligned}
$$

A formula:

$$
g(\lambda, \mu, \nu)=\frac{1}{n!} \sum_{w \in S_{n}} \chi^{\lambda}[w] \chi^{\mu}[w] \chi^{\nu}[w] .
$$

Corollary: $g(\lambda, \mu, \nu)=g(\mu, \lambda, \nu)=g(\nu, \mu, \lambda)=\cdots$.

The combinatorial problem

Problem (Murnaghan (1938), then Stanley et al)
Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

The combinatorial problem

Problem (Murnaghan (1938), then Stanley et al)
Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.
Motivation: Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$:
$\mathcal{O}_{\lambda, \mu, \nu}=\{$ LR tableaux of shape λ / μ, type $\nu\}$
$\lambda=(6,4,3), \mu=(3,1), \nu=(4,3,2)$:

Theorem (Murnaghan)
If $|\nu|+|\mu|=|\lambda|$ and $n>|\nu|$, then

$$
g((n+|\mu|, \nu),(n+|\nu|, \mu),(n, \lambda))=c_{\mu \nu}^{\lambda} .
$$

The combinatorial problem

Problem (Murnaghan (1938), then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu)=\# \mathcal{O}_{\lambda, \mu, \nu}$.

Results since then:

Combinatorial formulas for $g(\lambda, \mu, \nu)$, when:

- μ and ν are hooks (\square), [Remmel, 1989]
- $\nu=(n-k, k)$ ($\square \square)$ and $\lambda_{1} \geq 2 k-1$, [Ballantine-Orellana, 2006]
- $\nu=(n-k, k), \lambda=(n-r, r)$ [Remmel-Whitehead, 1994; Blasiak-Mulmuley-Sohoni,2013]
- $\nu=\left(n-k, 1^{k}\right)$

Complexity

Input: (binary) string of n bits, i.e. size(input) $=n$.

Decision problems:

Is there an object, s.t.... ?
$P=$ solution can be found in time Poly(n)
NP = solution can be verified in Poly(n) (polynomial witness)
NP -Complete = in NP, and every NP problem can be reduced to it poly time; e.g.
existence of a Hamiltonian path, Knapsack problem

Counting problems:

Compute $F($ input $)=$?
FP = solution can be found in time Poly(n)
\#P $=$ NP counting analogue; informally - F(input) counts Expmany objects, whose verification is in P.
e.g.:
number of Hamiltonian paths of given total cost;
computing the permanent of a matrix.

Complexity

Input: (binary) string of n bits, i.e. size(input) $=n$.

Decision problems:
Is there an object, s.t.... ?
$P=$ solution can be found in time Poly(n)
NP = solution can be verified in Poly(n) (polynomial witness)
NP -Complete = in NP, and every NP problem can be reduced to it poly time;

Counting problems:

Compute $F($ input $)=$?
FP = solution can be found in time Poly(n)
\#P $=$ NP counting analogue; informally - F(input) counts Expmany objects, whose verification is in P.

The P vs NP Problem:
Is $P=N P$?
An approach [Mulmuley, Sohoni]: Geometric Complexity Theory

Kronecker complexity problems and GCT Input: Partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right), \nu=\left(\nu_{1}, \ldots, \nu_{\ell}\right)$, s.t. $0 \leq \lambda_{i}, \mu_{i}, \nu_{i} \leq N$, and $|\lambda|=|\mu|=|\nu|$.

Size (Input $)=O(\ell \log N)$.
Positivity of Kronecker coefficients (KP):
Decide: whether $g(\lambda, \mu, \nu)>0$

Kronecker coefficients (Kron):
Compute: $g(\lambda, \mu, \nu)$.

Kronecker complexity problems and GCT

 Input: Partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right), \nu=\left(\nu_{1}, \ldots, \nu_{\ell}\right)$, s.t. $0 \leq \lambda_{i}, \mu_{i}, \nu_{i} \leq N$, and $|\lambda|=|\mu|=|\nu|$. Size(Input $)=O(\ell \log N)$.Positivity of Kronecker coefficients (KP):
Decide: whether $g(\lambda, \mu, \nu)>0$
Conjecture (Mulmuley)
KP is in P .

Kronecker coefficients (Kron):
Compute: $g(\lambda, \mu, \nu)$.
Conjecture (Mulmuley)
When the input is in binary, Kron is in \#P .

Problem (GCT)

Find estimates and bounds for $g(\lambda, \mu, \nu)$, plethystic coefficients?

Kronecker complexity problems and GCT

 Input: Partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right), \nu=\left(\nu_{1}, \ldots, \nu_{\ell}\right)$, s.t. $0 \leq \lambda_{i}, \mu_{i}, \nu_{i} \leq N$, and $|\lambda|=|\mu|=|\nu|$.Size(Input $)=O(\ell \log N)$.
Positivity of Kronecker coefficients (KP):
Decide: whether $g(\lambda, \mu, \nu)>0$
Conjecture (Mulmuley)
KP is in P . (No positive combinatorial interpretation, not known:
"KP is in NP "??)
Kronecker coefficients (Kron):
Compute: $g(\lambda, \mu, \nu)$.
Conjecture (Mulmuley)
When the input is in binary, Kron is in \#P . (Bürgisser-lkenmeyer: in
GapP ; Narayanan: \#P -hard)

Problem (GCT)

Find estimates and bounds for $g(\lambda, \mu, \nu)$, plethystic coefficients?

Partitions inside a rectangle

$$
\begin{aligned}
& p_{n}(\ell, m)=\#\left\{\lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_{1} \leq m\right\} \\
& \sum_{n \geq 0} p_{n}(\ell, m) q^{n}=\prod_{i=1}^{\ell} \frac{1-q^{m+i}}{1-q^{i}}=\binom{m+\ell}{m}_{q}
\end{aligned}
$$

Partitions inside a rectangle

$$
\begin{aligned}
& p_{n}(\ell, m)=\#\left\{\lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_{1} \leq m\right\} \\
& \sum_{n \geq 0} p_{n}(\ell, m) q^{n}=\prod_{i=1}^{\ell} \frac{1-q^{m+i}}{1-q^{i}}=\binom{m+\ell}{m}_{q}
\end{aligned}
$$

Theorem (Sylvester 1878, Cayley's conjecture 1856)
The sequence $p_{0}(\ell, m), \ldots, p_{\ell m}(\ell, m)$ is unimodal, i.e.

$$
p_{0}(\ell, m) \leq p_{1}(\ell, m) \leq \cdots \leq p_{\lfloor\ell m / 2\rfloor}(\ell, m) \geq \cdots \geq p_{\ell m}(\ell, m)
$$

Partitions inside a rectangle

$$
\begin{aligned}
& p_{n}(\ell, m)=\#\left\{\lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_{1} \leq m\right\} \\
& \sum_{n \geq 0} p_{n}(\ell, m) q^{n}=\prod_{i=1}^{\ell} \frac{1-q^{m+i}}{1-q^{i}}=\binom{m+\ell}{m}_{q}
\end{aligned}
$$

Theorem (Sylvester 1878, Cayley's conjecture 1856)
The sequence $p_{0}(\ell, m), \ldots, p_{\ell m}(\ell, m)$ is unimodal, i.e.

$$
p_{0}(\ell, m) \leq p_{1}(\ell, m) \leq \ldots \leq p_{\lfloor\ell m / 2\rfloor}(\ell, m) \geq \cdots \geq p_{\ell m}(\ell, m)
$$

"I am about to demonstrate a theorem which has been waiting proof for the last quarter of a century and upwards. [...] I accomplished with scarcely an effort a task which I had believed lay outside the range of human power."
J.J. Sylvester, 1878.

Partitions inside a rectangle

$$
\begin{aligned}
& p_{n}(\ell, m)=\#\left\{\lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_{1} \leq m\right\} \\
& \sum_{n \geq 0} p_{n}(\ell, m) q^{n}=\prod_{i=1}^{\ell} \frac{1-q^{m+i}}{1-q^{i}}=\binom{m+\ell}{m}_{q}
\end{aligned}
$$

m

Theorem (Sylvester 1878, Cayley's conjecture 1856)

The sequence $p_{0}(\ell, m), \ldots, p_{\ell m}(\ell, m)$ is unimodal, i.e.

$$
p_{0}(\ell, m) \leq p_{1}(\ell, m) \leq \ldots \leq p_{\lfloor\ell m / 2\rfloor}(\ell, m) \geq \cdots \geq p_{\ell m}(\ell, m)
$$

Proofs:

Sylvester, 1878: "by aid of a construction drawn from the resources of Imaginative Reason" (Lie algebras, $\mathfrak{s l}_{2}$ representations)
Stanley, 1978: hard Lefschetz theorem (alg. geom.), gives Sperner property; 1982: Linear Algebra Paradigm.
Proctor, 1982: explicit linear operators.
O'Hara, 1990: constructive combinatorial proof.

Kronecker and partitions inside a rectangle

$$
\begin{aligned}
& p_{n}(\ell, m)=\#\left\{\lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_{1} \leq m\right\} \\
& \sum_{n \geq 0} p_{n}(\ell, m) q^{n}=\prod_{i=1}^{\ell} \frac{1-q^{m+i}}{1-q^{i}}=\binom{m+\ell}{m}_{q}
\end{aligned}
$$

Theorem (Pak-P; Vallejo)
The Kronecker coefficient
$g((\underbrace{m, \ldots, m}_{\ell}),(\underbrace{m, \ldots, m}_{\ell}),(m \ell-k, k))=p_{k}(m, \ell)-p_{k-1}(m, \ell)$.
Corollary
[Sylvester's Theorem:] $p_{0}(m, \ell), p_{1}(m, \ell), \ldots, p_{m \ell}(m, \ell)$ is unimodal.

A combinatorial formula for $g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)$

Partition tree $T(m, \ell, k)$: vertices labelled by $(a, b, \lambda, j), j \leq a b, \lambda \vdash b$. Leaves $-b=1$, labels (a, i) with $0 \leq i \leq a$.
Root - (m, ℓ, λ, k) for some $\lambda \vdash \ell$.
Local conditions on vertices and children:
If label - (a, b, λ, j), with $\lambda=\left(1^{b_{1}}, \ldots, n^{b_{n}}\right)$, then $\leq n$ children, labels $\left(a_{1}, b_{1}, \lambda^{1}, j_{1}\right), \ldots,\left(a_{n}, b_{n}, \lambda^{n}, j_{n}\right)$. s.t.

- $a_{i}=i(a+2)-2\left(\lambda_{1}^{\prime}+\cdots+\lambda_{i}^{\prime}\right)$ for all $i=1, \ldots, n$.
- $j_{1}+\cdots+j_{n}=j-2 n(\lambda)$.

All leaves $\left(a_{0}, i_{0}\right), \ldots,\left(a_{t}, i_{t}\right)$, satisfy:

- For each $r<t: i_{r} \geq 2\left(i_{r+1}+\cdots+i_{t}\right)-\left(a_{r+1}+\cdots+a_{t}\right)$.

Theorem (Pak-P, 2015+)

The Kronecker coefficient for the partitions $\left(m^{\ell}\right),\left(m^{\ell}\right),(m \ell-k, k)$ is equal to the number of partition trees $T(m, \ell, k)$.

A combinatorial formula for $g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)$

Theorem (Pak-P, 2015+)
The Kronecker coefficient for the partitions $\left(m^{\ell}\right),\left(m^{\ell}\right),(m \ell-k, k)$ is equal to the number of partition trees $T(m, \ell, k)$.
Corollary (Pak-P,2015+)
Let r be fixed and $\lambda=\mu=\left(m^{\ell}\right)$. Then the partition trees $T(m, \ell, k)$ are of depth $O(\log \ell)$, width $O(\ell)$, and entries $O(m \ell)$.
Thus computing $g(\lambda, \mu,(m \ell-k, k))$ is in \#P (input size is $O(\ell \log m)$). Note: holds for $\lambda=\left(m^{\ell}, 1^{r}\right)$ and $\mu=\left(m+r, m^{\ell-1}\right)$ for fixed r.

Character Lemma and Stanley's theorem

Lemma (Pak-P)
If $\mu=\mu^{\prime}$, then

$$
g(\lambda, \mu, \mu) \geq\left|\chi^{\lambda}\left[\left(2 \mu_{1}-1,2 \mu_{2}-3, \ldots\right)\right]\right| .
$$

Character Lemma and Stanley's theorem

Lemma (Pak-P)
If $\mu=\mu^{\prime}$, then

$$
g(\lambda, \mu, \mu) \geq\left|\chi^{\lambda}\left[\left(2 \mu_{1}-1,2 \mu_{2}-3, \ldots\right)\right]\right| .
$$

With $\mu=\left(n^{n}\right), \lambda=\left(n^{2}-k, k\right)$:

$$
\begin{aligned}
& \chi^{\lambda}=\chi^{\left(n^{2}-k\right) \circ(k)}-\chi^{\left(n^{2}-k+1\right) \circ(k-1)} \\
& \left|\chi^{\mu}[(1,3,5, \ldots)]\right|=\left|b_{k}(n)-b_{k-1}(n)\right|, \\
& \prod_{i=1}^{n}\left(1+q^{2 i-1}\right)=: \sum_{k=0}^{n^{2}} b_{k}(n) q^{k}
\end{aligned}
$$

Character Lemma and Stanley's theorem

Lemma (Pak-P)
If $\mu=\mu^{\prime}$, then

$$
g(\lambda, \mu, \mu) \geq\left|\chi^{\lambda}\left[\left(2 \mu_{1}-1,2 \mu_{2}-3, \ldots\right)\right]\right| .
$$

With $\mu=\left(n^{n}\right), \lambda=\left(n^{2}-k, k\right)$:

$$
\begin{gathered}
\chi^{\lambda}=\chi^{\left(n^{2}-k\right) \circ(k)}-\chi^{\left(n^{2}-k+1\right) \circ(k-1)} \\
\left|\chi^{\mu}[(1,3,5, \ldots)]\right|=\left|b_{k}(n)-b_{k-1}(n)\right|
\end{gathered}
$$

$$
\prod_{i=1}^{n}\left(1+q^{2 i-1}\right)=: \sum_{k=0}^{n^{2}} b_{k}(n) q^{k}
$$

$$
p_{k}(n, n)-p_{k-1}(n, n)=g(\lambda, \mu, \mu) \geq\left|\chi^{\lambda}[\widehat{\mu}]\right|=\left|b_{k}(n)-b_{k-1}(n)\right|
$$

Character Lemma and Stanley's theorem

Lemma (Pak-P)
If $\mu=\mu^{\prime}$, then

$$
g(\lambda, \mu, \mu) \geq\left|\chi^{\lambda}\left[\left(2 \mu_{1}-1,2 \mu_{2}-3, \ldots\right)\right]\right| .
$$

$$
\prod_{i=1}^{n}\left(1+q^{2 i-1}\right)=: \sum_{k=0}^{n^{2}} b_{k}(n) q^{k}
$$

$p_{k}(n, n)-p_{k-1}(n, n)=g(\lambda, \mu, \mu) \geq\left|\chi^{\lambda}[\widehat{\mu}]\right|=\left|b_{k}(n)-b_{k-1}(n)\right|$
Theorem (Stanley, 1982)
The following polynomial in q is symmetric and unimodal

$$
\binom{2 n}{n}_{q}-\prod_{i=1}^{n}\left(1+q^{2 i-1}\right) .
$$

Effective bounds on

$$
p_{k}(m, \ell)-p_{k-1}(m, \ell)=g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)
$$

Theorem (Pak-P, 2014+)
For all $m \geq \ell \geq 8$ and $2 \leq k \leq \ell m / 2$, we have:

$$
g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)=p_{k}(\ell, m)-p_{k-1}(\ell, m)>A \frac{2^{\sqrt{s}}}{s^{9 / 4}},
$$

where $s=\min \left\{2 k, \ell^{2}\right\}$, and $A=0.00449$ is an universal constant.

Effective bounds on

$$
p_{k}(m, \ell)-p_{k-1}(m, \ell)=g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)
$$

Theorem (Pak-P, 2014+)
For all $m \geq \ell \geq 8$ and $2 \leq k \leq \ell m / 2$, we have:

$$
g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)=p_{k}(\ell, m)-p_{k-1}(\ell, m)>A \frac{2^{\sqrt{s}}}{s^{9 / 4}},
$$

where $s=\min \left\{2 k, \ell^{2}\right\}$, and $A=0.00449$ is an universal constant.
Proof:

1) For $m=\ell=n$ - Stanley's Theorem:
$p_{k}(n, n)-p_{k-1}(n, n) \geq b_{k}(n)-b_{k-1}(n), b_{k}$ asymptotics.

Effective bounds on

$$
p_{k}(m, \ell)-p_{k-1}(m, \ell)=g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)
$$

Theorem (Pak-P, 2014+)
For all $m \geq \ell \geq 8$ and $2 \leq k \leq \ell m / 2$, we have:

$$
g\left(m^{\ell}, m^{\ell},(m \ell-k, k)\right)=p_{k}(\ell, m)-p_{k-1}(\ell, m)>A \frac{2^{\sqrt{s}}}{s^{9 / 4}},
$$

where $s=\min \left\{2 k, \ell^{2}\right\}$, and $A=0.00449$ is an universal constant.
Proof:

1) For $m=\ell=n$ - Stanley's Theorem:
$p_{k}(n, n)-p_{k-1}(n, n) \geq b_{k}(n)-b_{k-1}(n), b_{k}$ asymptotics.
2) For $m \neq \ell$:

Semigroup/monotonicity property:
If $g(\alpha, \beta, \gamma)>0$, then $g(\lambda+\alpha, \mu+\beta, \nu+\gamma) \geq g(\lambda, \mu, \nu) \quad \forall \lambda, \mu, \nu$.

NP and \#P from combinatorics

Theorem (Pak-P,2015+)
Let r be fixed and $\lambda=\left(m^{\ell}, 1^{r}\right)$ and $\mu=\left(m+r, m^{\ell-1}\right)$. Then $g(\lambda, \mu,(m \ell+r-k, k))$ is equal to the number of certain partition trees with local conditions of depth $O(\log \ell)$, width $O(\ell)$, and entries $O(m \ell)$.
Thus computing $g(\lambda, \mu,(m \ell+r-k, k))$ is in \#P (input size is $O(\ell \log m)$).

Theorem (Pak-P, corollary of Blasiak's combinatorial interpretation)
When ν is a hook, $\mathrm{KP} \in \mathrm{NP}$ and $\operatorname{Kron} \in \# \mathrm{P}$.

Complexity of Kron and KP

Theorem (Pak-P)
Let $\lambda, \mu, \nu \vdash n$ be partitions with lengths $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$, the largest parts $\lambda_{1}, \mu_{1}, \nu_{1} \leq N$, and $\nu_{2} \leq M$. Then the Kronecker coefficients $g(\lambda, \mu, \nu)$ can be computed in time

$$
O(\ell \log N)+(\ell \log M)^{O\left(\ell^{3} \log \ell\right)} .
$$

Complexity of Kron and KP

Theorem (Pak-P)
Let $\lambda, \mu, \nu \vdash n$ be partitions with lengths $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$, the largest parts $\lambda_{1}, \mu_{1}, \nu_{1} \leq N$, and $\nu_{2} \leq M$. Then the Kronecker coefficients $g(\lambda, \mu, \nu)$ can be computed in time

$$
O(\ell \log N)+(\ell \log M)^{O\left(\ell^{3} \log \ell\right)} .
$$

Corollary. Suppose

$$
\log M, \ell=O\left(\frac{(\log \log N)^{1 / 3}}{(\log \log \log N)^{2 / 3}}\right) .
$$

Then there is a polynomial time algorithm to compute $g(\lambda, \mu, \nu)$.
Example: ℓ small and $\nu=$

Complexity of Kron and KP

Theorem (Pak-P)
Let $\lambda, \mu, \nu \vdash n$ be partitions with lengths $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$, the largest parts $\lambda_{1}, \mu_{1}, \nu_{1} \leq N$, and $\nu_{2} \leq M$. Then the Kronecker coefficients $g(\lambda, \mu, \nu)$ can be computed in time

$$
O(\ell \log N)+(\ell \log M)^{O\left(\ell^{3} \log \ell\right)}
$$

Corollary (Christandl-Doran-Walter)
When ℓ is fixed, the Kronecker coefficients can be computed in polynomial time, i.e. Kron \in FP (this case: Mulmuley's conjecture \checkmark)

Theorem (Pak-P)
When the number of parts (ℓ) is fixed, there exists a linear time algorithm to decide whether $g(\lambda, \mu, \nu)>0$ (i.e. solve KP).

Proofs I: the Reduction Lemma

Lemma (Pak-P)
Let $\lambda, \mu, \nu \vdash n$ and $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$. Set $s=n-\nu_{1}$. Then:
(i) If $\left|\lambda_{i}-\mu_{i}\right|>s$ for some i, then $g(\lambda, \mu, \nu)=0$,
(ii) If $\left|\lambda_{i}-\mu_{i}\right| \leq s$ for all $i, 1 \leq i \leq \ell$, there \exists an $r \leq 2 s \ell^{2}$, s.t.

$$
g(\lambda, \mu, \nu)=g(\phi(\lambda), \phi(\mu), \phi(\nu))
$$

for certain explicitly defined partitions $\phi(\lambda), \phi(\mu), \phi(\nu) \vdash r$.

Proofs I: the Reduction Lemma

Lemma (Pak-P)
Let $\lambda, \mu, \nu \vdash n$ and $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$. Set $s=n-\nu_{1}$. Then:
(i) If $\left|\lambda_{i}-\mu_{i}\right|>s$ for some i, then $g(\lambda, \mu, \nu)=0$,
(ii) If $\left|\lambda_{i}-\mu_{i}\right| \leq s$ for all $i, 1 \leq i \leq \ell$, there \exists an $r \leq 2 s \ell^{2}$, s.t.

$$
g(\lambda, \mu, \nu)=g(\phi(\lambda), \phi(\mu), \phi(\nu))
$$

for certain explicitly defined partitions $\phi(\lambda), \phi(\mu), \phi(\nu) \vdash r$.

Corollary (${ }^{1}$)

For any m and partition $\alpha \vdash m$, we have that

$$
g(\lambda+n \alpha, \mu+n \alpha, \nu+(n m))
$$

is bounded and increasing as a function of $n \in \mathbb{N}$, i.e. stable.
${ }^{1}$ [Pak-P], indep in [Vallejo], [Stembridge], [Manivel]

Proofs II: Explicit bounds on Kron complexity

Lemma: ${ }^{2}$

$$
g(\alpha, \beta, \gamma)=\sum_{\sigma^{1}, \sigma^{2}, \sigma^{3} \in S_{\ell}} \operatorname{sgn}\left(\sigma^{1} \sigma^{2} \sigma^{3}\right) C\left(\alpha+1-\sigma^{1}, \beta+1-\sigma^{2}, \gamma+1-\sigma^{3}\right)
$$

where $C(u, v, w)$ is the number of $\ell \times \ell \times \ell$ contingency arrays $\left[A_{i, j, k}\right]$:

$$
\sum_{j, k} A_{i, j, k}=u_{i}, \quad \sum_{i, k} A_{i, j, k}=v_{j}, \quad \sum_{i, j} A_{i, j, k}=w_{k}
$$

Lemma
Let $\alpha, \beta, \gamma \vdash n$ be partitions of the same size, such that $\alpha_{1}, \beta_{1}, \gamma_{1} \leq m$ and $\ell(\alpha), \ell(\beta), \ell(\gamma) \leq \ell$. Then $g(\alpha, \beta, \gamma)$ can be computed in time $(\ell \log m)^{O\left(\ell^{3} \log \ell\right)}$.
${ }^{2} \operatorname{In}$ [Christandl-Doran-Walter],[Pak-P]

The theorem

Reduction Lemma:

Let $\lambda, \mu, \nu \vdash n$ and $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$. Set $s=n-\nu_{1}$. Then:
(i) If $\left|\lambda_{i}-\mu_{i}\right|>s$ for some i, then $g(\lambda, \mu, \nu)=0$,
(ii) If $\left|\lambda_{i}-\mu_{i}\right| \leq s$ for all $i, 1 \leq i \leq \ell$, there \exists an $r \leq 2 s \ell^{2}$, s.t.

$$
g(\lambda, \mu, \nu)=g(\phi(\lambda), \phi(\mu), \phi(\nu))
$$

for certain explicitly defined partitions $\phi(\lambda), \phi(\mu), \phi(\nu) \vdash r$.

Lemma: Complexity of Kron

Let $\alpha, \beta, \gamma \vdash n$ be partitions of the same size, s.t. $\alpha_{1}, \beta_{1}, \gamma_{1} \leq m$ and $\ell(\alpha), \ell(\beta), \ell(\gamma) \leq \ell$. Then $g(\alpha, \beta, \gamma)$ can be computed in time $(\ell \log m)^{O\left(\ell^{3} \log \ell\right)}$.

The theorem

Reduction Lemma:

Let $\lambda, \mu, \nu \vdash n$ and $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$. Set $s=n-\nu_{1}$. Then:
(i) If $\left|\lambda_{i}-\mu_{i}\right|>s$ for some i, then $g(\lambda, \mu, \nu)=0$,
(ii) If $\left|\lambda_{i}-\mu_{i}\right| \leq s$ for all $i, 1 \leq i \leq \ell$, there \exists an $r \leq 2 s \ell^{2}$, s.t.

$$
g(\lambda, \mu, \nu)=g(\phi(\lambda), \phi(\mu), \phi(\nu))
$$

for certain explicitly defined partitions $\phi(\lambda), \phi(\mu), \phi(\nu) \vdash r$.

Lemma: Complexity of Kron

Let $\alpha, \beta, \gamma \vdash n$ be partitions of the same size, s.t. $\alpha_{1}, \beta_{1}, \gamma_{1} \leq m$ and $\ell(\alpha), \ell(\beta), \ell(\gamma) \leq \ell$. Then $g(\alpha, \beta, \gamma)$ can be computed in time $(\ell \log m)^{O\left(\ell^{3} \log \ell\right)}$.
Theorem (Pak-P)
Let $\lambda, \mu, \nu \vdash n$ be partitions with lengths $\ell(\lambda), \ell(\mu), \ell(\nu) \leq \ell$, the largest parts $\lambda_{1}, \mu_{1}, \nu_{1} \leq N$, and $\nu_{2} \leq M$. Then the Kronecker coefficients $g(\lambda, \mu, \nu)$ can be computed in time

$$
O(\ell \log N)+(\ell \log M)^{O\left(\ell^{3} \log \ell\right)} .
$$

The analogous question for characters

Input: Integers N, ℓ, partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$,
where $0 \leq \lambda_{i}, \mu_{i} \leq N$, and $|\lambda|=|\mu|$.
Decide: whether $\chi^{\lambda}[\mu]=0$

Proposition (Pak-P)

This problem is NP -hard.

