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La publication de la conference de John Moon, Counting Labelled
Trees, est un autre jalon de l'histoire de la Societe Mathematique du
Canada. Nous esperons que cette monographie sera la premiere d'une
longue serie.

Du point de vue historique, les premieres publications de la Societe ont
ete limitees aux comptes rendus des Congres et peu apres au Journal
Canadien de Mathematiques. Dans les premiers temps, la publication du
Journal Canadien etait une entreprise d'envergure et avait tendance a
prendre Ie pas sur les autres efforts de publication. Avec l'avenement du
Bulletin Canadien de Mathematiques, les autres publications ont ete pour
ainsi dire negligees. Ce fait est a deplorer si l'on considere la haute valeur
d'un grand nombre des conferences de nos seminaires. Plusieurs de ces
conferences furent publiees sous forme de notes polycopiees qui, en plus de
n'etre pas tres attrayantes, n'etaient a la disposition que d'un petit nombre.
De fait, elles auraient merite une meilleure diffusion - realisable si ces notes
avaient paru sous forme de livre.

La societe se considere privilegiee de pouvoir commencer cette serie avec
une oeuvre de John Moon. Avec la competence qui Ie caracterise il a su
reunir les elements d'un sujet interessant et de lecture tres agreable.

En tant que president de la Societe Mathematique du Canada, je desire
offrir mes felicitations au professeur Moon qui lance cette serie et etablit
ainsi un haut degre d'excellence que ses successeurs voudront atteindre.

N. S. Mendelsohn

The publication of John Moon's Counting Labelled Trees marks yet
another milestone in the history of the Canadian Mathematical Congress.
It is hoped that this monograph will be the first of a continuing series.

Historically, the early publications of Congress were confined to the
Proceedings of Congresses and shortly after that the Canadian Journal of
Mathematics. In those first days the publication of the Canadian Journal
was a large undertaking and tended to push into the background other
efforts of publication. With the coming of the Canadian Mathematical
Bulletin, other publications were virtually neglected. In retrospect, this is a
great pity since such activities as our biennial seminars contained a large
number of magnificent lecture series. Many of these appeared as mimeo-
graphed lecture notes which, besides their unattractive appearance, were
available only to a few. In fact, they deserved widespread circulation and
this would have been achieved if the notes had been edited and published
in book form.

Congress is very fortunate in having the first book of this series written
by John Moon. With impeccable scholarship, he has put together the
results of an attractive subject in a highly readable form.

As president of the Canadian Mathematical Congress, I wish to con-
gratulate Professor Moon for launching the series and setting a high
standard for others to follow.



My object has been to gather together various combinatorial results
on labelled trees. The basic definitions are given in the first chapter;
enumerative results are presented in the next five chapters, classified
according to the type of argument involved; some probabilistic problems
on random trees are treated in the last chapter. Some familiarity with
matrices and generating functions is presupposed, in places, but much of
the exposition should be accessible to anyone who knows something about
finite mathematics or probability theory.

This material was originally prepared for a series of lectures I gave at the
Twelfth Biennial Seminar of the Canadian Mathematical Congress at the
University of British Columbia in August, 1969. I am indebted to Pro-
fessors Ronald Pyke and John J. McNamee for their invitation and
encouragement.

Edmonton, Alberta
February, 1970
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1
1.1. Definitions. A graph Gn consists of a finite set of n nodes some pairs

of which are joined by a single edge; we usually assume the nodes are
labelled 1,2, ... , n and that no edge joins a node with itself. A node and
an edge are incident if the edge joins the node to another node. The
degree of a node is the number of edges incident with it; an endnode of a
graph is a node of degree one.

Suppose the graphs Gn and Hn have the same number of nodes. If nodes
i andj of Gn are joined by an edge if and only if nodes i andj of Hn are
joined by an edge, then we say Gn and Hn determine the same labelled
graph; more generally, if Gn and Hn determine the same labelled graph for
some relabelling of their nodes, then we say Gn and Hn are isomorphic or
that they determine the same unlabelled graph. The labelled graphs with
three nodes and the unlabelled graphs with four nodes are shown in
Figures 1 and 2.

A path is a sequence of edges of the type ab, bc, cd, ... , 1m where each
edge ij joins the nodes i and j. We usually assume the nodes a, b, ... , 1are
distinct; if a = m we call the path a cycle. The length of a path or cycle is
the number of edges it contains; sometimes it is convenient to consider a
single node as a path of length zero. A graph is connected if every pair of
nodes is joined by a path; any graph is the union of its connected com-
ponents. The distance between two nodes in a connected graph is the length
of any shortest path joining them.

1.2. Properties of Trees. A tree is a connected graph that has no cycles.
Konig (1937;pp. 47-48)lists some of the early works in which the concept
of a tree appears; the earliest were by Kirchhoff and von Staudt in 1847.
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FIGURE 2

The trees with up to six nodes and the number of ways of labelling their
nodes are illustrated in Figure 3. The trees with up to ten nodes (and up to
twelve nodes in sollie cases) were drawn by Rarary and Prins (1959).
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We shall use the following properties of a tree in what follows (these
properties and others can be combined to provide at least sixteen equiva-
lent definitions of a tree; see Anderson and Rarary (1967) and Rarary and
Manvel (1968».

LEMMA1.1. If a tree has at least two nodes, then it has at least two
endnodes.

This may be proved by considering two nodes joined by one of the
longest paths in the tree.

LEMMA1.2. If a tree has n nodes, then it has n - 1 edges.

This may be proved by induction on n, using Lemma 1.1.

LEMMA1.3. Any two nodes of a tree are joined by a uniquepath.

Any two nodes of a tree must be joined by at least one path because a
tree is connected; if they were joined by more than one path the tree would
contain a cycle and this is impossible by definition.

1.3. Summary. Let T(n) denote the number of trees Tn with n labelled
nodes, for n = 1,2, .... The formula T(n) = nn-2 is usually attributed to
Cayley (1889). Re pointed out, however, that an equivalent result was
proved earlier by Borchardt (1860); this result appeared without proof in
an even earlier paper by Sylvester (1857). The formula for the number of
labelled trees has been rediscovered, conjectured, proved, and generalized
many times. Our object here is to summarize various results of a combina-
torial or probabilistic nature that are known about labelled trees and to
survey the more important methods that have been used to establish these
results. For additional material on these and related problems see, for
example, Riordan (1958) and Knuth (1968a).



ASSOCIATING SEQUENCES when n = 6 and remarks that " . .. it will be at once seen that the proof
given for this particular case is applicable for any value whatever of n".

Priifer (1918), apparently unaware of Cayley's paper, constructs the
correspondence as follows. From any tree Tn remove the endnode (and its
incident edge) with the smallest label to form a smaller tree Tn-l and let al
denote the (label of the) node that was joined to the removed node;
repeat this process on Tn-l to determine a2 and continue until only two
nodes, joined by an edge, are left. The tree in Figure 4, for example,
determines the sequence (2, 8, 6, 2, 8, 2). Different trees Tn determine

S 7 3

2 .V I • •
1 2 8 6 4

FIGURE 4

2.1. Priifer Sequences. Some enumeration problems for trees can be
treated by associating certain sequences with trees; a useful feature of this
type of argument is that various properties of the trees are reflected in the
corresponding sequences.

THEOREM 2.1. if n ~ 3 there is a one-to-one correspondence between the
trees Tn with n labelled nodes and the nn-2 sequences (al> a2," ., an-2) that
can beformedfrom the numbers 1,2, ... , n.

Cayley would prove this when n = 5 by classifying the terms in a certain
expansion as follows (the symbols a, fJ, y, 8, and £ denote the numbers
1,2,3,4, and 5 in some order):

different sequences (al> a2,"" an-2); it remains to show that each such
sequence corresponds to some tree Tn.

Suppose (al, a2, ... , an-2) is any sequence formed from the numbers
1,2, ... , n. If bl denotes the smallest positive integer that does not occur
in the sequence, let (C2"'" Cn-2) denote the sequence obtained from
(a2, ... , an-2) by diminishing all terms larger than bl by one. Then
(C2"'" Cn-2) is a sequence of length n - 3 formed from the numbers
1,2, , n - 1 and we may assume there exists a tree Tn-l with nodes
1, 2, , n - 1 that corresponds to this sequence. Relabel the nodes of
Tn-l by adding one to each label that is not less than bl; if we introduce
an nth node labelled bl and join it to the node labelled al in Tn-l> we obtain
a tree Tn that corresponds to the original sequence (al> a2,' .. , an-2)' This
shows that Priifer's construction provides a one-to-one correspondence
between these sequences and the trees Tn.

Neville (1953) gives three methods for defining a sequence corresponding
to a tree (see also Knuth (1968a; p. 397». The first is the method just de-
scribed. The second differs in that if we have just removed a node bl that
was joined to al we remove al next if al is now an endnode; otherwise we
remove the endnode with the smallest label as before. In the third method
all the endnodes of the original tree are removed in the order of the size of
their labels; then all the endnodes of the remaining tree are removed, and
so on. The sequences (al> a2,"" an-2) are defined in terms of the nodes
removed as before. The tree in Figure 4, for example, determines the
sequences (2, 8, 6, 8, 2, 2) and (2, 8, 6, 2, 2, 8) if these last two methods are
used. It can be shown by modifications of the argument given earlier that
each sequence (al> a2 ... , an _2) corresponds to some tree Tn with respect

la
3 5} 5

(a + fJ + y + 8 + £)3afJy8£ = +3a2fJ 20 afJy8£ 60

+6afJy 10 60
125

The multinomial coefficients 1,3, and 6 show how many times these terms
appear, and the numbers 5, 20, and 10 show how many terms like these
can be formed with the factors a, fJ, y, 8, and £. The terms of the type
a4fJy8£ = (afJ)(ay)(a8)(a£) correspond to the trees Ts that have a node a of
degree four; the terms, a3fJ2y8£ correspond to the trees Ts with a node a of
degree three joined to a node fJ of degree two; the terms a2fJ2y28£ corre-
spond to the paths on five nodes with endnodes 8 and £.

Cayley gives no explicit rule for establishing the correspondence between
trees and sequences in general. He merely exhibits such a correspondence
4



to these methods. (The last two methods described are not quite the same
as the methods described by Neville; he would never remove the node
labelled n.)

It is not difficult to see that if node i of Tn has degree d;, then the number
i occurs dj - 1 times in the sequence associated with Tn (this is true no
matter which of the three methods for constructing the sequence is used).
Since any sequence (ab a2,"" an-2) formed from the numbers 1,2, ... , n
determines a tree Tn>it follows that the only restriction on the dj's is that
they be positive integers and that .L:f= 1 (dj - 1) = n - 2. Thus the positive
integers (d1, d2, ... , dn) form the degree sequence of some tree Tn if and
only if their sum is 2(n - I). This result apparently first appears in a
paper by Senior (1951) as a special case of a more general result (see also
Babler (1953), Hakimi (1962), Menon (1964), and Ramanujacharyulu
(1965)). It also follows from Priifer's construction that the number of
trees Tn with a given degree sequence (db d2, ... , dn) is given by the
multinomial coefficient

( n-2 )
d1 - 1, ... , dn - 1 .

This formula, which was pointed out by Moon (1964, 1967a) and Riordan
(1966), can be used to derive a number of other results as we shall see
later. (Zarankiewicz (1946) has pointed out that if a tree has p endnodes
and q nodes whose degree exceeds two, then the sum of the degrees of
these latter q nodes equals 2(q - I) + p.)

2.2 Tree Functions. Before describing some extensions of Priifer's
method we introduce more terminology. Suppose we choose some specific
node of a tree Tn>say the nth node, and call it the root. There exists a unique
path from any other node i to the root; if ij is the first edge in this path let
f(i) = j. The functionfis called the tree function of Tn. We could represent
the functionfby the directed rooted tree-sometimes called an arborescence
-obtained from Tn by replacing each edge ij by an arc 7jdirected from i to
j, where j = f(i); each node, with the exception of the root, now has
exactly one arc directed away from it. Supposefis any function that maps
{I, 2, ... , n - I} into {I, 2, ... , n}. Glicksman (1963) has shown thatfis
a tree function if and only if {f(i): i E A} r;f: A for every non-empty subset
A of {I, 2, ... , n - I}. The necessity of this condition follows from the
fact that a tree has no cycles; the sufficiency can be proved by constructing
a tree that corresponds to f by working backwards inductively from the
root.

A. Lempel, E. Palmer, and perhaps others have observed that there are
nn- 3 different trees with n unlabelled nodes and n - 1 edges labelled
1,2, ... , n - 1 when n ~ 3. One way to prove this is as follows. Let f

denote the tree function of a node-labelled tree Tn; assign the label i to
the edge ij, where j = f(i), for i = 1, 2, ... , n - 1. It is not difficult to
see that this defines a mapping of the set of nn- 2 node-labelled trees Tn
onto the set of edge-labelled trees and, when n ~ 3, each edge-labelled
tree is the image of n node-labelled trees. Palmer (1969) has treated similar
problems for a different type of tree.

We qigress a moment to mention the following problem of Riordan's,
although perhaps it is not obvious that the problem has anything to do
with trees. There are n parking spaces available along a street and each of
n drivers, arriving consecutively, has a preferred parking space; the ith
driver will park in space g(i) if it is still available when he arrives and if it
is not he will park in the next unoccupied space he finds (if there is one).
Every driver can find a parking space (without driving around the block)
if there exists a permutation 7Tof {I, 2, ... ,n} such that 7T(j) is the least
integer greater than or equaltog(j) that is not in the set {7T(I),... , 7T(j - I)}
for 1 :s;j :s; n. Schiitzenberger (1968) showed by induction that there is
a one-to-one correspondence between the preference functions g in which
everyone finds a parking space and the tree functions that map {I, 2, ... , n}
into {I, 2, ... , n + I}. Riordan (1969) has given other more direct proofs
of the fact that there are (n + I)n -1 such functions g.

2.3. Knuth's Generalization of Priifer Sequences. A directed graph D
consists of a collection of nodes some ordered pairs of which are joined by
a directed edge, or arc; we say the arc 7j is directed from node i to node j.
The graph D may contain both of the arcs 7jandft and it may contain arcs
of the type 7i called loops.

A graph is a spanning subgraph of a second graph if they have the same
nodes and every edge (or arc) in the first graph is also in the second. When
we refer to a spanning subtree of a directed graph, we shall always mean a
directed rooted tree of the type described above in which each arc is
directed towards the root; in particular, if the directed graph is rooted at
a particular node x, then the spanning subtree is to be rooted at x.

If D is any directed graph with h labelled nodes and (Sb S2, ••. , Sh) is any
composition of n into h positive integers, let H denote the graph obtained
by replacing each node i of D by a set Sj of Sj nodes; the arc xY is in H if
and only if x and y belong to subsets Sj and Sj such that the arc 7jwas in D.
(Notice that if D had some loops, then H also has loops.) We assume for
convenience that the n nodes are labelled so that if i < j then the nodes of
Sj have smaller labels than the nodes of Sj' We also assume Sh = 1 so Sh
consists simply of the nth node; we think of this node as the root of both
D·and H although it is labelled differently in the two graphs.

Let r(Sj) denote the set of nodes y in H such that y is the terminal node



of some arc issuing from a node of SI (notice that SI S; r(SI) if the loop
TI is in D). Iffis the tree function of a spanning subtree of G (that is rooted
at the hth node of G), letf(SI) = Sj if j = f(i) for i = 1,2, ... , h - 1. We
shall let IXI denote the number of elements in the set X.

The following result is a special case of a more general result due to
Knuth (1968); it expresses the number c(H) of spanning subtrees of H
(rooted at node n) in terms of the spanning subtrees of D (rooted at node
h).

h-1

c(H) = L {rr Ir(SI)181-1'lf(SI)I},
f 1=1

where the sum is over the tree functions f of all spanning sub trees of D.

The proof involves showing there is a one-to-one correspondence
between trees spanning H and the ordered sets of h - 1 sequences of the
form

where a(i,j) is any member of r(SI) for j = 1, 2, ... , Sl - 1, and a(i, Sl) is
any member off(SI), for i = 1,2, ... ,h - 1, for the tree functionfof
some spanning subtree of D.

Suppose the tree T spans the graph H. We successively remove the end-
nodes with the smallest labels, as before; now, however, when we remove
an endnode b from a subset SI we write the label of the node joined to b in
the next position of the ith sequence. When only one edge remains, join-
ing some node of Sj, say, to the nth node, we put an n in the last position
of the jth sequence. It is clear that each term a(i,j) belongs to r(SI)' When
the last node b of SI is removed, suppose the node joined to b belongs to
the subset Sj. If we let f(i) = j, then it is not difficult to show, using
Glicksman's result, that the function f is the tree function of a spanning
subtree of D. Thus, every tree spanning H can be associated with a set of
sequences of the type described above. It can be shown by induction that
there exists a spanning tree of H corresponding to each such set of
sequences.

Knuth's more general result applies when Sh ;;:: 1 and one wants to
determine the number of families of disjoint directed rooted trees that
collectively span H and whose roots constitute specified subsets of nodes
of H; we now describe three corollaries he deduced from his theorem.

2.4. Special Cases. Suppose the graph H is obtained from the directed
graph D illustrated in Figure 5. There is only one spanning subtree of D

(rooted at the bottom node) and its arcs are ii,23, and 34. It follows from
Theorem 2.2 that there are S~lS~2(Sl + 1)83-1 spanning subtrees of H. If
we think of the bottom node as a member of Sl, then we can think of H as
having arisen from a directed 3-cycle and we can abandon the restriction
Sh = 1. The following more general result can be proved in the same way.

COROLLARY2.2.1. If the graph D is a directed h-cycle and h ;;::2, then
there are

spanning sub trees of H that are rooted at any given node of the first subset
of nodes.

Theorem 2.2 also applies when the graphs D and H are ordinary un-
directed graphs since any undirected graph G can be transferredjnto ~
equivalent directed graph D by replacing each edge ij by the arcs ij and ji.
The following result, apparently proved first by Rohlickova (1966) by
another method, is the analogue of Corollary 2.2.1 for ordinary undirected
graphs.

COROLLARY2.2.2. If G is a cycle of length h(;;::2), then

c(H) = (Sh + S2)81-1(Sl + SS)82-1 .•• (Sh-1 + Sl)8h-1S1S2'" Sh

x «SlS2)-1 + (S2SS)-1 + ... + (ShS1)-1).

To prove this we select some node to serve as a root, treat it as though
it constituted a separate subset by itself, and apply Theorem 2.2 as before;
the details of the derivation are somewhat more complicated than they
were in the proof of Corollary 2.2.1, however, because the root-node is
joined to nodes from two other subsets of nodes of H and there are more
spanning subtrees to consider.

If the (undirected) graph G is a tree with h nodes, there is only one
spanning subtree of G, namely G itself. There is no loss of generality if
we assume the hth node is an endnode. If we ignore the restriction Sh = 1
and treat some node in the hth subset of nodes of H as a root-node con-
stituting a separate subset by itself, we find that the formula in Theorem



2.2 can be rewritten as follows. (The result still holds even if G has some
loops if they are ignored in determining the degree sequence.)

COROLLARY 2.2.3. If G is a tree with degree sequence (d1>d2, ... , dh),

then
h

c(H) = Il!r(Sj)!St-1stt-1.
j=l

rooted trees that can be formed on the nodes of A subject to the following
conditions: (1) each tree T in the forest F contains just one node of Band
this node is the root of T; (2) each node of A is assigned one of t colours
and there are Cj nodes of the ith colour; and (3) each edge in a tree T of F
is given the same colour as the node with which it is incident that is nearest
the root of T and there are ej edges of the ith colour in F.

COROLLARY 2.2.4.
An r by s bipartite graph is a graph with r "dark" nodes and s "light"

nodes such that every edge of the graph joins a dark node with a light node.
If we let G be the graph consisting of a single edge joining two nodes, then
it follows from Corollary 2.2.3 (or 2.2.1) that there are rs-1sT-1 bipartite
trees with r labelled dark nodes and s labelled light nodes. This particular
result was apparently first proved by Fiedler and Sedlacek (1958); we shall
discuss their derivation and others later. If (r1>... , rT) and (S1>... , ss) are
compositions of r + s - 1 into positive integers, then it follows from the
proof of Theorem 2.2 that there are

T( k ) k( n )(n-k)e en, ; c, e = - C11 ••• Ctl•
n C1>... ,Ct e1>... ,et

Let G denote the graph on three nodes in which the second node is
joined to the first and third nodes; the first node is also joined to itself by
a loop. Let H be the graph defined earlier with h = 3 and (Sl, S2, S3) =
(n - k, k, 1); we consider the nodes of S2 as the nodes of B and the nodes
of 81as the remaining nodes of A. It follows from the proof of Theorem
2.2 that each spanning subtree of H corresponds to a pair of sequences

( s-l )( r-l )
r1 - 1, ... ,rT - 1 . Sl - 1, ... ,ss - 1

bipartite trees for which the degree sequences of the r dark nodes and the
s light nodes are (r1>... , rT) and (Sl, ... , ss). This formula can be used to
derive the following results of Klee and Witzgall (1967); if s = ru + 1 then
there are (ru + 1)'-l(ru)!j(u!)' r by s trees in which the r dark nodes all
have degree u + 1; if s = ru - 1 then there are rT-2(ur - 1)!j«u - I)!)'
r by s trees in which u - 1 of the nodes joined to each dark node are
endnodes.

Every tree Tn corresponds to two r by s bipartite trees, for some values
of rand s (if we think of the nth node as belonging to one of the two node
sets then the ith node will belong to the same node set or the other node
set according as the distance between i and n in Tn is even or odd). It
follows from this observation that

where ajES1US2 for i= 1,2, ... ,n-k-l, (In-kES2, bjES1U
{n + I} for i = 1,2, ... , k - 1, and bk = n + 1. It is not difficult to see
that forests F on the nodes of A = Sl U S2 consisting of k disjoint rooted
trees each of which is rooted at a node of B = S2 correspond to spanning
subtrees of H in which the (fictitious) (n + l)st node is joined to every
node of B; such subtrees correspond to the sequences in which bj = n + 1
for i = 1,2, ... , k. It remains to enumerate the sequences (a1>a2, ... , an-k)
corresponding to forests F satisfying conditions (2) and (3) also.

There are ( n ) ways to colour the nodes of A and satisfy con-
C1>'.. , Ct

dition (2). Once this has been done, there must be ej positions in the
sequence (aI, a2, ... , an_k) in which the label of one of the Cj nodes of
colour i appears. These positions can be chosen and filled in

nL: (~)kn-k-1(n - k)k-1 = 2nn-2;
k=O

this is a special case of the second identity listed later in Table 1 and
Austin (1960) has derived a multinomial extension of this identity.

The proof of Theorem 2.2 also yields a solution to a problem considered
by Raney (1964) in the course of deriving a formal power series solution
to the equation 2:i= 1Aj exp (BjX) = X. Let B denote some subset of k
nodes of a subset A of n labelled nodes; let C = (C1>... , Ct) and e =
(e1>... , et) denote compositions of nand n - k into t non-negative
integers. Let T(n, k; c, e) denote the number of forests F of k disjoint

ways. Of all the possible sequences thus constructed only the fraction kjn
have the additional property that an-k E S2 = B and thus correspond to
suitable forests F. This completes the proof of the corollary. If t = 1, then
the above formula reduces to knn - k -1; this particular result was also
stated by Cayley and, implicitly, by Borchardt.



3.2. Trees with a Given Degree Sequence. We saw earlier that formula
(2.1) for the number T(n; dl> d2, ... , dn) of trees Tn whose degree sequence
is (dl> d2, ... , dn) could be deduced from Priifer's argument. The following
derivation, given by Moon (1967b), is based on the fact that the multi-
nomial coefficients satisfy the recurrence relation

where the sum is over all i such that aj ;:: 1.

THEOREM3.1. If n ;:: 3, then

3
( n-2 )T(n; dl> d2, ... , dn) = d _ I d - I .

1 , ••• , n

We may suppose that (dl> d2, , dn) is a composition of 2(n - I) into
positive integers since T(n; dl, d2, , dn) = 0 otherwise. It will simplify
the notation later if we assume that dn = I (this is no real loss of generality
since some nodes must be joined to only one other node). We now show
that

(3.2) T(n;dl,d2, ... ,dn) = LT(n - I;dl> ... ,dj - I, ... ,dn-l),

where the sum is over all i such that dj ;:: 2.
Consider any tree Tn with degree sequence (dl, d2, ... , dn) where the

nth node is joined only to one other node, say the ith; it must be that
dj ;:: 2 if n ;::3 since the tree is connected. If the nth node is removed
(along with its incident edge), then the remaining tree Tn-l has degree
sequence (dl> ... , dj - I, ... , dn -1)' This process is reversible and equa-
tion (3.2) follows upon considering all possible values of i. The theorem
now follows from (3.1) and (3.2) by induction since it certainly holds
when n = 3.

Let

3.1. Some Identities. Various formulas for the number of trees en-
joying certain properties can be established by induction; such arguments
usually require a knowledge of an appropriate identity or recurrence
relation.

Riordan (1968, Section 1.5) has given an elementary derivation of a
nUlllber of identities involving Abel sums of the type

n

An(x, y;p, q) = L (~)(x + k)k+P(y + n - k)n-k+q.
k=O

In what follows we shall make use of some special cases of the identities
listed in the following table.

C - C (X X) - ~ Xdl(T)-l ... Xdn(T)-ln - n 1,··· , n - ~ 1 n,

-1 0 x-1(x+y+n)n
-1 -1 (x-1 + y-l)(X + Y + n)n-l
1 -1 y-l(x+y+n+f3(xW
2 -1 y-l{(X + Y + n + f3(x; 2))n + (x + Y + n + a + y(x))n}

The convention is adopted that
ak == ak = k!, f3k(X) == f3ix) = k! (x + k),

[f3(x; 2)]k == f3k(X; 2) = [f3(x) + f3(x)]k,

where the sum is over all trees T with n labelled nodes and dj(T) denotes
the degree of the ith node of T. Renyi (1970) shows that

Cn(Xl>"" Xn-l> 0) = (Xl + ... +Xn-l)Cn-l(Xl>"" Xn-l),

by essentially the same argument as we used to establish (3.2). He then
deduces that Cn(Xl>"" Xn) = (Xl + ... + xn)n-2 by applying induc-
tion and appealing to the fact that Cn is a symmetric polynomial in its n
variables and is homogeneous of degree n - 2; he suggests that this may
have been the argument Cayley originally had in mind.



An oriented tree is a tree in which each edge ij is replaced by one (and
only one) of the arcs ij or ft. The out-degree WI and in-degree II of the ith
node is the number of arcs of the type if and j7, respectively, in the tree.
Let (W1>... , wn) and (11)... , In) be two compositions of n - 1 into non-
negative integers such that WI + II ~ 1 for each i. Menon (1964) proved
that these conditions are necessary and sufficient for there to exist an
oriented tree Tn whose ith node has out-degree WI and in-degree II for
i = 1, 2, ... , n. The argument used to prove Theorem 3.1 can be extended
to show that there are

The formula for C(n, k) also follows from Theorem 3.1 and from
Priifer's construction (see Bedrosian (1964»; de Bruijn (1964) posed the
formula as a problem. Klee and Witzgall (1967) used Clarke's method to
show that there are

r'-l(r - 1)(8 _ 1)r-1C
k - 1

(
n - 2 )

WI + 11 - 1, ... , Wn + In - 1

r by 8 bipartite trees in which a specified light node has degree k (this also
follows from formula (2.2».

Any tree Tn+ 1 for which dn+ 1 = k can be constructed by partitioning
the first n nodes into k non-empty subsets, forming a tree on the nodes of
each subset, and then joining the (n + l)st node to some node of each of
the k trees. If we count the number of ways of doing these things and
appeal to Theorem 3.2, we obtain the identity

3.3. Trees in which the Degree of a Given Node is Specified. Let C(n, k)
denote the number of trees Tn in which a given node, say the nth, has
degree dn = k. The following result is due to Clarke (1958). (n - l)nn-k = ~ '" (. n . )j{1-1 ... j/r\k - 1 k. L.., 11, ... ,Jk

(n-2)THEOREM 3.2. Ifl ::; k ::; n - 1, then C(n, k) = k _ 1 (n - l)n-k-l.
where the sum is over all compositions of n into k positive integers. Con-
versely, if identity (3.4) can be established by some other means, then
Theorem 3.2 and the formula T(n) = nn-2 follow immediately by induc-
tion. Robertson (1964) followed this approach and obtained (3.4) as a
special case of a multinomial extension of Abel's identity (see also Helmer
(1965».

We now give a second proof of Theorem 3.2 that is based on an idea
employed by Gobel (1963) to treat a closely related problem; the argument
can easily be extended to treat a more general problem that we shall
mention presently. The main step is to show that

Let Rn denote any tree in which dn = k - 1 and suppose we remove one
of the n - kedges ij not incident with the nth node. If f(i) = j, where f is
the tree function of Rn, then if we join the nth and ith nodes by an edge we
obtain a tree Tn in which dn = k. The same tree Tn could, however, be
obtained from different trees Rn in this way.

If we were to remove the nth node (and its k incident edges) from Tn>the
graph remaining would be forest of k subtrees. We can transform Tn back
into a tree Rn in which dn = k - 1 by replacing any edge of the type nj by
an edge jl, where I and j do not belong to the same subtree. If there are
nl nodes in the ith subtree, then there are

n-k-l
C(n, k) = (n ~ 1) 2: C(n - k, t)kt,

t=l

(n - 1 - nl) + ... + (n - 1 - nk) = k(n - 1) - (n - 1)

= (k - 1)(n - 1)
where whenever necessary we adopt the convention that an empty sum
equals one.

There are (n ~ 1) ways to choose k nodes to join to the nth node.

Temporarily discard these k nodes and construct a tree Tn _ k on the re-
maining nodes in which the nth node has degree t; this can be done in
C(n - k, t) ways. Now reintroduce the k discarded nodes, join each of
them to the nth node, and replace each of the t edges of the type jn in Tn - k

by an edge joiningj to one of the k nodes; these replacements can be made
in kt ways. The recurrence relation for C(n, k) now follows upon summing
over the possible values of t. If we assume that the formula for C(m, t)

ways of doing this. If we count in two ways the number of ordered pairs of
trees Rn and Tn that can be transformed into each other in this way, we
obtain the recurrence relation



n-k-1
C(n, k) = (n ~ 1) L: (n ~ ~ ~ 2)(n _ k _ l)n-k-t-1kt

t=1

= k(n ~ 1)(n - l)n-k-2 = (~ =: D(n _ l)n-k-1.

Theorem 3.2 now follows by induction on n.

3.4. The Number of k-Trees. We saw in the proof of Theorem 1.1 that
a tree Tn+1 could be defined inductively as any graph obtained by joining
a new node to any node in a tree Tn. This suggests the following generaliza-
tion of a tree. The graph consisting of two nodes joined by an edge is a
2-tree, and a 2-tree with n + 1 nodes is any graph obtained by joining a new
node to any two nodes already joined in a 2-tree with n nodes. The 2-trees
with up to five nodes and the number of ways of labelling their nodes are
shown in Figure 6. A k-tree can be defined analogously starting with a

complete k-graph, or k nodes each of which is joined to the remaining k - 1
nodes (we remark that in many papers, especially those applying graph
theory to the study of electrical networks, the term k-tree refers to a forest
of k disjoint trees).

Beineke and Pippert (1969) determined the number Bk(n) of k-trees with
n labelled nodes by an argument we shall mention later (see also Palmer
(1969)). Let Ck(n, d) denote the number of k-trees with n labelled nodes in
which exactly d nodes are joined to each node of a given k-tuple of nodes
forming a complete subgraph; Moon (1969b) pointed out that the argu-
ment used to derive equation (3.5) can easily be extended to show that

n-cl-k

Ck(n, d) = (n ~ k) L Ck(n - d, t)(kd)t.
t=1

n-k

Rk(n) = L Ck(n, d) = {k(n - k) + W-k-1
cl=1

k-trees in which any given k-tuple of nodes forms a complete subgraph.

There are (~) ways to select a k-tuple of nodes and each k-tree contains

{k(n - k) + I} complete k-graphs, so it must be that

(~)Rin) = {k(n - k) + l}Bk(n).

Notice that when k = 1 this reduces to the formula T(n) = nn-2. Beineke
and Moon (1969) gave several other derivations of the formula for B2(n),
one of which is based on Clarke's proof of Theorem 3.2.

3.5. Forests of Trees with Specified Roots. Let F(n, k) denote the
number offorests with n labelled nodes that consist of k disjoint trees such
that k specified nodes belong to distinct trees.

THEOREM 3.3. If 1 ~ k ~ n, then F(n, k) = knn-k-1.

Gobel (1963) proved this by first showing that
n-k

F(n, k) = L (n ~ k)ktF(n - k, t);
t=1

this follows upon classifying the forests according to the number t of nodes
that are joined to the k specified nodes. The formula for F(n, k) now fol-
lows by induction. This argument can be extended to show that there are

(rl + sk - kl)r8-1-1sr-k-1

r by s bipartite forests of k + I trees in which k specified dark nodes and I
specified light nodes belong to distinct trees. Szwarc and Wintgen (1965)
used this type of argument to prove a result equivalent to the special case
k = 0 in the course of showing there are r8-1sr-1 feasible and unfeasible
bases of an r by s transportation problem; this formula has also been
derived by the use of generating functions when k = I by Austin (1960)
and in the general case by Moon (1967b).

We saw earlier that Theorem 3.3 could be derived by Priifer's method.
Renyi (1959b) pointed out that it is also a consequence of Theorem 3.2,



and conversely; if we are constructing a tree Tn+1 for which dn+1 = k,
then once the k nodes joined to the (n + l)st node are chosen the remain-
ing edges can be chosen in F(n, k) ways and, consequently, C(n + 1, k) =
(Z)F(n, k). Renyi (1959a) deduced the formula for F(n, k) from identity

(3.4) which he established by induction using generating functions (see also
Riordan (1964, 1968b».

If j is one of the v" functions that maps {I, 2, ... , u} into {I, 2, ... , v},
where u ~ v, then j may be represented by a directed graph on v labelled
nodes in which an arc ij is directed from i to j if and only if j(i) = j. It is
not difficult to see that each connected component of such a graph con-
sists of a collection of rooted trees whose roots determine a directed cycle
(see Figure 7) or, if u < v, a directed tree that is rooted, in effect, at one

The result F(O, u, v) = (v - U)V"-1 now follows by induction since it
certainly holds when u = 1. We obtain the formula in Theorem 3.3 if we
let v = nand u = n - k.

3.6. Connected Graphs with One Cycle. Consider a connected directed
graph, or junctionClL digrgph, arising from a function j that maps
{I, 2, ... , n} into {l, 2, ... , n}; such a graph consists of a collection of
rooted directed trees whose roots determine a directed cycle (J. Denes
informs me that this observation was apparently first published by
Suschkewitsch (1928». Let D(n, k) denote the number of such graphs in
which the cycle has length k, where 1 ~ k ~ n.

THEOREM 3.4. If1 ~ k ~ n, then D(n, k) = (n)knn-k-1.

This result apparently was first proved by Rubin and Sitgreaves (1954).
Katz (1955) proves it by observing that if there are nt nodes at distance i
(> 0) from the cycle, then the (unique) arc issuing from each such node
must be directed towards one of the nt -1 nodes at distance i-I from the
cycle; if we count the number of ways of forming the cycle and choosing
the nodes at different distances, we find that

D(n, k) = (k - I)! '" (k n )knln~2' .. nf!.l>L... , nl> ••• , ntof the nodes u + 1, u + 2, ... , v. Blakely (1964) considered a problem for
such mapping functions j that is equivalent to the problem treated in
Theorem 3.3. (In what follows we adopt the notation (x)o = 1 and
(x)t = x(x - 1) ... (x - t + 1) for t = 1,2, .... )

If F(t, u, v) ofthe functionsjjust described are such that exactly t nodes
in the graph ofjbelong to cycles, then

"
v" = 2: F(t, u, v).

t=o

where the sum is over all compositions (nl> n2, ... , nt) of M = n - k into
t positive integers for t = 1, 2, ... , M (we may assume t ;:::1 since the
theorem is obviously true when k = n). The theorem now follows from
the identity

'" knl-1 n~2-1 nf!.11 -1 _ nn-k-1
(3.6) L... (n1 - I)! . (n2 - I)! ... (nt - I)! (nt) - (n - k)!'

It is not difficult to see that

F(t, u, v) = (~)t! F(O, u - t, v),

for t = 0, 1, ... , u, if we adopt the convention that F(O, 0, v) = 1; if we
assume that F(O, w, v) = (v - w)VW-1 for w < u, then

where the sum is over the same compositions as before.
Katz attributes the following derivation of this identity partly to J. S.

Frame. We can rewrite the right hand side of (3.6) as

" "
= F(O, u, v) + 2: (u)tV"-t - 2: (U)t+1V"-<t+1)

t=1 t=1
= F(O, u, v) + UV"-1.

M
_ '" knl-1 . (M1 + n1)Mc1,
- L... (n1 - I)! M11

nl =1

where M1 = M - n1' The last factor in the last summand is of the same
type as the original quantity on the left and can be expanded in the same
way. If we iterate this expansion, letting Mt = Mi-1 - nt for i = 2,3, ...
until finally Mt = 0, we obtain the left hand side of equation (3.6). (Harary

"
v" = F(O, u, v) + 2: (u)t(v - U + t)V,,-t-1

t=1



and Read (1966) drew the functional digraphs with up to six nodes that
have no cycles of length one; see also Harary, Read, and Palmer (1967).)

Notice that when k = 1, the graphs counted are rooted directed trees
in which the root is distinguished by the presence of a loop; consequently,
T(n) = n-1D(n, 1) = nn-2.

Renyi (1959b) showed, in effect, that Theorems 3.3 and 3.4 are also
equivalent; once we have formed a directed cycle on k nodes the remaining
arcs can be chosen in F(n, k) ways and, consequently,

for k = 2, 3, ... , nand n ~ 3. The result now follows by induction, using
relation (3.8). Notice that

n n ,

T(n) = L R(n, k) = L ~iS(n - 2, n - k)
1<=2 1<=2

n-2

= L S(n - 2, k)(n)1<= nn-2,
1<=0

D(n,k) = (k - I)! (~)F(n,k) = (n)~n-1<-l.

If we ignore the directions of the arcs in these graphs, it follows that there
are !D(n, k) connected graphs with n nodes and n edges in which the cycle
has length k when 3 :s;k :s;n. Various extensions of this result are known;
we shall mention these and some other problems on random mapping
functions f later.

by (3.7). .
Renyi (1959a) attributes the preceding derivation to V. T. S6s. Bemeke

and Moon (1969) used this type of argument to show that there are
M(n - 3, k)· (n - 2h 2-trees with n nodes in which a given pair of nodes
are joined by an edge and exactly n - 2 - k of the remaining nodes have
degree two; the numbers M(n, k) are defined by the relation

3.7. Trees with a Given Number of Endnodes. The proof of the next
result uses properties of the Stirling numbers S(n, k) of the second kind;
they may be defined (see, for example, Riordan (1958; p. 33» by the
identity

n

(2x + l)n = L M(n, k)(x)1<'
1<=0

n

xn = L S(n, k)(x)1<'
1<=0

It follows from (3.8) that there are k! S(n, k) ways to distribute n dif-
ferent objects in k different places in such a way that no place remains
empty (classify the distributions according as the nth object is or is ~ot
put by itself in one of the k places); Renyi (1959a) used this fact to derIve
Theorem 3.5 by Priifer's method. (These arguments can be used to show
that there are

n-l

x·xn-1 = L (k + x - k)S(n - 1, k)(x)1<
1<=0
n-l n-l

= L kS(n - 1, k)(x)1<+ L S(n - 1, k)(x)1<+1>
1<=0 1<=0

~: .J{ S(s - 1, r - k)S(r - 1, s - I)

r by s bipartite trees with k dark endnodes and 1 light endnodes.) The
Stirling numbers S(n, k) can be expressed as a sum involving bino~ial
coefficients; the corresponding expression for R(n, k) can also be derIved
directly by the method of inclusion and exclusion if one already knows the
formula T(n) = nn-2. We shall consider the distribution of the number of
endnodes in a random tree later.

it follows that S(O, 0) = 1 and

(3.8) S(n, k) = kS(n - 1, k) + S(n - 1, k - 1)
for k = 0, 1, ... , n for n ~ 1. We can now derive a formula for R(n, k),
the number of trees Tn with exactly k endnodes.

THEOREM 3.5. ij'2 :s; k :s; n, then R(n, k) = (n!/k!)S(n - 2, n - k).

Suppose we remove one of the endnodes x from a tree Tn with k end-
nodes; the remaining tree Tn-1 has k or k - 1 endnodes according as the
node joined with x is or is not an endnode in Tn-1• If we count the number
of ways these alternatives can occur, we are led to the recurrence relation

kn-1R(n, k) = (n - k)R(n - 1, k - 1) + kR(n - 1, k),

3.8. Recurrence Relations for T(n). Heretofore we have derived re-
currence relations for the number of trees Tn in which various parameters
(in addition to the number of nodes) assumed certain values. It is also
possible to derive recurrence relations for T(n) itself in various ways.

Suppose we partition n (~2) labelled nodes into two non-empty sub-
sets, the first having i nodes and the second n - i nodes, and form a tree on
each subset; if we join one of the i nodes of the first tree to one of the
n - i nodes of the second tree we obtain a tree Tn. If we perform these



operations in all possible ways we obtain each tree Tn 2(n - I) times;
consequently,

n-l

2(n - I)T(n) = L (~)T(OT(n - Oi(n - i).
1=1

(Mullin and Stanton (1967) apply this type of argument in a somewhat
more general setting.)

Dziobek (1917) and Bol (1938) both derive this recurrence relation for
T(n) and they both use it to derive a relation for the generating function of
the. numbers T(n); we shall return to that part of their arguments later.
DZIObek also says, however, that R. Rothe pointed out to him that the
resu~t T(l!) = nn-2 follows by induction from the recurrence relation and
the IdentIty

n-lL (-I)f(~)(n - j)k = 0
1=0 ]

for any positive integer k less than n. The left member is the number of
ways, using the method of inclusion and exclusion, of distributing k dif-
ferent objects in n different places in such a way that no place remains
empty; it also is equal to anQk = n! S(k, n).

Moon (1963) observed that if there are C(n, m) connected graphs with
n labelled nodes and m edges and H(n, m, I) of these have exactly 1 end-
nodes, then

n-l

2(n - I)nn-2 = L (7)il-1(n - on-I-I.

1=1

This identity follows from the second identity in Table l' it also is the
special case k = 2 of identity (3.4) which we inferred fron: Theorem 3.2.

Perhaps it shoul~ be pointed out that Dziobek was actually treating the
pr?blem of countmg the number of sets of n - 1 transpositions of n
objects such that each of the n! permutations of these objects can be ex-
~resse~ as a product of transpositions of the set; it can be shown by
~nductIOn that a set of n - 1 transpositions has this property if and only
If the graph on n nodes whose edges ij correspond to the transpositions
(i,j) is a tree (see also P6lya (1937; pp. 208-209». Denes (1959) has shown
that the number of ways of representing a cyclic permutation (1, 2, ... , n)
as a product of n - 1 transpositions is also equal to T(n).

Another proof of the formula T(n) = nn-2 is based on the identity

n-l

H(n, m, I) = L (-I)1-l(1)(~)C(n - j, m - j)(n - j)f,
1=1 ]

if n ~ 3 (Gilbert (1956) gave a generating function for the numbers
C(n, m». This follows from the method of inclusion and exclusion and the
fact that two endnodes of a connected graph cannot be joined to each other
ifn ~ 3.Ifm = n - I,thenthesegraphsaretreesandH(n,n - 1,0) = 0,
by Lemma 1.1. Therefore,

n-lL (-I)i(~)T(n - j)(n - j)f = 0
1=0 ]

and the formula for T(n) now follows by induction using the case k =
n - 2 of the identity (we shall describe later another derivation due to
Dziobek (1917) of a relation very similar to this one). Notice that this
yields another proof of Theorem 3.5, since

n-l

R(n, k) = H(n, n - 1, k) = L (-I)f-k(i) (~)(n - j)n-2
1=k ]

(n) ~ (n - k) n'= k L (_I)h h {en - k) - j}n-2 = k! S(n - 2, n - k).
h=O

this is a special case of the first identity in Table 1. Consider one of the
n 1f . f .n - unctIOns mappI~g 1, 2, ... , n - 1 into 1, 2, ... , n. We have already

seen how such a functIOn can be represented by a directed graph .on n
nodes. If we classify these functions according to the number of nodes in
the connected component of their graph that contains the nth node we
obtain the relation

n

nn-l = L (~= ~)T(j)(n - j)n-1.
;=1 ]

3.9. Connected Graphs with UnlabeUed Endnodes. Moon (l969a) also
used the formula for H(n, m, I) to obtain a formula for the number
E(n + k, m + k, k) of connected graphs G with n + k nodes and m + k
edges such that n (~ 3) of the nodes are labelled and are not endnodes and
k of the nodes are not labelled and are endnodes. If we remove the k end-
nodes of such a graph G, then the remaining graph G' is one of the
H(n, m, I) connected graphs with m edges and n labelled nodes of which
1are endnodes, for some integer 1not exceeding k.

2+C.L.T.



The number of ways of joining k unlabelled nodes to such a graph G'
so that these k nodes are the only endnodes in the resulting graph G is
equal to the coefficient of xk in

(x + x2 + ... )1(1 + X + x2 + .. -)n-I = xl(1 _ x)-n,

(-I)k-l( -n ) = (k + n - 1 - I).
k-I n-l

Therefore,
E(n + k, m + k, k)

k

= L: (- I)k-I(k __n I)H(n, m, I)
1=0

n-l 1

= L: (- 1)i+k(;)C(n - j, m - j)(n - j)1 L: (k __n I)(f)
1=0 1=0
n-l

= L: (-I)i(~)(k + n k 1 -j)C(n -j,m -j)(n -j)i.
1=0 J

If we wish to count the number T*(n) of trees with n (~3) nodes in
which all nodes except endnodes are labelled, we replace n + k by nand
C(n - j, m - j) by (n - k - j)n-k-1-2, and sum from k = 2 to k =
n - 1; hence,

4
4.1. Counting Connected Graphs. Generating functions provide a

useful tool for the solution of many combinatorial problems. We now
illustrate their application to certain enumeration problems for labelled
trees; we shall give more examples later when we consider the distribution
of various parameters associated with trees.

Let gn denote the number of graphs Gn each component of which
enjoys a certain property P and let Cn denote the number of these that are
connected. It is not difficult to see that there are

The last formula is equivalent to a result obtained earlier by Harary,
Mowshowitz, and Riordan (1969).

L:'" xn
C = C(x) = cn,n.

n=1

is the (exponential) generating functions for the connected graphs with
property P, then the coefficient of xnjn! in !C2(X) is the number of 2-
component graphs Gn with property P. More generally, the generating
function for the k-component graphs with property P is C k(x)jk!. Hence, if

L:'" xn
G = G(x) = gn,n.

n=1



is the generating function for all graphs Gn with property P, then

1 1
G = C + - C2 + - C3 + ... = eC - 12! 3! .

This relation appears in many papers (see, for example, Riddell and
Uhlenbeck (1953) and Gilbert (1956)); the argument can easily be modi-
fied to cover situations where more parameters are involved or where the
nodes are not labelled. Another derivation is based on the fact that the
derivative of a generating function for labelled graphs, multiplied by x,
gives the generating function for the corresponding rooted graphs; since
the root node of a graph effectively singles out one connected component
of the graph, it follows that xG' = xC'(1 + G) which implies that
C = In (1 + G) or G = eC - 1.

subject to certain conditions on the functions g, and! If z = Y, g,(z) = eY
,

andf(Y) = yk, then

Dn-1[f'(y)g,n(y)]y=0 = Dn-1[kyk-1enY]y=0

= k ~ (n ~ I)DI(Yk-1)Dn-l-l(eny)ly=0
1=0

= k(~ = D(k - I)! nn-k = knn-k-1(n)k'

4.2. Counting Rooted Trees and Forests. We now specialize the
preceding argument to trees. If

yk _ Loo

(n)k n-k-1 xn
-- k n "k! n.n=k

00

L xn
y = Y(x) = nT(n)- n!n=1

for k = 1,2, ....
Notice that formula (4.2) is equivalent to identity (3.4) which we derived

by a combinatorial argument. It follows from (4.2) that there are

(~)knn-k-1 forests with n labelled nodes consisting of k rooted trees, for

1 :::;k :::;n; this result is equivalent to Theorem 3.3 since the k root nodes

can be selected in (~) ways. As a partial check notice that the total

number of forests of rooted trees on n nodes is equal to

denotes the generating function for rooted trees, then (11k!) yk is the
generating function for forests of k rooted trees. If we join each root node
of a forest of rooted trees to a new node we obtain, in effect, a rooted tree
with one more node than the original forest. Every rooted tree (or at least
those with more than one node) can be obtained uniquely this way. It
follows, therefore, that Y satisfies the functional relation

xy2
y = X + X Y + -- + ... = xeY

2! '

as it should be, since there is a one-to-one correspondence between forests
of rooted trees with n nodes and trees with n + 1 nodes rooted at the

(n + l)st node. (Riordan (1968b) has pointed out that there are (~)kn-k

forests (of n labelled nodes) of k rooted trees in which every non-root node
n!(n-l)is joined directly to a root node and that there are k! k _ 1 for~sts of k

paths each rooted at an endnode.)

This argument is due to P61ya (1937) who uses Lagrange's inversion for-
mula to deduce from (4.1) that

00

L xny = nn-1_,
n!n=1

from which it follows that T(n) = nn-2.
Lagrange's formula (see, for example, Whittaker and Watson (1946))

states that if 4.3. Counting Unrooted Trees and Forests. Dziobek (1917) and Bol
(1938) both deduce relation (4.1) from the recurrence relation

00

fez) = f(O) + "x: Dn-1[!'(z)g,n(z)]z=0,~n.n=1

11-1

2(n - I)T(n) = L (~)T(i)T(n - i)i(n - i)
1=1



'"Lx"y = y(x) = T(n)-n!"=1

given in Section 4.1; it follows, therefore, from (4.5) that

~ x" 1 1L f,,(n) n! = k! y" = k! (Y - tY2)"
"=,,

denote the generating function for (unrooted) labelled trees so that

(4.4) Y = xy'.

If we multiply both sides of the above recurrence relation by x" In! and sum
over n, we obtain the relation 2 Y - 2y = y2, or

(4.5) y = Y - tY2.

It follows from (4.4) and (4.5) that

dx = 1 - Y dY
x Y

and this implies that x = Ye-Y, as required (the constant of integration
must be zero since T(I) = 1).

Bol, having established equation (4.1), uses Cauchy's integral formula
to determine the coefficients in Y. Dziobek makes the substitution

'2 yJ+2 ( ')"-i Y"Xi = yie-iY = yi + (_j)YJ+l +J__ + ... + -J . + ...
2! (n - J)!

in the right hand side of

x2 " XiY = T(l)x + 2·T(2) - + '" + J ·T(j) - + '"2! j!'

for j = 1,2, ... , and equates the coefficients of Y" in the resulting ex-
pression; this yields (after multiplying through by n!) the relation

"-1L (-I)J(~)T(n - j)(n - j)J+l = 0
J=O J

for n = 2,3, ... (cf. equation (3.10». The result T(n) = n,,-2 now follows
by induction using identity (3.9).

Renyi (1959a) used relations (4.2) and (4.5) to derive a formula for the
number f,,(n) of forests with n labelled nodes consisting of k (unrooted)
trees.

If we use formula (4.2) to determine the coefficient of x" in the right hand
member, we obtain the required formula for f,,(n). A few special cases of
this formula are

fl(n) = n"-2, f2(n) = tn"-4(n - 1)(n + 6),

f3(n) = In''-6(n - 1)(n - 2)(n2 + 13n + 60), ... ,

f,,-3 = ~ (~)(n2 + 3n + 4),

f"-2(n) = 3(n ; 1), f"-I(n) = (~), and f,,(n) = 1.

If we let c(k, h) denote the coefficient ofn"-h in the formula forf,,(n), for
h = 1,2, ... , 2k, we find after some simplification that

"
c(k, 1) = i! L (-tY(7)(k + i) = 0,

1=0

lim f,,(n) = (t)"-1 ,
"..•'" n,,-2 (k - I)!

for each fixed k; if F(n) denotes the total number of forests with n labelled
nodes then it follows from Tannery's theorem (see Bromwich (1931» that

THEOREM 4.1. If 1 ::; k ::; n, then

"
f,,(n) = (Z)n"-"-1 L (-tY(7)(k + i) (n ~I k)l.

1=0

lim F(n) = ~ (t)"-1 = e1/2.
"..•'" n,,-2 L (k - I)!"=1

(We would expect, therefore, that the average number of trees in a random
forest with a large number of nodes would be about f,) Renyi shows that

The generating function for forests of k trees is y"lk!, by the argument
"

F(n) = L Hi -1)kn"-"-I(n)",
"=1



Hk(x) = .l eX2/2 d
k

(e-X2/2)
k! dxk

is the kth Hermite polynomial. Denes (1959) pointed out thatfk(n) is also
given by the formula

L [1"1 (p-2)aJfk(n) = n! - -.-
aJ! J!J=l

where the sum is over all non-negative integer solutions of the equations

L xrysRk= k(r)rs-1sr-k_._.
k r! sf'

r.s

L xrysR = rssr-l - . -,
r! s!

r,s

"LaJ = k
J=l

which implies that T(r, s) = rs-1sr-l.
More generally, it can be shown that

'" x' ySRkSI = ~ (rl + sk - kl)(rMs)lrS-I-lsr-k-lri . $1;

Riordan (1964) derived a pair of inverse relations that involve the
numbers fk(n). In (1968b) he showed that there are

this can be established by using Lagrange's formula withf(R) = RkylelR
or by substituting the series for RJ in the power series expansion of
RkSI = RkylelR, for j = k, k + 1, ... and then simplifying (see Austin
(1960) and Moon (1967b)). It follows, therefore, that there are

(4.7) (~)(n(rl + sk - kl)r·-1-1sr-k-l

r by s bipartite forests of k + I trees k of which are rooted at a dark node
and I at a light node; this is equivalent to the bipartite analogue of Theorem
3.3 stated earlier.

The number fk(r, s) of r by s bipartite forests of k (unrooted) trees can
be determined by the same method as was used to prove Theorem 4.1. Let

n! * (k) (n - j - 1)
2kk! ~ j k - j - 1

J=O

forests with n labelled nodes that consist of k paths. He also derived
recurrences and congruences involving these and related numbers,

4.4. Bipartite Trees and Forests. Austin (1960) and Scoins (1962)
derived the formula for T(r, s), the number of r by s bipartite trees, by a
slight modification of P61ya's argument. If

'" x
r

y'R = R(x, y) = ~ rT(r, s) -. . ,r. s.
r ••

L xry'
B = B(x,y) = T(r,s), "r. s.

L xry'
S = S(x,y) = sT(r s)- .-, r! s!

r,'
oBx-=Rox

oB
y oy = S.

denote the generating functions for bipartite trees rooted at a dark node
and a light node, then essentially the same argument we used before shows
that R = xes and S = yeR. Consequently,

R = x exp y exp R,

and we can apply Lagrange's formula with z = R, c/>(R)= exp y exp R,
andf(R) = Rk. If we expand c/>r(R)as a power series in R we find that

Dr-l[!'(R)c/>r(R)]R=O = Dr-l[kR exp ry exp R]R=O

L'"(ry)ssr-k
= k(r - Ih-l "S.

8=0

can be established by verifying that both sides have the same derivatives
and vanish when x = y = 0 or by considering a bipartite analogue of the
recurrence formula (4.3). It follows, therefore, that

'" x
r

y8 1 1~fk(r, s) ri .$1 = k! Bk = k! (R + S - RS)k
'.8

k

= '" (-I)h '" Rh+a Sh+b
~ h! ~ ----ar-' hI'
h=O a+b=k-h



If we use equation (4.6) to determine the coefficient of xrys in the last
expression, we obtain the formula

x .L {r(h + b) + s(h + a) - (h + a)(h + b)}

if r + s ~ k; in particular,j;.(r, s) = rS-1sr-l and

12(r, s) = rS
-
2sr-2(r2 + S2 - rs + r + s - 2).

4.5. Counting Trees by Number of Inversions. Suppose the tree Tn is
rooted at node n; if g(i) denotes the number of nodes j such that j > i and
the (unique) path in Tn fromj to n passes through i, then 2.f~1g(i) is the
number of inversions of Tn (the number of inversions of a permutation is
the number oftranspositions needed to restore the natural order). Mallows
and Riordan (1968) derived a functional relation for the polynomials
In(x) in which the coefficient of xt is the number of trees Tn with t inversions,

(n - 1)fort=O,I, ... , 2 .

Let Kn(x) denote the corresponding polynomial for planted trees Tn,
that is, rooted trees in which the root is an endnode. If the root n is
joined only to node j then Tn has (n - 1) - j more inversions than the
tree Tn-1 obtained from Tn by removing j and joining n directly to the
nodes originally joined to j (we should also diminish by one the labels of
all nodes y such that y > j, but this does not affect the number of inver-
sions). It follows, therefore, that

Kn(x) = (1 + x + ... + xn-2)Jn_1(x)
for n = 2, 3, ....

Any rooted tree can be formed by identifying the roots of a forest of
planted subtrees. If the tree Tn+ 1is rooted at node n + 1 let T* denote the
planted subtree that contains, say, the 1st node; if T* contains k nodes

besides the 1st and (n + l)st nodes, then there are (n k 1) choices pos-

sible for these nodes. The number of inversions of Tn+ 1equals the number
of inversions of T* plus the number of inversions of the rooted subtrees
determined by the root n + 1 and the nodes not in T*. Hence,

n-l

In+l(x) = .L (n k I)Kk+2(X)Jn_k(X)
k=O

for n = 1, 2, ... , since the number of inversions of a tree depends only on
the relative sizes of the labels of the nodes.

If

.Leo yn
J = J(x,y) = In+1(x) ,n.

n=O

.Leo yn
K = K(x, y) = Kn+l(x) "n.n=l

then it follows from (4.7) that

oJ = oK J'
oy oy'

this implies that

(4.9)

(The constant of integration is determined by the fact that J = 1 and
K = 0 when y = 0.)

Mallows and Riordan derived relation (4.9) first (by an argument
similar to the argument used to establish relation (4.1)) and then deduced
(4.8) as a consequence; they show that the polynomials In(x) appear in the
generating function of the cumulants of the lognormal distribution. The
first few values of In = In(x) are found to be

J1 = J2 = 1, J3 = 2 + x, J4 = 6 + 6x + 3x2 + x3,

Js = 24 + 36x + 30x2 + 20x3 + lOx4 + 4xs + x6•

4.6. Connected Graphs with Given Blocks. Uhlenbeck and Ford (1962,
1963) discuss certain problems in physics that lead to enumeration prob-
lems for graphs (the number of terms in the nth successive approximation
to certain functions equals the number of graphs with certain properties;
see also, for example, Temperley (1958, 1964) and Groeneveld (1967a,b)).
Before proving one of their earlier results we introduce some more
terminology.

The automorphism group of a graph is the set of all permutations a of the
nodes such that nodes x and y are joined by an edge if and only if nodes
a(x) and a(y) are joined. The group of the complete k-graph, for example,



is the symmetric group of order k! and the group of a k-cycle is the
dihedral group of order 2k. If the group of a graph G with n nodes has
order g, then there are n !jg different labellings of the nodes of G; we shall
use later the equivalent result that there are n!jg ways to construct a graph
isomorphic to G on a given set of n labelled nodes. This follows from the
result that if A is a group of permutations acting on an object set X, then
the index of the stabilizer of an object x in X equals the number of objects
in the orbit of x.

A cut-node of a graph is a node whose removal increases the number of
connected components in the graph; a block of a graph is a maximal con-
nected subgraph that contains no cut-nodes of itself. (Notice that a single
node is not a block unless it forms a connected component by itself.) A
non-trivial tree can be defined as a connected graph all of whose blocks
are complete 2-graphs (that is, single edges joining two nodes). Any
connected graph can be thought of as a tree-like structure consisting of a
collection of blocks attached to each other at cut-nodes. For example,
the connected graphs whose blocks consist of one complete 2-graph and
two complete 3-graphs and the number of ways of labelling their nodes are
shown in Figure 8.

one type of block available. If

2"" xn
U(x) - X = T(n; c),n.n=m

;\;\/
360

denotes the generating function for the number of rooted connected graphs
whose blocks are isomorphic to B = B1 (notice that T(n, c) = 0 unless
n = c(m - 1) + 1, where m = m1)' then
(4.10) U = U(x) = x + U1(x) + U2(x) + ...
where U (x) is the generating function for those graphs in which the root
belongs :0 exactly j copies of B. We first determine a rela~ion for U1(x).

Consider a graph H with n labelled nodes that consIsts of m rooted
connected components; each block is isomorphic to B except that one
component is singled out and consists of an isolated node r and some of
the other components may also consist of an isolated node. The number
of such graphs H (that are, in effect, doubly rooted at an isolated node r)
is equal to the coefficient of xnjn! in xum-1(x)/(m - I)!. Th~ factor x
takes into account the isolated root node r, and the (m - I)! IS present
because there is no significance to the ordering of the remaining compo-
nents (the fact that some of these other components may also consist of
an isolated node is why we defined U(x) to contain the term x).

There are m !jg ways to join the roots of the compone~ts. of such .a
graph H so that the subgraph determined by these nodes IS IsomorphIC
to B, where g = gl denotes the order of the group of B. The resulting
graph is connected, each of its blocks is isomorphic to B, and the root n~de
r belongs to just one copy of B. It follows, therefore, that the generatmg
function for the number of such graphs satisfies the relation

/\'/\
9.0

Let Bj denote some block with mj (> 1) nodes whose automorphism
group has order gj, for i = 1,2, ... , b. Ford and Uhlenbeck (1956a) ex-
tended P6lya's argument to determine the number T(n; Cl> C2, ••• , Cb) of
rooted connected graphs G with n labelled nodes Cj of whose blocks are
isomorphic to Bj, for i = 1,2, ... , b.

(4.11) U1(x) = x ~ um-1(x).
g

Graphs G in which the root belongs to j copies of B may be con~tructed
by identifying the roots of j graphs in which the root belongs to Just one
copy of B. Consequently,

b2 Cj(mj - 1) = n - 1,
j=l

U ( ) = ~ (U1(X))1
1 X ., X 'J.

for j = 1,2, ... ; the x's take into account the nodes that are lost in this
process and the j !reflects the fact that there is no significance to the order-
ing of the j graphs.

When we combine equations (4.l0}-(4.l2) we obtain the relation

The c's and the m's must satisfy the first equation if the total number of
nodes in G is to be n. Let us first consider the case b = 1 when there is only

m _
U = xexp- um 1.

g



If we apply Lagrange's formula with z = u, 1>(U) = exp!:!!. urn-I, and

feU) = U, we find that if c(m - I) = n - 1, then g

T(n,c) ~ D--'[f'(U}P"(U)lu., ~ l"-'[~ (~n um_'Y/jlL,
_ (n - I)! nC

- (g/m)"c! .

Notice that if B is the complete 2-graph (so thatg = m = 2 and c _
then the formula reduces to n-l th - n - I)
labelled nodes. n , e number of rooted trees with n

av~~a~:, ~:~eral case, when there are an arbitrary number b of blocks

Vex; Ylo ••. , Yb) - x = "" {"" T(n- c c )yC1 Cb}xn
L. L. ' 1,"" b 1'" Yb -

n n!

::~O~:~h~:e~erati~g fu.nction for the number of rooted connected graphs
. orme usmg the blocks Bj; the outer sum starts at n _

mm{m m } d h . -
C
's Thlo \2, •.•• , mb an t e mner sum is over all admissible values of the
j. ere atlOn

v = x exp {imj yjvml-l}
1=1 gj

can be established by thdete " e same argument as before except that now in
rmmmg VI' we must take into account that the root can belong to ~n

~~I~~~sth;:I~~kS Bj; the Yj identifies the type of block to which the ro~
this rel~tion~ (N~~~~~:~~/OllOWS upon applying Lagrange's formula to
formed f I we want to count unrooted connected graphs

)
rom the blocks Bh then we should decrease the exponent of n by

one.

COROLLARY 422 If"b (. I)• " L,j=2 Cj I - = n - 1, then there are

(n - I)! nT.cl-l
I1{(i - I)!}"lcj!

connected graphs with n labelled nodes among whose blocks are Cj complete
i-graphs, for 2 ~ i ~ b.

Husimi (1950) derived Corollary 4.2.2 by an extension of Bot's argu-
ment; Ford and Uhlenbeck (1956a) showed that Bol's method could also
be used to prove Theorem 4.2. Notice that Theorem 4.2 contains Theorem
3.4, in effect, as a special case.

If b = n and we sum the formula in Corollary 4.2.2 over all solutions
in non-negative integers to the equations

n2: cj(i - 1) = n - 1
j=2

n2: Cj = k,
j=2

we find that there are S(n - 1, k)nlc-1 connected graphs with n labelled
nodes and k blocks each of which is a complete graph, where S(n - 1, k)
denotes a Stirling number of the second kind and 1 ~ k ~ n - 1 (notice
that S(n - 1, k)nlc-1 = nn-2 when k = n - 1); this result is given by
Kreweras (1970).

He proves Corollary 4.2.2 by associating a bipartite tree T = T( G) with
every connected graph G; the dark nodes, say, of T correspond to the
nodes of G, the light nodes correspond to the blocks of G, and a dark node
p is joined to a light node q if and only if in G the node corresponding to p
belongs to the block corresponding to q (a bipartite tree T can be associ-
ated with some graph G in this manner if and only if all the endnodes of T
are dark). Thus the number of connected graphs with n labelled nodes and
Lf= 2 Cj = k blocks of which Cj are complete i-graphs is equal to the number
of n by k bipartite trees in which Cj light nodes have degree i, for 2 ~ i ~ b;
the formula in Corollary 4.2.2 now follows from the formula (2.2) for the
number of bipartite trees with given degree sequences. Theorem 4.2 can
also be proved in essentially the same way.

Ford and Uhlenbeck, in (1956b) and (1957), investigated the asymptotic
behaviour of the number of graphs with certain properties. They showed,
in particular, that the number of connected graphs with n labelled nodes
each of whose blocks is a cycle or a complete 2-graph is asymptotically
equal to

where b == 0.87170 and ex; == 0.23874, as n tends to infinity. They also
considered the distribution of the nodes among the different blocks in a
connected graph formed from a given collection of blocks.

Good (1965) has developed a multivariate generalization of Lagrange's
theorem that he applies to various enumeration problems for different



type~ of trees; ~is method is particularly well adapted for problems in-
v?lvmg constraI~ts on the colouring and ordering of the nodes with
~Ifferent constramts, perhaps, for nodes at different distances (genera-
tIOns) from. a root node. Knuth (I968b) points out that one of Good's
results provIdes another proof of Theorem 2.2.

5
5.1. Introduction. Many papers have been written in which certain

concepts of graph theory are applied to the study of electrical networks.
The following quotation is taken from a book by Seshu and Reed (1961;
p.24).

"The 'tree' is perhaps the single most important concept in graph theory
insofar as electrical network theory is concerned.... The number of
independent Kirchhoff equations, the method of choosing independent
equations, the structure of the coefficient matrices, and the topological
formulas for network functions, are all stated in terms of the singleconcept
ofa tree."
Our main object in this chapter is to derive a result that expresses the

number of spanning trees of a graph as the determinant of a matrix whose
entries depend on the graph. (The determinant arises in applying Cramer's
rule to solve certain sets of equations associated with an electrical network;
for additional material on the application of graph theory to electrical
networks see, for example, Weinberg (1962), Bryant (1967), or Slepian
(1968).)

5.2. The Incidence Matrix of a Graph. Let G denote a graph with
n (;:::2) labelled nodes and b edges; suppose we number the edges of G from
I to b and orient each edge arbitrarily (we ignore the orientations of the
edges when considering subgraphs of G). The (node-edge or node-branch)
incidence matrix of G is the n by b matrix Aa = [au] in which aij equals
+ 1 or - 1 if the jth edge is oriented away from or towards the ith node
and zero otherwise. (An example of a graph and its incidence matrix is
given in Figure 9.)



2

+1 0 0 -1 0

2
-1 -1 0 0 -1Aa =

0 +1 -1 0 0

0 0 +1 +1 +1
3

FIGURE 9

B is non-singular ~ rank (B) = n - 1 ~ H is connected ~ H is a tree,
by Lemmas 5.1 and 1.2.

5.3. The Matrix Tree Theorem. Several people have proved the follow-
ing theorem or results closely related to it; see, for example, Brooks,
Smith, Stone, and Tutte (1940), Lantieri (1950), Okada and Onodera
(1952), Trent (1954), Uhlenbeck and Ford (1962), Dambit (1965),
Hutschenreuther (1967), and Renyi (1970).

THEOREM 5.1. If A is a reduced incidence matrix of the graph G, then the
number of spanning trees of G equals the determinant of A· Atr.

The Binet-Cauchy theorem states that if Rand S are matrices of size
p by q and q by p where p :::;q, then

det (RS) = L det (B)· det (C),

where the sum is over the square submatrices Band C of Rand S of order
p such that the columns of R in B are numbered the same as the rows of
Sin C. If we apply this to A and Atr, assuming that n - I :::;b, and appeal
to Lemma 5.2, we find that

det (A· Atr) = L det (B)· det (Btr) = L {det (B)}2 = L 1,

where the last sum is over all non-singular (n - 1) by (n - I) submatrices
of A. The required result now follows from Lemma 5.3.

If el> e2, ... , eb are variables identified with the edges of the (connected)
graph G, let M(e) = [mlj] denote the n by n matrix in which mli equals - ek
if edge ek joins the distinct nodes i and j and zero otherwise, and mil
equals the sum of the edges incident with node i; let Mle) denote the
cofactor of mil in M(e). A tree product is a product Il(T) of edges of a
spanning subtree T of G.

THEOREM 5.2. If n ;:::2, then

Mn(e) = L Il(T),

Notice that each column of an incidence matrix Aa contains one + 1, one
-1, and n - 2 zeros. The following result is essentially due to Kirchhoff
(1847).

• ~E~MA 5.1. If ~hegraph G has n nodes and is connected, then the rank of
Its mCldence matnx Aa is n - 1.

The sum of any r rows of Aa must contain at least one non-zero entry if
r < n for. G would not be connected otherwise; this implies that no r
rows are lInearly dependent if r < n. The result now follows from the fact
that the sum of all n rows vanishes. (If G has s connected components then
the rank of Aa is n - s; this follows upon applying this lemma to the
submatrices corresponding to the connected components of G.)

The reduced incidence matrix A of a connected graph G is the matrix
obtained from the incidence matrix Aa by deleting some row, say the nth.
(If G has s components, then A is obtained by removing s rows from A
corresponding to nodes in different components.) The matrix A has th;
same rank and furnishes the same information as Aa•

The next result was proved by Poincare (1901).

LEMMA ~.2. If B is any non-singular square submatrix of Aa (or A), then
the determmant of B is ± 1.

If B is non-singular then each column of B must contain at least one
non-zero entry but not all columns can contain two non-zero entries'
henc~, some column of B must contain just one non-zero entry. Th~
reqUIred result now follows by induction if we expand the determinant of
B along this column.

The next result was proved by Chuard (1922).

LEMMA 5.3. If B is a submatrix of order n - 1 of A, then B is non-
singular if and only if the edges corresponding to the columns of B determine
a spanning subtree of G.

If H denotes the spanning subgraph of G whose n - I edges correspond
to the columns of B, then B is the reduced incidence matrix of H. Hence,

where the sum is over all spanning sub trees T of G.

COROLLARY 5.2.1. If c(G) denotes the number of spanning trees of G and
M denotes the matrix obtained from M(e) by replacing each ej by 1, then
c(G) = Mn•

It is easy to verify that Mn(e) = det (A YAtr), where Y = [Yli] is the b
by b diagonal matrix such that Yll = ej' The result now follows by applying
the Binet-Cauchy theorem to the product A YAtr. (If the row and column
sums of a matrix all vanish, as they do for M(e), then the cofactors of its



entries are all equal; hence, the sum of the tree products equals the co-
factor of any entry of the matrix M(e).)

The sum of the tree products of the spanning trees of a graph G is
sometimes called the tree polynomial of G. If G is the graph in Figure 9,
for example, we find that

el + e4 -el 0

M4(e) = -e1 el + e2 + e5 -e2 = ele2ea + ele2e4 + ele2eS
o -e2 e2 + ea + eleae4 + eleaes + e2eae4

+ e2e4eS + eae4eS'

The determinants of other submatrices of M(e) also have combinatorial
interpretations; for example, the non-vanishing terms in the expansion of
the determinant of the submatrix obtained by deleting the ith and nth
rows and columns of M(e) correspond to spanning forests of two trees in
which nodes i and n belong to different trees (see, for example, Percival
(1953».

Theorem 5.2 is frequently called Maxwell's Rule (see Maxwell (1892)
and, in particular, the appendix to Chapter 6 by the editor J. J. Thompson).
Borchardt (1860), however, proved an equivalent result in the course of
expressing the resultant of two polynomials in terms of their values at
certain points. His expression involved a determinant of the same form as
MnCe); he showed that the determinant equalled a sum of the above type
and he determined the number of terms in this expression (see also Dixon
(1909». Sylvester (1857) stated without proof a similar rule for expanding
certain determinants called unisignants; Cayley referred to Sylvester's Rule
in (1856) and to Borchardt's work in (1889). Kirchhoff (1847) gave a result
dual to Theorem 5.2 in which a matrix determined by the cycles of G plays
the role of A and the sum is over the products of edges forming the com-
plement of a spanning tree of G (for discussions of these papers see, for
~xample, Muir (1911), Ku (1952), Weinberg (1958a), and Chen (1968».
Brooks, Smith, Stone, and Tutte (1940) gave an inductive proof of Theor-
~m 5.2 that was subsequently extended by Tutte (1948) to directed graphs;
Ne shall describe his more general result later.

Let peA) denote the characteristic polynomial of M. Kelmans (1965,
966) calls B(A) = p( -A)/A the characteristic polynomial of the graph G;
t is easy to see that c(G) = B(O)/n. Kelmans investigates properties of the
lolynomials B(A) in these and other papers and gives an algorithm for
ietermining B(A) that depends on decomposing G into simpler graphs
{hose polynomials are easier to determine.

Let R = [rli] denote an m by m upper triangular matrix. Nakagawa
(958) gives the following recursive definition of the foldant I/RI/ of such

rll + r2m r12 + ram
o r22

rl,m-l
r2.m-l + rm,m

ra,m-l+ r2m

0

+ ...
rll r12
0 r22+ rm,m

0

Let B denote the matrix obtained from M(e) by (1) changing the entries
on and below the main diagonal to zeros, (2) multiplying each of the re-
maining entries by -1, and (3) deleting the first column and the .last row.
Nakagawa shows that the foldant of B equals the tree polynomial of the
graph G. One advantage of expanding the foIdant of B, as. opposed to
expanding the determinant Mn(e), is that th~re ~re no negative products
that arise only to cancel out. If G is the graph In FIgure 9, then

~ : :: ~ e.~e,~ e, ::1 + e,~~ e,: eJ + e'i~ :1
o 0 ea

= e4{ea(el + es + e2) + e2(el + es)} + eSel(e2 + ea) + eaele2
= ele2ea + ele2e4 + ele2eS + eleae4 + eleaes + e2eae4

+ e2e4eS + eae4eS'

We now illustrate how Corollary 5.2.1 has been used to obtain formulas
for the number of spanning trees in certain graphs G.

5.4. Applications. The number T(n) of trees with n labelled nodes is
equal to the number of spanning trees ofthe complete n-graph. If we apply



Corollary 5.2.1 to the complete 4-graph, for example, we find that
3 -1 -1 1 1 1 1 1 1

T(4) = -1 3 -1 = -1 3 -1 = 0 4 0 = 42•

-1 -1 3 -1 -1 3 0 0 4
The general formula T(n) = nn-2 can be proved in the same way, as
pointed out by Weinberg (1958b). Weinberg also treated the following two
generalizations of this problem.

THEOREM 5.3. If Wen, k) denotes the number of spanning trees of a graph
obtained from the complete n-graph by removing k edges no two of which
have a node in common, then

Wen, k) = (n - 2)knn-2-k

The general formula is proved in the same way (usually the first step in
evaluating these determinants is to add to the first row all the other rows).

THEOREM 5.4. If wen, k) denotes the number of spanning trees of a graph
obtained from the complete n-graph by removing k edges all of which are
incident with a given node, then

wen, k) = (n - 1 - k)(n - l)k-lnn-k-2

if 0 :::;k :::;n - 1.

We may assume the missing edges joined node 1 to nodes 2, 3, ... ,
k + 1. If we apply Corollary 5.2.1 when k = 3 and n = 7 we find that

if 0 :::;2k :::;n.

There is no loss of generality if we assume the missing edges joined
nodes 1 and 2, 3 and 4, ... , and 2k - 1 and 2k. If we apply Corollary
5.2.1 when k = 2 and n = 7 we find that

3 0 0 0

0 5 -1 -1

-1 5 -1 -1
0
0 -1 -1 5

6 -1
-1

6-15
-1

0

W(7,2) =

-1
6 -1

-1 6

1 1 1 1 1 1
0 5 -1 -1 -1 -1

5 0
0

-1
5

-1
6 - 1

-1 6

1 1 1 1 1 1

0 5 -1 -1

0 -1 5 -1 -1

0 -1 -1 5
6 -1

-1
-1 6

1 1 1 1 1 1
0 5 -1 -1 -1 -1

6 1
0

1 6

0
7

0 7

1 1 1 1 1 1

0 5 -1 -1

0 -1 5 -1 -1

0 -1 -1 5
7 0

0
0 7

3 3 3

= 72• -1 5 -1

-1 -1 5

1 1 1

= 3.72 0 6 0 = 3.62.72•

0 0 6



The. general formula is proved in the same way.
FI~dler and Sedlacek (1958) and Simmonard and Hadley (1959) de-

termmed the number T(r, s) of r by s bipartite trees by this method W
may assume the r + s nodes are labelled so that the first r nodes ar~ th~
dark nodes and the last s nodes are the light nodes. If we apply Corollar
5.2.1 when r = 2 and s = 4, we find that . y

4 0
o 4

1 1

o 4

2 0
o 2
o 0

o 0
-1 -1

2 0
o 2
o 0

Mayberry (1954), Fiedler and SedlaCek (1958), and Chen (1965, 1966a».

THEOREM 5.5. If n ~ 2, then

Cn = '2 IT(T),

1 1

o 4

where the sum is over all directed spanning sub trees T of D that are rooted
at the nth node.

If some node i «n) of D has out-degree zero, then every entry in the
ith row of C is zero and there are no directed spanning subtrees T of D
that are rooted at node n. Hence Cn = 0 = L: IT(T) in this case.

We next consider the case in which each of the first n - 1 nodes has
out-degree one and the nth node has out-degree zero. If D is not a directed
tree, then some subset of the first n - 1 nodes determines a connected
component; the sum of the columns of C corresponding to these nodes
vanishes, so Cn = 0 = L: IT(T) again. Suppose D is a directed tree (rooted
at node n); if the nodes of D are relabelled (this amounts to simultaneously
permuting rows and columns of C) according to the order in which they
would be removed in determining the Priifer sequence associated with the
tree, then C becomes an upper triangular matrix and Cn equals the tree
product of D.

It remains to consider the case in which the first n - 1 nodes all have
positive out-degree and there is some node, say the 1st, whose out-degree
exceeds one. If e denotes some arc directed from node 1 to some other
node, say node 2, let E and F denote the matrices obtained by suppressing
the e's, and all variables except the e's, in the first row of C. The matrices
E and F correspond to the graphs obtained from D by deleting arc e and
by deleting all arcs except e that lead away from the 1st node. These
graphs both have fewer edges than D so we may assume En and Fn enu~
merate their spanning subtrees that are rooted at node n. It is not difficult
to see that En enumerates those spanning subtrees of D rooted at node n
that do not contain arc e while Fn enumerates those that do. Since Cn =
En + Fn, the required result now follows by induction on the number of
arcs of D.

The spanning subtrees of D that are rooted at node i are enumerated by
the cofactor C1; it is not difficult to reformulate the statement of Theorem
5.5 so as to enumerate the rooted spanning subtrees of D whose arcs are
all directed away from the root. A directed graph D is balanced if for each
node i there are an equal number of arcs directed away from and towards i.
If D is balanced then the column sums of the matrix obtained from C by
replacing the e's by l's all vanish; hence all the cofactors are equal and the
number of spanning subtrees of D is independent of the root node. If D
is symmetric, that is, if the arc 7}is in D if and only if the arc j7is in D, then

o
-1

2
o
o

o
-1

o
2
o

o
-1

o
o
2

o
o
2

o
-1

o
o
2

The general formula T(r s) = r8-1sT-1 is proved' thC ' m e same way
orolla~y 5.2.1 .has been applied to a number of classes of ra hS whos

structure IS sufficIently simple for the determinant M to b
g

p 1 deM t f th c n e eva uate .os 0 e 10rmulas that have been derived this way h bd . d b h ' owever, can e
h
enve y ot e~ methods also so we will postpone describing more of

t ese results untIl later.

. 5.5. The Matrix Tree Theorem for Directed Gra hs. Le
dIrected graph with n ~~ 2) labelled nodes and b ar~s; we a:s:m~e~~t;h:
present that each arc Joms two distinct nodes but th b
arcs that join the same ai f d f ere may e several
fied with th f DPI r 0 no es. I e1, e2, ... , eb are variables identi-

e arcs 0 , et C = [clf] denote the n by n matrix in which
- CIf equals the sum of the arcs directed from node i to node . ( 'fthe h)" ] or zero 1
f re ~~enohsuc arcs for l ~ J, and CII equals the sum ofthe arcs direc;ed
rom lOOt er no~es. ~et C1 denote the cofactor of CII in C; since the row

sums of C all vamsh It follows that the cofactors of the e t' .
g. 11' n nes many
Iven row are a equal. If T ISa directed spanning subtree of Groote

:~~eo;,;ay, then the tree product IT(T), as before, is the product Of~::

The following theorem is due to Tutte (1948)' th f .. 1 " ' e proo we gIve here
mvo ves some modIficatIOns due to Knuth (1968 .f ( 1 a, p. 578) of Tutte's
proo see a so van Aardene-Ehrenfest and de Bruijn (1951), Bott and



Theorem 5.5 reduces, in effect, to Theorem 5.2. Knuth (1968b) shows that
Theorem 5.5 can also be used to derive Theorem 2.2.

5.6. Trees in the Arc-Graph of a Directed Graph. The arc-graph
A = A(D) of a directed graph D is the directed graph whose nodes
N(i,j) correspond to the arcs ij of D and in which an arc is directed from
N(i,j) to N(k, h) if and only if j = k (see Figure 10). If there are WI arcs
of the type ij in D and II of the type kf, then A has WI + ... + w" =
h + ... + I" nodes and wIll + ... + wnln arcs. If II = 0 there are no

nodes of the type N(k, i) in A. Let D' denote the graph obtained from D
by removing all nodes i such that II = 0 (and all arcs of the type ij). We
may suppose D' is the subgraph determined by the first m nodes of D
(in the example, m = 3). Knuth (1967) used Theorem 5.5 to express the
number of spanning subtrees of A(D) rooted at a given node N(u, v) in
terms of the numbers ty of spanning subtrees of D' rooted at various nodes
y.

spanning subtrees of A(D) rooted at node N(u, v), where the sum is over all...•.
nodes y of D' such that y "i' u and the arc yv is in D'.

Let the matrices C(A) and C = C(D') be defined as before for the graphs
A and D' except that all the variables are replaced by I's (we ignore any
loops the graphs may have in defining these matrices). We may assume the
nodes of A are grouped together so that C(A) can be expressed as an m by
m array of submatrices Bjk, where if j "i' k the entries of B

jk
indicate the

arcs directed from nodes N(i,j) to nodes N(k, h); we may also assume
v = I and that the first row and column of C(A) correspond to the root

. h· Figure 10rooted at node N(2, 1), thenN(u, v). If A ISthe arc-grap m 1 0
2 0 0 -1 0 -

2 0 -1 0 -1 00
0 2 -1 0 -1 00
0 0 1 0 0 0-1

1 0 0 0 1 0 0

0 -1 0 0 1 3 1

0 -1 0 0 -1 0 2
. each column of Bjk consists entirely of O's or

Notice that when] "i' k I s of the latter type where - Cjk
-1's and that there are - Cjk co umn . k. D'
denotes the number of arc~ dir~ct:d ~o;:-:utoC(~) by .adding the column

Let C* denote the matnx 0 tamfeC ~ r some indeterminate '\. Since
0) to the first column 0 10 C (A)

('\,0, .. ". h d t C* = '\CI(A), where the cofactor I

det C(A) = 0, It ~OICIO(:S)~s~~e :equired number of spanning trees of A. It
of the first entry m . t f C*

. c luate the determman o. . .remams, there10re, to eva b t' B of C* all the remammg
Add to the first column ~~e~~~:; fi~: :~: ;; each submatrix B

jk
from

columns of Bjk and then su r~ t d'fficult to see that these transformedthe remaining rows of Bjk• It ISno 1

submatrices Bjk now have the form 8
Ckk + ,\ kl

- ,\8klo
or Bkk =

o 0 _ ,\8
k1

0 0 Wk

. . . - k' he dashes indicate entries left unspecifi:d. for
accordmg as] "i' k orJ.- ht nd expression recall that the ongmal
the present. (To establIsh.t e secff.0d' nal position only if the column

. B h aim an 0 - !ago b
submatnx kk as - b equals W minus the num ercorresponds to a loop in D'; the num er Ckk k

of loops at the kth node of Dh'·) pie considered earlier we find that
If we apply these steps to t e exam 0

2+'\ 0 0 -I 0 -I
-,\ 2 0 0 0 0 0

,\ 0 2 0 0 0 0

0 0 1 0 0 0-I
0 0 0 1 0 00

-1 0 -1 1 2 1-I
0 0 0 0 0 0 3



2+'\
-,\

= 1·3 -,\

-1

-1
,\

-,\

= 1·3 -,\

o
o

where. we h~ve factored out diagonal entries that are the only non-zero
entry In theIr rows, removed the corresponding rows and columns, and
then added the last m - 1 = 2 columns to the first column. In the general
case we find that

0 0 -1 -1
2 0 0 0
0 2 0 0
0 0 1 0

-1 0 -1 2

0 0 -1 -1
2 0 0 0
0 2 0 0
0 0 1 0

-1 0 -1 2

,\
C12

-,\ Wl 0 0 0
0

det C* = W~2-1... w:-1 0
-,\ 0 0 w1 0
0 C22

Cm2 Cmm

The unspecified entries in the column corresponding to a node of the
typ~ N(y, 1), where y :/= u, are all zero except when y is a node of D' in
~hIch case there is a -1 in the row in which Cy2, ••• , Cym appear. Hence,
If we expand the last determinant along the first column we find that

'\C1(A) = det C* = WI1-1 ... wlm-l{,\wll-1C - 'WI1-2 "" C }1 m 1 11 1\ 1 ~ yl '

where CY1 denotes the cofactor of Cyl in the matrix C of D' and the sum
is over all nodes y in D' such that y :/= u and the arc yl is in D'. This
suffices to complete the proof of the theorem, since it follows from
Theorem 5.5 that Cll = t and C 1 = C - tv y yy - y'

If the digraph D is balanced then the formula in Theorem 5.6 simplifies
to WW1-1 WWm-1t/ h . h b. 1 •.•• m wv, were t ISt e num er of spanning subtrees of D'
WItha gIven root; if D is regular of degree d, that is, if Wi = d = Ii for all i
the formula simplifies further to tdn<a-l)-l. '

An Eulerian circuit of a directed graph D is a directed cycle that con-
tains every arc of D just once. It is not difficult to show that a connected
balanced directed graph D has t·TIV=l (Wi - I)! Eulerian circuits, where t
denotes the number of spanning trees of D rooted at any given node (see
van Aardene-Ehrenfest and de Bruijn (1951), Smith and Tutte (1941), and
Baum and Eagon (1966». Knuth (1967) used this result and Theorem 5.6
to give another derivation of the result due to van Aardene-Ehrenfest and
de Bruijn that if the directed graph D is regular of degree d, then A(D) has
d-1(dl)n<a-l) times as many Eulerian circuits as D.

5.7. Listing the Trees in a Graph. Feussner (1902, 1904)gave a method
for listing the spanning trees of a graph G that is based upon the fact that
any spanning tree either does or does not contain a given edge e. Let G'
denote the graph obtained from G by removing edge e and let G" denote
the graph obtained from G by removing all edges that join the endnodes
of e and then identifying the endnodes of e. The graphs G' and G" are
simpler than G and the tree polynomial of G equals the tree polynomial of
G' plus e times the tree polynomial of G". This process can be repeated
until the trees can be determined by inspection (notice that the tree poly-
nomial of a graph equals the product of the tree polynomials of its blocks).
If we use this method to determine the number c( <4» of trees spanning the
complete 4-graph, we find that

'(A) ~'(<1»+, (~)

~'(0)+2, (~) +,(g)

The idea upon which Feussner's method is based can also be exploited
to prove various results, such as Theorems 5.2 and 5.5 and Nakagawa's
foldant algorithm, by induction on the size of the graph. Many papers
have been written giving algorithms, of varying degrees of usefulness, for
listing the spanning trees of a graph; a small fraction of them, for example,
are those by Wang (1934), Duffin (1959), Hakimi (1961), Mayeda and
Seshu (1965), Mukherjee and Sarker (1966), Chen (1966b), Berger (1967),
and Char (1968).
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multinomial theorem that

T(Fn) = L ( !- 2 )j~l..·jfl
d1 - 1, , dl - 1

= jl" ·jlUl+ + j/Y-2 = pnl-2.
Notice that the formula reduces to nn-2 when Fn consists of n isolated
nodes. Glicksman (1963) and Knuth (1968b) have proved an equivalent
result involving mapping functions. Glicksman's proof is by induction and
uses ideas similar to those used by Gobel in the proof of Theorem 3.3;
Knuth's proof is by an extension of Priifer's method. Sedlacek (1966) used
matrix methods to prove the special case when only one component of Fn
has more than one node (in (1967) he used this case to give a combinatorial
proof of an identity involving binomial coefficients; in this paper he also
showed that if node x has degree fJ in the connected graph G and belongs
to ex; blocks, then G has a spanning tree in which x has degree k for any
integer k such that ex; :5 k :5 fJ).

Theorem 6.1 can be used, for example, to give alternate derivations of
Weinberg's formulas in Theorems 5.3 and 5.4. To prove Theorem 5.3
notice that if the forest Fn consists of t edges no two of which have a node
in common and n - 2t isolated nodes, then T(Fn) = 2tnn-t-2• Hence, if
Wen, k) denotes the number of spanning trees of a graph obtained from
the complete n-graph by removing k edges no two of which have a node in
common, it follows from the method of inclusion and exclusion that

Wen, k) = nn-2 - k2nn-3 + (~)22nn-4 - ...

= nn-2 i(~)(~2r = nn-2( 1- ~r
t=o

6.1. Introduction. The method of inclusion and exclusion can be used
to express the number of spanning trees of a given graph G in terms of the
number of trees that contain different subsets of edges that do not belong
to G. In this section we illustrate this approach on various problems where
the expressions obtained are reasonably manageable. Some of the material
in the first part of this chapter was presented at a course on "Graph Theory
and its Uses" at the London School of Economics in July; 1964 and
appeared in Moon (1967b).

6.2. The Number of Trees Spanned by a Given Forest. Any spanning
subgraph of a tree Tn is a forest Fn of one or more disjoint trees. Let
! = !(Fn) denote the number of components of Fn (some of which may be
isolated nodes) and let p = p(Fn) denote the product of the number of
nodes in the! components of Fn• The following useful result shows that the
number T(Fn) of trees Tn that contain a given forest Fn depends only on
the size of the components of Fn and not on their individual structure.

if 0 :5 2k :5 n.
To prove Theorem 5.4 notice that if the forest Fn consists of t edges

incident with the same node and n - (t + 1) isolated nodes, then
T(Fn) = (t + l)nn-t-2. Hence, if wen, k) denotes the number of spanning
trees of a graph obtained from the complete n-graph by removing kedges
incident with a given node, then

wen, k) = nn-2 - k2nn-3 + (~)3nn-4 - ...

k

= nn-2 L (t + 1)(~)(~lr
t=o

{ t ( l)k-l ( l)k}= nn-2 -Ii 1 - Ii + 1 - Ii

= nn-2(1 _ k ~ 1)(1 _ ~r-l

Suppose the components of Fn are labelled from 1 to ! (in the order,
say, of the size of the smallest label associated with the nodes of each
component) and suppose the ith component has j/ nodes where A +
j2 + ... + jl = n. Pretend, for a moment, that each component is a node
by itself and construct a tree Tl with degree-sequence (db d2, ••• , dl) on
these! nodes. To transform Tl into a tree Tn containing Fn>we replace each
of the d/ edges incident with the ith node of Tl by an edge incident with one
of the j/ nodes of the ith component of Fn, for each i. If we carry out these
operations in all possible ways, then it follows from Theorem 3.1 and the
52



6.3. The Number of Spanning Trees of a Graph. This approach can be
used, in principle, to determine the number c(G) of spanning trees of any
(connected) graph G. If Hm is any graph with m labelled nodes and n is any
positive integer, let

i, for i = 1, 2, ... , k, and all edges of the type xy where nodes x and y have
different colours. The following result follows from Theorems 6.2 and 6.3.

COROLLARY6.3.1. If C1 + C2 + ... + Ck = n, then
k

c«ClJ"" Ck» = nk-2 TI (n - ClYI-1.
1=1where the sum is over all spanning forests Fmof Hm (notice that m - I(Fm)

is the number of edges in Fm); it follows from this definition that if the
connected components of the graph H are A, B, ... , then

This formula was apparently derived first by Austin (1960) who used the
result in Corollary 5.2.1; Good (1965) used a multivariate generating
function to give another derivation and Ohih (1968) gave a proof based on
Priifer's method. Notice that when k = 2 this reduces to the formula
derived earlier for the number of bipartite trees.

f(H, n) = f(A, n)f(B, n) ....

The complement of a graph Gn is the graph Gn obtained from the complete
n-graph by removing all edges that appear in Gn• The following general
formula follows readily from Theorem 6.1 and the method of inclusion
and exclusion.

THEOREM6.2. c(Gn) = nn-2f(Gn, n).

Temperley (1964) obtained this result by applying a transformation to
the matrix in Theorem 5.2. Bedrosian (1964b) stated that c(Gn) equals
nn-2 times a product of factors associated with the components of Gn and
he gave formulas for the factors associated with certain graphs.

( r)8-1( s)r-1( r + S)f«r, s), n) = 1 - ;:; 1 - ;:; 1 - -n- .

If F(r, s; k, I) denotes the number of r by s bipartite forests of k + 1
trees k of which are rooted at a dark node and I at a light node, then it
follows from the definition off«r, s), n) and equation (4.7) that

6.4. Examples. One nice feature of Theorem 6.2 is that once the poly-
nomialsfhave been evaluated for a collection X of graphs (this is the hard
part), then one can immediately give formulas for the number of trees
spanning any graph G the components of whose complement belong to X.
We now determine the polynomials f(Hm, n) for a few classes of graphs
Hm; it is usually convenient to expressf(Hm, n) as a double sum, where the
outer sum is over the exponent of n and the inner sum is over all spanning
forests with the appropriate number of components (or edges).

THEOREM6.3. If (m) denotes the complete m-graph, then

r+s

f«r, s), n) = L (_ny-r-s L F(r, s; k, 1)
t=1 k+l=t

r+s

= L (_ny-r-s L (~) (:)(rl + sk - kl)r8-'-
1sr-k-1

t=1 k+l=t

(
m)m-1f«m),n) = 1 - Ii .

r~1 L (;)(;H -~r-1(-~r-1(~~- ~)
h=O I+J=h

( r)s( s)r rs ( r)8-1( s)r-1= 1-- 1-- -- 1-- 1--n n n2 n n

( r)S-1( s)r-1( r + S)= 1-- 1-- 1---·
n n n

m

f«m),n)= "'(-ny-m~L(' m .)j{1-1 ... j{I-1
~ I. h"",}l
1=1

= i (7~ D(-~r-l= (1 - ~r-1.
1=1

The complete k-partite graph (ClJ ••• , ck) consists of CI nodes of colour

If we apply Theorems 6.2 and 6.4 to determine c(Gn) when the com-
ponents of Gn are either complete bipartite graphs or isolated nodes, we
obtain a formula O'Neil and Slepian (1966) established by evaluating the
appropriate determinant. Notice that Weinberg's formulas for Wen, k) and
wen, k) also follow from Theorems 6.2 and 6.4. O'Neil, in a letter dated
March, 1969, states that he has generalized Theorems 6.3 and 6.4 by

3+C.L.T.



this formula can be derived using Corollary 2.3.3.

THEOREM 6.5. If Pm denotes a path of length m - 1, then

Every component of a forest Fm spanning Pm is itself a path. It is not
difficult to see that the sum 2.p(Fm), taken over all spanning forests Fm of
Pm such that I(Fm) = I, equals the coefficient of xm in

2m(m + 1- 1)( I)m-I m2-1(2m - 1 - e)( l)ef(Pm,n) = I -- = -- .m- n e n
1=1 e=O

m-2 e+1

f(Cm,n) = 2 2peme-+\-_e
j
-j)(-n)-e + m2(_n)1-m.

e=O 1=1

Every component of a forest Fn spanning Cm is a path. Suppose we label
the components of Fn beginning with the component containing an arbi-
trary node u and proceeding along the cycle in the clockwise sense. The
sum 2.p(Fm), taken over all spanning forests Fm of Cm such that I(Fm) = I,
is equal to

summed over all compositions of m into I positive integers (the extra
factor j1 arises from the fact that the node u could be any of the j1 nodes in
the first component of Fm). When I = I, the expression equals m2; when
I > 1 we can set jl = j and sum over the remaining factors. This latter
sum is the same as the sum we considered in the proof of Theorem 6.5
except that m and I are replaced by m - j and I - 1. Therefore,

m m-I+1

f(Cm, n) = m2( _n)l-m + '" '" (m - ~ + 1- 2)( -ny-m.
~ ~ m-J-I+l
1=2 1=1

Bercovici (1969) has shown that

n-2 1 0 0 1

1 n-2 0 0

0 1 n-2 1
1

f(Cm, n) = nm
0

0 1

1 0 ... 0 1 n-2

= ft {I - ~ sin2
(:)},

k=1

where the matrix has m rows and columns. If p(m) = f(Pm+h n), then he
has also shown that

1 .pea + b) = p(a)p(b) - 2 pea - l)p(b - 1),n
this implies that

pea + 1) = (I - ~)p(a) - ~2 pea - 1),

1p(2a) = p2(a) - 2 pea - 1),n

p(2a + 1) = p(a){2p(a + 1) - (1 - ~)p(a)}-

(He has also given analogous recurrence relations for the polynomials of
graphs obtained from the graphs <1,3) or <1,4) by inserting additional
nodes in the edges so as to form more edges.) The first few polynomials for
paths and cycles are given in Table 2. Bedrosian (1970) pointed out that
(n - 4)p (Pm,n) = f(C2m,n).

n-2
(n - l)(n - 3)
(n - 2)(n2 - 4n + 2)
(n2 - 3n + 1)(n2 - 5n + 5)
(n - 1)(n - 2)(n - 3)(n2 - 4n + 1)

(n - 3)2
(n - 2)2(n - 4)
(n2 - 5n + 5)2
(n - 1)2(n - 3)2(n - 4)



Bedrosian (1961, 1964b) derived formulas forf(Pm, n) andf(Cm, n) using
the foldant algorithm of Nakagawa (1958) and he has expressed these
polynomials in terms of a third family of polynomials the absolute values
of whose coefficients add up to a Fibonacci number. Bedrosian (I964b)
and Ku and Bedrosian (1965) consider the problem of determining the
polynomial of a subgraph I of a graph H when the polynomials of Hand
the complement of I in H are known; they state, for example, that if
{m, h} denotes the graph obtained from a complete m-graph by removing
edges that form a complete h-graph, then

If T and A are two graphs, let A - T denote the subgraph determined
by the nodes of A that do not belong to T and let y(T) denote the number
of nodes in the graph T. To determine f(A EB B, n) we shall use the fact
that

(6.2) f(A EB B, n) = f(A, n)f(B, n)

+ Ly(T)( -n)1-Y(T1(A - T, n)f(B - T, n),

( m - h)"-l( m)m-"f({m,h},n) = 1 - -n- 1 - n
where the sum is over all subtrees T of A EB B that contain the edge xy;
this follows immediately from the definition of A EB B and the polynomials
f

if h ~ m. They also consider analogous enumeration problems for graphs
in which several edges may join the same pair of nodes.

If A and B are two disjoint graphs with a + 1 and b + 1 nodes, re-
spectively, let A 0 B denote a graph obtained by identifying some node of
A with some node of B; we shall let x denote the node common to A and B
iE:A 0 B. Kasai et ai. (1966a) used matrix methods to determine c(G) when
G consists of isolated nodes and one of ten types of graphs A 0 B where A
and B are complete graphs, cycles, paths or complete 1 by s bipartite
graphs (in a subsequent paper (I966b) they discussed the use of continuants
in evaluating determinants that arise in these problems). The formulas that
arise when A or B are paths or cycles are rather complicated so we shall
derive polynomials of A 0 B only when A and B are complete graphs (m)
or complete bipartite graphs (I, s).

For some of these problems it is slightly more convenient to consider a
graph A EB B obtained by joining a node x in A to a node y in B. Some
examples of graphs A 0 B and A EB B are given in Figure 11.

THEOREM 6.7. If A = (I, a), B = (I, b), and A EB B is the graph ob-
tained by joining the dark node x of A to the dark node y of B, then

(
I)a+b-2{( I)2( a + b + 2) ab}f(A EB B, n) = 1 - Ii 1 - Ii 1 - n + n2 .

\ /
A: V

x
A$B: "'- ~

~ y
AoC:. ~

x

There are e)(~)subtrees T of A EB B that contain the edge xy and i

additional nodes of A andj additional nodes of B (see Figure 11). It fol-
lows, therefore, from (6.2) and Theorem 6.4 that

f(A EB B, n) = f(A, n)f(B, n) + L(~)(~)(i + j + 2)(_n)-l-I-1
1.1 } }

= f(A, n)f(B, n)

+ L e)( -n)-l-I{(i + 2)(1 - ~r - ~ (1 - ~r-1}
I

= (1 _ ~r-1(I _ a ~ 1)(1 _ ~r-1(I _ b ~ 1)

-n-1(I - ~r-1{(2 - b ~ 2)(1 - ~r - * (1 - ~r}·

B: \V A$C: >-<J CoC: f\l\
This last expression equals the right hand side of the required formula.

We shall need the identities
m

(6.3) L (7)(/+ I)'-l( -n)-I(I - m ;; ir-
I
-
1

1=0

= (1 - ~)( 1 _ m ; 1r-
1

and

(6.4) i (7)(/ + 1)'(-n)-I(1 - m;; ir-
I
-
1

= (1 - m; Ir
1=0



in proving the next three theorems; they follow from the first two identities
in Table 1.

THEOREM6.8. If A = <I, a), B = <b + I), and A EB B denotes the
graph obtained by joining the dark node x of A to any node y of B, then

f(A EBB,n) = (I- ~r-l(1_ b ~ lr-1

x { (1 _ a ~ 1)(1 _ b ~ 1) _ ~ (1 _ ~)( 2 _ a + ~+ 2)}-

There are e)(~)(j + 1)1-1 subtrees T of A EB B that contain the edge

xy and i additional nodes of A and j additional nodes of B (see Figure 11).
It follows, therefore, from Theorems 6.3 and 6.4 and equations (6.2)-
(6.4) that

f(A EB B, n) = f(A, n)f(B, n) + ~ (~)e)
x (j + l)i-l(i + j + 2)( -n)-1-1-i(1 _ b ~ jr-

i
-
1

= f(A, n)f(B, n) + 2: (~)(-n) -1-1

I

X {(i + 1) (1 - ~)( 1 - b ~ 1r -1 + (1 - b ~ 1r}
= (1 - ~r -1 (1 - a ~ 1)(1 _ b ~ 1r

- ~ (1 - ~r(1 - b ~ 1r-1(2 _ b ~ 2)
+ :2 (1 - ~r(1 - b ~ ly-l.

This last expression equals the right hand side of the required formula.
The next two cases were not among the ten considered by Kasai et al.

(1966a), but they can be treated in much the same way as were the last two.

THEOREM6.9. If A = <a + I) and B = <b + I), then

f(A EBB,n) = (1 _ a ~ lr-1(1 _ b ~ ly-l

X {(I _ a ~ 1) (1 _ b ~ 1) _ ~ (1 _ ~)( 2 _ a + ~ + 2)}.

There are e)(~)(i + ly-l(j + I)J-l subtrees of A EB B that contain

the edge joining A and Band i additional nodes of A and j additional
nodes of B. Hence,

f(A EB B, n) = (1 - a ~ 1r (1 - b ~ 1r
+ ~ e)e)(i + ly-l(j + I)J-l(i + j + 2)(_n)-1-1-i

(
a - i)a-I-l( b - j)b-J-l

X 1--- 1---
n n

by (6.2) and Theorem 6.8. This expression can be reduced to the stated
formula by much the same procedure as was used in proving Theorem 6.8
except that now identities (6.3) and (6.4) must be used twice each.

To determinef(A 0 B, n) we shall use the fact that

(6.5) f(A 0 B, n) = 2: y(T)( _n)l-Y(T>j(A - T, n)f(B - T, n),

where the sum is over all subtrees T of A 0 B that contain the node x; this
follows immediately from the definition of f(A 0 B, n). Notice that this
implies relation (6.1) when node x is joined only to one other node of A
or of B. The next result was stated by Bedrosian (1964b).

THEOREM6.10. If A = <1, a), B = <b + I), and A 0 B is the graph
obtained by identifying the dark node x of A with any node of B, then

f(AoB,n) = (1 _ ~r(1 _ b ~ lr-1
(1 _ a + ~ + 1).

There are (~)(~)(j+ I)J-l subtrees of A 0 B that contain the node x

and i additional nodes of A and j additional nodes of B. It follows, there-
fore, from (6.5) and Theorem 6.3 that

f(A 0 B, n) = 4 (~)e)(j + 1)1-1(i + j + 1)( -n)-I-J( 1 - b ~ jr-
J
-
1

.
1.1

This expression is similar to an expression occurring in the proof of
Theorem 6.8 and it can be simplified in the same way.

THEOREM6.11. If A = <a + I) and B = <b + I), then

f(A 0 B, n) = (1 _ ~) (1 _ a ~ 1) a-I (1 _ b ~ 1) b-l (1 _ a + ~ + 1).

There are (~) e)(i + ly-l(j + I)J-l subtrees of A 0 B that contain the

3*



There are (~) spanning forests F of <1, m) that have m - h + 1 com-

ponents and h edges, and p(F) = h + 1 for each such forest. Hence,f(A 0 E, n) = L (~)(~)(i+ 1)I-l(j + 1)1-1(i + j + 1)(-n)-I-i
I,i J

(
a - i)a-Z-l( b _ j)b-i-l

X 1--- 1--- .n n
This expression is similar to an expression occurring in the proof of
Theorem 6.9 and it can be simplified in the same way.

Kasai et al. (1966a) refer to some earlier papers in which some of their
formulas appear and they say they have considered the corresponding
problem for graphs formed from two complete graphs or two cycles that
have more than one node in common.

m

f(H, e, n) = L (_l)e(~) (~)(h + 1)( -n)h
h=e

m

= ne(:) L (~~:)(h + 1)(_n)h-e.
h=e

6.5. Trees Containing a Given Number of Specified Edges. In the last
few results we have been counting trees that do not contain any edges from
certain sets of edges; the same kind of argument can be applied, in prin-
ciple, to count trees that contain a given number of edges from certain
sets of edges.

Let H denote a graph with n labelled nodes and c connected components
whose ith component has ml nodes. If E = (el, ... , eo) denotes a sequence
of c integers such that 0 :s; el :s;mz - 1 for each i, let T(H, E) denote the
number of trees Tn that contain ezedges that belong to the ith component
of H, and n - 1 - L: ez edges that join nodes that belong to different
components of H, for i = I, 2, ... , c. If 0 :s;e :5; m - 1 and Hm is a
connected graph with m nodes, let

If we let j = h - e and apply the binomial theorem twice we obtain the
formula stated above. (Notice that this implies Weinberg's formula for
w(n, k) when e = 0.)

THEOREM6.13. /f0 :s;e :s;m - 1 and H = <m), then

f(H, e, n) = (m ; 1)(~r(1_ ~r-l-e.
If 0 :s;h = m - I:s; m - 1, then it follows from the proof of Theorem

6.3 that

,",,' (F.) (m - 1) m-l
~p m= I_1m,

where the sum is over all spanning forests Fm of H that have I components
and h edges. Hence,

m-l

f(H, e, n) = L (_I)"(~)(m h 1)(-~r
h=e

= (m; 1)(~rI (m h~ ; e)( -~r-e
h=e

= (m ; 1)(~r(1_ ;r-1
-
e
•

(6.6) f(Hm, e, n) = L (_l)e(m - :(Fm»)p(Fm)( -n)l<Fml-m

where the sum is over all spanning forests Fm of Hm• It follows from the
method of inclusion and exclusion that

where the product is over the c components of H; notice that this reduces
to Theorem 6.2 when E = (0, 0, ... , 0) and H is the complement of the
graph G whose spanning trees are to be counted.

We now give a closed expression for f(H, e, n) for three classes of con-
nected graphs; in most cases these polynomials are too complicated to be
determined explicitly.

THEOREM6.12. /f0 :s; e :s; m - 1 and H = (I, m), then

f(H, e, n) = ne(:)(1 - ~r-e-l(e + 1 _ m; 1).

COROLLARY6.13.1. /f n labelled nodes are partitioned into c subsets the
ith of which has ml nodes then there are

trees Tn that contain ez edges that join two nodes in the ith subset for
i=I,2, ... ,c.

This corollary was first proved by Na and Rapoport (1967) who used
matrix methods; they used the formula to show that if a graph with n nodes



and n - 1 edges is constructed at random, the probability that the graph
is connected is increased by a factor ranging between one or two if the
nodes are partitioned into subsets and only edges joining nodes from
different subsets are used. Moon (1968a) showed that their formula could
be deduced from Theorem 6.1. Notice that if el = ... = ec = 0, then this
is the same as Corollary 6.3.1. Weinberg's formula for W(n, k) and
Theorem 3.3, for example, can also be derived from special cases of
Corollary 6.13.1.

THEOREM6.14. /f0 ~ e ~ 2s - 1 and H = <s, s), then

SedlaCek (1966) determined the nine largest elements of An for n ~ 8; in
(1969) he showed that IAnl ~ t(n2 - 3n + 4) and G. Baron presented a
sharper bound for IAnl at the 1969 Oberwolfach Conference on Graph
Theory. They also consider analogous problems for regular graphs.

Dambit (1965) and SedlaCek (1966) have shown that a planer graph
and its dual have the same number of spanning trees, assuming they both
are connected and have no loops.

(s)e( S)2S-e-2{(2S)( 2s - e) (2(S - I))}f(Hen)= - 1-- 1--- - ., , n n e n e-2

r+s-l ) ( ••)h r s r j -1 S 1-1 rs 1]
f«r, s), e, n) = L (-l)e(e) L (JCH-Ii) (-Ii n2 - n2 .

h=e I+j=h

When r = s, the inner sum equals

6.6. Miscellaneous Results. A wheel Wn+ 1 where n ~ 3 consists of a
cycle of length n each node of which is joined to an (n + l)st node; a
ladder L2m consists of two paths of length m - 1 such that corresponding
nodes in the two paths are joined; the Mobius ladder M2r where r ~ 2
consists of a cycle of length 2r in which diagonally opposite nodes are
joined by an edge. Sedlacek (1968, 1969, 1970) has shown that

(3 + V5)n (3 - V5)nc(Wn+1) = 2 + 2 - 2,

c(L2m) = ,I;;; {(2 + V3)m - (2 - V3)m},
2v3

c(M2r) = ~ {(2 + V3Y + (2 - V3y + 2}.

Let An denote the set of all positive integers q for which there exists a
graph Gn such that c(Gn) = q; for example,

Al = A2 = {I}, Aa = {I, 3}, A4 = {I, 3,4,8, 16},

A5 = {I, 3,4, 5, 8, 9, 11, 12, 16,20,21,24,40,45, 75, 125}.



7
7.1. Random Mapping Functions. Let f denote a function that maps

{I, 2, ... , n} into {I, 2, ... , n}; we have seen that each such function de-
termines a directed graph D = D(f) on n nodes in which an arc goes from
i to j if and only if f(i) = j. In this section we shall use some of the earlier
results to study the distribution of some parameters associated with such
functions; Harris (1960) and Riordan (1962) give additional material and
references on such problems.

In what follows we shall need to approximate various sums by integrals;
we shall omit most of the details. Most of the estimates used are based on
the fact that if 0 < t < 1, then

e-t/(l-t) < 1 - t < e-t•

It follows from this that if 1 ::; k ::;n, then

exp { 2(n +k; _ k)} ::;(:~k::;exp { -~ (~)};

in particular, if k = 0(n2/3) then

(7.1) (n~k = e-k2/2n(1 + 0(1».
n

Katz (1955) and Renyi (I959b) proved the following result (sometimes
we shall say fhas a certain property when we really mean the graph D(f)
has the property).

THEOREM 7.1. IfC(n) denotes the number of connected mappingfunctions
f, then

lim C(n)/nn-1/2 = (TT/2)1/2.
n"''''

We saw in Theorem 3.3 that there are D(n, k) = (n)knn-k-1 connected
functionsfwhose graph has a cycle oflength k; hence,

n

C(n) = nn-1 L (~k.
k=l

If we use the above inequalities and approximate the sum by an integral,
we find that

lim C(n)/nn-1/2 = {'" e-u2/2 du = (TT/2)1/2.
n~oo Jo

COROLLARY 7.1.1. The probability that a random mapping function f is
connected is asymptotic to (7T/2n)1/2as n -+ 00.

Notice that the limit of C(n)/nn-1/2 is not changed if we omit the first
one or two terms in the sum; hence, if we only consider functions f such
thatf(i) =F i, the probability that D(f) is connected is asymptotic to

{C(n)/nn-1/2}·{nn-1/2/(n - 1)n} '" e(7T/2(n - 1»1/2.

Katz gives a table of these probabilities for selected values of n up to 100.

COROLLARY 7.1.2. The number of connected (undirected) graphs with n
labelled nodes and n edges is asymptotic to (7T/8n)1/2nn,as n -+ 00.

Let ')In denote the length of the cycle in the graph of a connected map-
ping function f. Since

n n nL k(n)k/nk = L (n)k/nk-1 - L (n)kU/nk = n,
k=l k=l k=l

nn-1 n
E(')In) = C(n) L k(n)k/nk = nn/C(n) '" (2n/7T)1/2.

k=l
More generally, if x is any positive constant and P{E} denotes the prob-
ability of the event E, then we find that



THEOREM 7.2. The distribution of Yn/n1/2 approaches, as n -+ 00, the
distribution of the absolute value of a random variable that has a normal
distribution with zero mean and unit variance.

3.3); he also showed that the kth factorial moment of the number of
cycles of length i (;<:2) in the graph of such a function tends to i-k as
n -+ 00.

The proof of the next result uses properties of the signless Stirling
numbers c(m, t) of the first kind; they may be defined (see, for example,
Riordan (1958; p. 71» by the identity

Let On denote the number of arcs that belong to cycles in the graph of
a (not necessarily connected) mapping function f. The following result is
due to Rubin and Sitgreaves (1954); see also Denes (1967).

THEOREM 7.3. There are k(n)knn-k-1 functions f such that On = k.

Consider one of the C(n + 1, k) rooted directed trees in which the
(n + l)st node is the root and has k arcs directed towards it. If we remove
the root, then the k nodes originally joined to the root can be arranged on
(directed) cycles in k! ways. Hence, appealing to Theorem 3.2, the number
of functions f such that On = k is equal to

m

(7.2) Cm(x) = x(x + 1)· .. (x + m - 1) = L c(m, k)xk,
k=l

for m = 1,2, .... Since Cm(x) = (x + m - I)Cm_1(x), it follows that

c(m, k) == c(m - 1, k - 1) + (m - l)c(m - 1, k).

This recurrence relation can be used to show by induction that there are
c(m, k) permutations of m objects that consist of k cycles (to establish this
same recurrence relation for the number of such permutations, consider
separately the cases when the nth object does or does not belong to a unit
cycle). We can now prove the following result given by Kruskal (1954);
the derivation we give resembles the derivation given by Riordan (1962).

THEOREM 7.5. If Tn denotes the number of components in the graph of a
random mapping function f, then

n

E(T) = '" !(n)k.
n L.., k nk

k=l

There are (~ -=- II)nn-mc(m, k) mapping functionsfwhose graph has m

edges belonging to Tn = k cycles; this follows from a slight modification
of the argument used to prove Theorem 7.4 if we use the combinatorial
interpretation of the numbers c(m, k). Consequently,

n n n 1)
E(Tn) = L kP{Tn = k} = L k L (~-=- 1 n-mc(m, k)

k=l k=l m=k

(
n - 1)k! C(n + 1, k) = k! k _ 1 nn-k = k(nhnn-k-1;

this also follows from the result of Blakely (1964) described in §3.5.
It follows from Theorem 7.3 that

n

lim E(on)/n1/2 = lim n-3/2'" k2(n)k/nk = (00 u2e-u2/2 du = (17/2)1/2
11.-+ 00 11.-+ 00 L.., J0

k=l
and

n

lim E(o;,)/n = lim n-2 '" k3(nh/nk = (00 u3e-u2/2 du = 2,
11.-+ 00 11.-+ <XJ L.., J 0

k= 1

THEOREM 7.4. If x is any positive constant, then

lim P{on/n1/2 < x} = 1 - e-x2
/
2.

n...•00

n m

= L (~-=- II)n-m L kc(m, k).
m=l k=l

If we differentiate both sides of equation (7.2) and then set x = 1, we find
that the inner sum equals m! (1 + 1/2 + ... + l/m). Hence,

~ (n)m ~ 1
E( Tn) = L.., m nm+1 L.., k

m=l k=l

Rubin and Sitgreaves (1954) and Harris (1960) show that the distribu-
tion of On is the same as the distribution of the number of nodes that can
be reached along a directed path from a given node in the graph of a
random mapping functionf. Gobel (1963) has studied the distribution of
the number n - On of nodes that don't belong to cycles in the graph of a
random mapping functionfwith the property thatf(i) # i for all i (it was
in the course of doing this that he proved a result equivalent to Theorem

= *!~m (n)m.L.., k L.., nm + 1

k=l m=k



for k = 1,2, ... , n - 1.

Consequently, d(x) (or rather d(x) + 1) has a binomial distribution and
the mean and variance of d(x) are given by the formulas

E(d(x» = 2(1 - I/n) and a2(d(x» = (1 - I/n)(I - 2In).

The distribution can be approximated by the Poisson distribution when n
is large. In this section we shall show that the maximum degree D =
D(Tn) of the nodes of the tree Tn is approximately equal to log n/log log n
for most trees Tn when n is large, and we shall consider the distribution of
the number X = X(k, n) of nodes of degree k in a random tree Tn.

x {I + k ~ 1 + (k ~ 1)2 + ... } = e;!l (I + 11k) < 11k!,

Inequality (7.4) now follows upon applying Boole's inequality

P{u E1} :::::; 2:P{E1}

(the result is obviously true when k = 1).
Next we show that

The required formula now follows from the fact that the inner sum is
equal to

n n n2: (n + m - n)(n)mlnm+1 = 2: (n)m/nm - 2: (n)m+l/nm+l
m=k m=k m=k

= (nh/nk.

COROLLARY7.5.1. Limn ..•", E(Tn)l! log n = 1.

If k/nl/2 ~ 0, then (n)k/nk ~ 1; if k/nl/2 ~ 00, then (nh/nk ~ O. Hence,
E( Tn) is approximately equal to

2: k '" log (nl/2
)

ksn1/2

The following lemmas are quite straightforward consequences of the
inequalities (k/e)k < k! < kk and t < -log (1 - t) < t/(1 - t) where
O<t<1.

LEMMA7.1. If

k = [(I + €) log n],
log log n

then n/k! < n-E+o(l) as n ~ 00, for any positive constant E.

k = [(1 - €) log n] ,
log log n

when n is large.
Kruskal (1954) established Theorem 7.5 by solving a differential equa-

tion for a certain generating function; he obtained an integral formula for
E(Tn) from which he deduced that

E( Tn) = t log n + t(log 2 + C) + 0(1),

where C = 0.5772 . .. is Euler's constant. (Recall that if f is a random
permutation, then the expected number of cycles, or components, is
log n + C + 0(1).) It is not difficult to write expressions for the higher
factorial moments of the distribution of Tn' Austin, Fagen, Penney, and
Riordan (1959) have considered the problem of determining the expected
number of components in an undirected graph with a given number of
nodes and edges.

then n/k! > nE+o(l) as n ~ 00, for any positive constant E.

LEMMA7.3. If k = [log n], then n/k! < n210g n/nlOg log n for all suffi-
ciently large values of n.

We now show that

7.2. The Degrees of the Nodes in Random Trees. If d(x) denotes the
degree of node x in a random tree Tn, then it follows from Theorem 3.2
that

for almost all trees Tn> that is, for all but a fraction that tends to zero as
n~oo.

It follows from (7.3) that

(1 - l/n)n n2 (n - 2)k-l e-1

P{d(x) = k} = (k _ I)! . (n _ 1)2 . (n _ l)k-l < (k _ I)!' if k ~ 3

(the last two expressions are asymptotically equal if k = o(nl/2»; therefore,

{
II } e-1

P{d(x) > k} < e-1 k! + (k + I)! + ... < kf



for some positive constant c; this and Lemma 7.2 imply that if E is any
positive constant, then

by inequality (7.7). These two inequalities suffice to prove the theorem
because (0 can be arbitrarily small.

If sharper inequalities for n/k! are used, then it can be shown that

log n
(1 - E)g(n) < D(Tn) - I I < (I + E)g(n),og og nfor almost all trees Tn.

If ten, k) denotes the number of trees Tn such that D(Tn) ::; k, then it
follows from Theorem 3.1 that
ten, k) = (n - 2)!

{
Z2 ••k-l }n

X the coefficient of zn-2 in 1 + z + 2! + ... + (k~_ I)! ;

ten, k) < (n - 2)! {I + 1 + 1/2! + ... + 1/(k - 1)!}n
< (n - 2)! {e - l/k!}n < cnn-s/2{1 - l/e·k!}n

< cnn-S/2·exp (-n/e·k!),

for some constant c, by Stirling's formula. If we divide this inequality by
nn-2, the total number of trees Tn, we obtain inequality (7.6). Moon
(1968b) used these inequalities to prove the following result.

THEOREM 7.6. If E(D) denotes the expected value of the maximum degree
of the nodes of a random tree Tn>then

g(n) = (log n)(log log log n)(log log n)-2,
for almost all trees Tn and each positive constant E.

Renyi (1959a) proved the case k = 1 of the following result; Meir and
Moon (1968) stated the general formula.

THEOREM 7.7. If X = X(n, k) denotes the number of nodes of degree k
in a random tree Tn andp-l = e·(k - I)!, then

E(X) '" np

a2(X) '" np(1 - p) - np2(k - 2)2,
for each fixed value of k as n ~ 00.

If k is some fixed positive integer, let the variable XI equal one if the ith
node of a random tree Tn has degree k, and zero otherwise. Then

Xl + X2 + ... + Xn = X,
the number of nodes of degree k in Tn.

It follows from equation (7.3) that

2 (1 - l/n)n-2 (n - l)k
E(xl) = E(xl) = (k _ I)! . (n _ l)k

= p{1 - (k2 - k - 3)/2n} + O(I/n2)

E(D) logn
'" log log n'

If E is any positive constant, let

k [(1 ) log n ]
1 = + E log log n

n-l
E(D) = LP{D = k} ::; klP{D ::; kl} + k2P{D > kl}

k=l + (n - I)P{D > k2},

a2(XI) = E(x~) - E2(XI)
= p(1 - p) - pel - 2p)(k2 - k - 3)/2n + O(I/n2);

furthermore, it follows from Theorem 3.1 that

(
(1 - 2/n)n-2 (n - 2h(k-l)

E XIXj) = (k _ 1)!2 . (n _ 2)2(k-l)

= p2{1 _ (2k2 - 5k + 1)/n} + O(I/n2)

it follows from (7.4) and Lemmas 7.1 and 7.3 that

E(D) ::; (1 + E) log n/log log n + (log n)n-€+O(l) + nSlog n/n!OglOgn

= (1 + E + 0(1» log n/log log n, as n ~ 00.
and

Cov (XI>Xj) = E(xIXj) - E(xl)E(xj) = -p2(k - 2)2/n + O(I/n2),

for 1 ::; i < j ::;n. Consequently,

Furthermore,

E(D) ~ (1 - E) logn P{D> (I _ E) logn }
log log n log log n

~ (1 - E - 0(1» I lOr n ,
og ogn

E(X) = L E(xl) = np - p(k2 - k - 3)/2 + O(I/n)
I



a2(X) = L a2(XI) + 2 L Cov (XI>Xj)
1 I<j

n-2 n-2
nn-2 = L I(n, k) = L (~)(n - 2)kI(n - k,O).

k=O k=O

The distribution of (X - p.)/a, where p. = np and a2 = np(1 - p) -
np2(k - 2)2, tends to the normal distribution with zero mean and unit
variance as n -+ 00. This was proved by Renyi (1959a) when k = 1 and by
Meir and Moon (1968) when k = 2; the general result follows from the
special case of a theorem proved by Sevast'yanov and Chistyakov (1964).
(It is not difficult to show, using Theorem 3.1, that the hth factorial
moment of X(n, k) tends to (n)hP\ the hth factorial moment of the bi-
nomial distribution, as n -+ 00. This is not enough, however, to show that
the standardized distribution of X tends to the binomial distribution and
hence to the normal distribution; the higher terms cannot be neglected in
calculating the central moments. Notice that a2(X) is asymptotic to what
it would be if the variables Xl> X2, ... , Xn were independent only when
k = 2.)

Theorem 3.5 states that the number R(n, k) of trees Tn for which
X(n, 1) = k is given by the formula R(n, k) = (n)n_kS(n - 2, n - k); it
follows from equation (3.7) that

nn-2
f(n) = (n - 2)!

then this relation may be rewritten as

I(n,O)
g(n) = (n - 2)!'

f(n) =i(~)g(k),
k=O

for n = 0,1, ... , if we assume thatf(n) = g(n) = 0 when n = 0 or 1; if
we invert this relation we find that

Consequently,

I(n, k) = (n - 2)! (~)g(n - k)

n-lL R(n, k) (X)n-k = xn-2.
(n)n-k

k=2

n-k

= (n - 2)! (~) L (_I)n-k-l(n ~ k) (t~22)!'
1=2

(This formula can also be derived by the method of inclusion and
exclusion.)

It follows from equation (7.8) or Theorem 3.1 that g(n) equals the
coefficient of zn-2 in the expansion of (e2 - z)n. Hence,

g(n) = _1 f z{ e2
- Z }n dz

(e - l)n 27TiJa z(e - 1)

where C is some contour about the origin, by Cauchy's integral formula.
Meir and Moon (1968) use this fact to show that

g(n) "'J {(e - 1)/27Tenp/2
(e - l)n

as n -+ 00. It now follows from Stirling's formula that

I(n,O) "'J (1 - ~r+l/2nn-2.

(Notice that if we had assumed the variables Xl> X2, ... , Xn were inde-
pendent and that P{XI = I} = lIe, we would have obtained the estimate
(1 - l/e)nnn-2 for I(n, 0).)

Renyi uses this relation to show that the characteristic function of
(X - p.)/a tends to the characteristic function of the normal distribution,
that is,

n-l
lim ~ R~~:) exp {it(k - p.)/a} = e-t2/2,

n-+oo L n
k=2

for every real t; this suffices to show that the distribution of (X - p.)/a is
asymptotically normal. (See also Weiss (1958) and Renyi (1962, 1966).)

If 0 ~ k ~ n - 2, let I(n, k) denote the number of trees Tn such that
X(n,2) = k. Such a tree can be formed by (1) choosing the k nodes whose
degree is to be two, (2) constructing a tree Tn-k with no nodes of degree
two, and (3) inserting the k nodes in the edges of the tree Tn _k' It follows,
therefore, that

I(n, k) = (~)(n - 2)kI(n - k,O),



More generally, if n - k -+ 00, then

l(n, k) = (n - 2)! (n) ( _ k)
nn-2 nn-2 k g n

"" en(n - 2)! (n)(!)k(1 _ !)n-k( e - 1 )1/2
(27T)1/2nn-2 k e e e(n - k)

trees Tn such that S(Tn; u, v) = k. If we divide this expression by nn- 2, the
total number of trees Tn, we obtain the above formula for the probability
that Sn = k.

It follows from Theorem 7.8 that P{Sn = 2} = 2/n and

P{Sn = k + I} = k + 1 . n - k P{S = k}k n n ,

maxP{Sn = k} = (I + 0(1»(en)-1/2;
k

"" (n)(!)k(1 _ !)n-k(n(e - 1»)1/2.
k e e (n - k)e

If 0: and f3 are constants such that

0: n f3e (n(e - 1»1/2 < k - e < e (n(e - 1»1/2, if t = [n1/2], the maximum occurs when k = t or t + 1 according as
t(t + 1) ~ nor t(t + I) ;$; n.

If we compare Theorems 7.3 and 7.8 we see that when n is large the
probability that there are k nodes in the path joining u and v is very close
to the probability that there are k arcs that belong to cycles in the graph of
a random mapping function f. The proof of the following result involves
the same arguments as were outlined after Theorem 7.3 (see Meir and
Moon for the missing details).

THEOREM 7.9. The mean and variance of Sn satisfy the relations

E(Sn) "" (trrn)1/2

nee - 1) = 1 + k - n/e = 1 + O(n-1/2).
(n - k)e n - k

Hence, if a2 = ne-1(1 - e-1), then

"'" l(n k) "'" (n) (I)k( l)n-kP{o: < (X - n/e)/a < f3} = L.. nn~2 "" L.. .k e 1 - e
where the sums are over k such that o:a < k - n/e < f3a. It now follows
from the De Moivre-Laplace Theorem that the distribution of

7.3. The Distance between Nodes in Random Trees. If u and v are any
two nodes in a tree Tn let Sn = S(Tn; u, v) denote the number of nodes in
the unique path joining u and v; the distance d(u, v) = d(Tn; u, v) between
u and v is the number of edges in this path so that d(u, v) = Sn - 1. In this
section we consider some problems related to the distribution of the dis-
tance between nodes in a random tree Tn. The following result is due to
Meir and Moon (1970a).

THEOREM 7.8. If 2 ;$; k ;$; n, then

P{S = k} = _k_ . (n)k.
n n - 1 nk

a2(Sn) "" (2 - 7T/2)n

as n -+ 00; furthermore, if x is any positive constant, then

lim P{Sn/n1/2 < x} = 1 _ e-x2
/2.

n"'''''

(X(n,2) - n/e)/a

tends to the normal distribution as n -+ 00.

n E(8n) E(8~) n E(8n) E(8~)

2 2 4 12 4.312 21.688
3 2.333 5.667 14 4.642 25.358
4 2.625 7.375 16 4.951 29.049
5 2.888 9.112 18 5.243 32.757
6 3.130 10.870 20 5.520 36.480
7 3.354 12.646 25 6.159 45.841
8 3.566 14.434 50 8.697 93.303
9 3.766 16.234 100 12.323 189.677

10 3.956 18.044 150 15.119 286.881

There are (n - 2h-2 ways to construct a path from u to v that passes
through k - 2 of the remaining n - 2 nodes and, by Theorem 6.1, there
are knn - k -1 trees Tn that contain any given path of k nodes. Hence, there
are



n

t 2: P(n)k/nk - n + t ""(7T/8)1/2n3/2.
k=1

for k = 1,2, ... (Riordan gives a table of the numbers hn(k) for 1 ~ k <
n ~ 10). Renyi and Szekeres use (7.9) and the fact that

hn(k) = _1 r Gk(z) - Gk-1(Z) dz,
(n-I)! 27TiJc zn+l

where C is a contour about the origin, to determine the asymptotic distri-
bution of the numbers hn(k) for large nand k. Their argument is quite
complicated; they show, among other things, that

E(hn) "" (27Tn)1/2 and 0'2(hn) "" trr(7T - 3)n,

as n -+ 00. Notice that E(Sn) "" tE(hn) as n -+ 00.

The diameter d(Tn) of a tree Tn is the greatest distance between any two
nodes of Tn, that is,

d(Tn) = max {d(u, v):u, v E Tn} = max {h(Tno u):u E Tn};

if n ~ 3, then 2 ~ d(Tn) ~ n - 1 and h(Tn) ~ d(Tn) ~ 2h(Tn). Let rn(k)
denote the number of trees Tn such that d(Tn) = k; we now derive an
expression for the generating function

If ~n = ~(Tn, k) denotes the number of paths of length k - 1 in a tree
Tn, then it can be shown that

E(~) = tkn (n~k
n

0'2(~) "" nk(k - I)2(k - 2)/24
for each fixed value of k as n -+ 00. The argument used in this section can
also be modified to show that the expected number of inversions in a
random tree Tn (see §4.5) is equal to

7.4. Trees with Given Height and Diameter. If the tree Tn is rooted at
a given node u, then the height hn = h(Tn, u) of Tn (with respect to u) is the
maximum of d(u, v) taken over all nodes v of Tn; let tn(k) denote the
number of trees Tn such that h(Tn, u) ~ k (notice that tn(k) = 0 unless
1 ~ k ~ n - 1, except that t1(0) = 1). If

'"2: xn
Gk = Gk(x) = ntn(k) ,n.n=1

2:'" xn
Dk = Dk(x) = rn(k) "n.n=1

'"2: xn
Hk = Hk(x) = nhn(k) "n.n=l

Any tree with odd diameter 2h + 1 can be formed by joining the roots
of two rooted trees each of height h (such trees are said to be bicentred;
see Konig (1936; chapter 5». It follows, therefore, that

D2h+1(X) = tH~(x).

Any tree with even diameter 2h can be formed by identifying the roots
of two or more rooted trees of height at most h if at least two of these
trees have height h (such trees are said to be centred). In fact, every rooted
tree of height h has diameter 2h except for those in which the root is
incident with only one edge leading to nodes whose distance from the
root is h; the generating function for these exceptions is Gh-1,Hh-1• It
follows, therefore, that

D2h(X) = Hh(x) - Gh-1(X)·Hh-1(X).

These relations for Dk(x) were derived by Riordan; he gives a table of
the numbers rn(k) for 2 ~ k < n ~ 10. The asymptotic distribution of
these numbers apparently has not been determined.

denotes the generating function for the number of rooted trees with height
at most k, then GL//! is the generating function for forests of / rooted trees
each of whose height is at most k; this follows by the same argument as
was used in §4.1. If we join the roots of these / trees to a new node we
obtain, in effect, a rooted tree with one additional node whose height is
at most k + 1. It follows, therefore, that Go = x and

(7.9) Gk+l = x + xGk + xGU2! + , .. = x exp Gk

for k = 0, 1, ... ; this relation was derived by Riordan (1960) and Renyi
and Szekeres (1967). (Harris and Schoenfeld (1967, 1968, 1970) have con-
sidered, among other things, a problem equivalent to determining the
asymptotic expansion of the coefficients in G2 = x exp xex.)

If

where hn(k) = tn(k) - tn(k - I), denotes the generating function for the
number of rooted trees of height k, then Ho = x and

Hk(x) = Gk(x) - Gk-1(X)

7.5. The First Two Moments of the Complexity of a Graph. We men-
tioned earlier that in certain physical problems there is a correspondence
between the terms in the nth successive approximation to certain functions



and graphs with certain properties. There is at least one case where the
actual value of the terms has a graph-theoretical interpretation.

The coefficients in the expansion of various thermodynamic quantities
of a gas can be expressed as a sum of integrals, called cluster integrals,
which correspond to graphs with a given number of nodes and edges;
there is a factor in the integrand, representing the intermolecular potential
function, corresponding to each edge of the graph. Uhlenbeck and Ford
(1962; see also 1963) show that if the intermolecular potential is a gaussian
function of the type f(r) = - e - "r2

, then the cluster integral corresponding
to the graph G can be expressed in terms of the number c(G) of spanning
trees of G (the number c(G) is sometimes called the complexity of the graph
G in physical contexts; see also Temperley (1964)).

It would be of some interest to know the distribution of the number
c = c(n, e) of spanning trees of graphs with n nodes and e edges; Uhlen-
beck and Ford (1962) give numerical data which suggests that the distri-
bution of c tends to the normal distribution as n increases if e is near
tN = tn(n - 1). It seems, however, that formulas for only the first two
moments are known in general; we now derive formulas for E(c) and

E(c2) where the expectations are taken over the (~) graphs with n nodes

and e edges.

THEOREM 7.10. Ifn - 1 ~ e ~ N, then

E(c) = nfl-2 (e)fl-l
(N)fl-l

(each such pair of trees is counted separately for each set of m edges they
have in common). If two trees have m edges in common then these m
edges and the n nodes determine a forest of I = n - m subtrees. It follows
from Theorem 6.1 and the derivation of Theorem 4.1 that

Tm(n) = n
2

(1;2) '" (. n .)j{1-2 ... j{I-2'(jl" .jl)2,
I. ~ Jh"" Jl

where the sum is over all compositions of n into I positive integers.
If

<Xl
'J J

U = U(x) = 2:J ~
J=l J.

~ xJ
y= Y(X)=~ji-l1'

J=l J.

then U = xY'; since Y = xeY it follows that U = Y(1 - y)-1. If
B1(n) = I! n-2(l-2)Tm(n), then

<Xl

'" xfl

y'+t = (I + t) ~ nfl-1-t-1(n)l+t n!'
fl=l+t

Each of the nfl
-
2 trees Tfl has n - 1 edges; hence, the number of graphs

with n nodes and e edges containing any such tree is the number of ways
of selecting e - (n - 1) of the N - (n - 1) pairs of nodes not already
joined by an edge. Therefore,

E(c) = nfl-2(N - (n - 1)) . (N) -1 = nfl-2 (e)fl-l .
e - (n - 1) e (N)fl-l

THEOREM 7.11. Ifn - 1 ~ e ~ N, then

by equation (4.2). Therefore,

fl-l
n2(1-2) n2(1-2) '" (I + t - 1)

Tm(n) = l! B,(m) = -I-! - ~ (I + t) t (n),+tnfl-
,
-t-l

t=o

m (n t) nt
= n2(fl-m-l)(n - 1) '" - -.

m~ m - t t!
t=o

fl-l m
E(c2) = '" Tm(n) '" (_I)m-J ("!) (e)2(fl-l)-1

~ ~ J (N)2(fl-l)-1
m=O 1=0

~ (n - t) nt
Tm(n) = n2(fl-m-2)(n - l)m ~ m _ t I!'

t=O

ordered pairs of trees with n nodes that have exactly m edges in common.
The probability that a graph with n nodes and e edges will contain a
given pair of such trees is

We first determine an expression for the number Tm(n) of ordered pairs
of trees with n nodes that have at least m (~n - 1) edges in common (

N - 2(n - 1) + m) (N)-l
e - 2(n - 1) + m . e = (eh(fl-l)-m/(N)2(fl-l)-m'



n-1 n-1-m
E(c2) = "'" (eh(n-1)-m "'" (_I)/(m + j)Tm+ln)

~ (N)2(n-1)-m ~ mm=O 1=0
n-1 m

= "'" Tm(n) "'" (_l)m - I("!) (e)2(n -1)- 1 .
~ ~ J (N)2(n-1)-1m=O 1=0

7.6. Removing Edges from Random Trees. If some edges of a tree Tn
are removed the graph remaining is a forest of disjoint subtrees of Tn; let r
denote the number of nodes in the subtree containing a given node x (say
the nth node). In this section we shall determine the distribution of r under
the assumptions that (I) the tree Tn is chosen at random from the set of
nn - 2 trees with n labelled nodes, and (2) the edges removed from Tn are
chosen independently at random so that any given edge is removed with
probability p = Ij2; in particular, we shall show that the mean E(r) and
variance a2(r) of r tend to 4 and 16, respectively, as n tends to infinity.

THEOREM 7.12. If I ~ k ~ n, then

COROLLARY 7.11.1. If limn ...•'" ejN = y, where 0 < y < 1, then

. E(c2)
hm E2( ) = 1.

n~CX) c

n-1

E(c2) = 2 Tm(n)" Rm(n).
m=O

If r = k, then there are (~ =. Dklc-2 choices possible for the subtree Tic

that contains node x and k - 1 other nodes after a random selection of
edges has been removed from a random tree Tn- If I ~ k < n, letj denote
the number of edges in Tn that joined nodes of Tic to nodes not in Tic; the
probability that these edges were removed and the k - 1 edges of Tic were

(
n - k - I)left intact is (lj2)J+1c-1. There are j _ 1 kl(n - k)n-Ic-I trees Tn that

contain a given tree Tic on k given nodes and such that j edges join nodes
of Tic to nodes not in Tic; this follows from Theorem 3.2 if we temporarily
consider Tic as a special node y, construct a tree on node y and the remain-
ing n - k nodes in which d(y) = j, and then replace the j edges incident
with y by edges incident with one of the k nodes of Tic' It follows, therefore,
that if 1 ~ k < n, then

m m
lim Tm(n)·Rm(n) = "'" 1 ""'" (_I)m-/("!)y-I
n...•'" ep(n, e) ~ t! (m - t)! ~ Jt=o 1=0

2m (1 - y)m
= m! ym

for each fixed value of m; it follows therefore, from Tannery's theorem
(see Bromwich (1931» that

E(c2)
lim ~( ) = exp 2(1 - y)jy.
n ...•'" 'f' n, e

The corollary now follows from Theorem 7.10 and inequality (7.1).
Theorems 7.10 and 7.11 were proved by Uhlenbeck and Ford (1962)

and Moon (1964), respectively; Groeneveld (1965) has given another
derivation of Theorem 7.11 that also applies to graphs in which several
edges may join the same pair of nodes.

We remark that Erdos and Renyi (1960) have shown that if e '"
pn(Ic-2)/(1c-1), then the distribution of the number of isolated trees with k
nodes in a random graph with n nodes and e edges tends to the Poisson
distribution with mean

n-Ic
P{r = k} = n.(2n)1-n(n - l)klc-1 "'" (n ~ k - l)kl-1(2n _ 2k)n-Ic-1

k-l ~ J-I1=1

= (2n)1-n(~)klc(2n _ k)n-Ic-1;

for each fixed value of k.
We shall use some of the identities in Table I to simplify the expressions

we obtain from Theorem 7.12 for E(r) and E(r2). If x = 0, y = n,p = I,
4+C.L.T.



n

An(O, n; 1, -1) = L (~)kk+l(2n - k)n-k-l
k=O

n

= n-1[,8(0) + 2n]n = n-1 L (~)k.k!(2n)n-k
k=O

n

= 2(2n)n-l L k(n)kl(2n)k.
k=O

k

[,8(0; 2)]k = [,8(0) + ,8(0)]k = L (;)t.t! (k - t)·(k - t)!
t=o

k

= k! L t(k - t) = k! (k ~ 1),
t=o

(a + y(O»k = ± (;)t2.t! (k - t)! = f,k! k(k + ])(2k + 1);
t=o

it follows from the fourth identity in Table 1, after some simplification,
that

n

An(O, n; 2, -1) = L (~)kk+2(2n - k)n-k-l
k=O

= n-1{(2n + ,8(0; 2»n + (2n + a + y(o»n}
n

= (2n)n-l L k2(k + 1)·(n)kl(2n)k.
k=O

COROLLARY 7.12.1. Limn...•oo E(r) = 4 and limn...•00 a2(r) = 16.

It follows from Theorem 7.12 and the identity for An(O, n; 1, -1) that
n

E(r) = (2n)1-n L (~)kk+l(2n - k)n-k-l
k=O

n

= 2 L k(n)kl(2n)k;
k=O

00

!~~E(r) = 2 L k(I/2)k = 4
k=O

n

E(r2) = (2n)1-n L (~)kk+2(2n - k)n-k-l
k=O

n

= L k2(k + I)·(n)kl(2n)k
k=O

00

!~~E(r2) = L k2(k + I)(1/2)k = 32;
k=O

lim a2(r) = lim (E(r2) - E2(r» = 16.
n-+ 00 n-+ co

These results are due to Moon (1970a); the formula for E(r) can also
be derived from Theorem 7.8. More generally, if the probability of re-
moving any given edge of Tn is p, where 0 < p < 1, then it can be shown
that

p (1 - p)n-l(n) (n )n-k-lP{r = k} = -- -- kk -- - k ,I-p n k I-p

lim E(r) = p-2,
n •.• oo

lim a2(r) = 2(1 - p)p-4.
n'" 00

Professor N. J. Pullman computed the following values of E(r) and E(r2)
whenp = 1/2.

TABLE 4

n E(r) E(r2) n E(r) E(r2)

1 1 1 11 2.8918 12.4784
2 1.5 2.5 12 2.9529 13.1944
3 1.8333 4 13 3.0073 13.8592
4 2.0781 5.4062 14 3.0562 14.4779
5 2.268 6.7 15 3.1004 15.0552
6 2.4207 7.8837 20 3.2698 17.4455
7 2.5468 8.9661 25 3.3846 19.2378
8 2.6530 9.9573 50 3.6539 24.0788
9 2.7439 10.8673 100 3.8148 27.4826

10 2.8227 11.7050 200 3.9039 29.5671



7.7. Climbing Random Trees. If the tree Tn where n ~ 2 is rooted at
node x suppose we select some edge incident with x and proceed along it
to node y; then we select some other edge yz incident with y and proceed
to z. If we continue this process as long as possible, let s = s(Tn) denote
the number of edges traversed before we reach some endnode u (other
than x, if x is an endnode). In this section we shall determine the mean
E(s) and variance a2(s) of s under the assumptions that (I) the tree Tn is
chosen at random from the nn-2 trees Tn that are rooted at node x, and (2)
whenever we reach a node q that isn't an endnode, the next edge is chosen
at random from the edges incident with q that lead away from x; it will
follow that E(s) ~ 2e - I and a2(s) ~ 2e(e - I) as n ~ 00. The dif-
ferent rooted trees T4 are illustrated in Figure 12 along with their relative
frequencies and the calculations showing that E(s) = 17/8 when n = 4.

1 6 1 1
P{s = I} = - . - + - = -.2 16 16 4

1 6 3 3
P{s = 2} = - . - + - = -,

2 16 16 8
3

P{s = 3} =-,
8

1 3 3 17
E(s) = 1 . - + 2 . - + 3 . - = -.

4 8 8 8

If y is any node joined to the root x of a tree Tn, then y can be thought
of as the root of the subtree T* determined by those nodes z of Tn such
that the unique path joining x and z contains the edge xy. Let pen, k)
denote the probability that the subtree T* of a random rooted tree Tn
has k nodes.

I (n - I)pen k) = - kk-2(n - k _ l)n-k-1, nn-2 k - I .

The k nodes of T* can be chosen in (n k I) ways and, having chosen

the nodes, T* can be formed in kk-2 ways. If the root x has degree t in Tn,
where I ::;; t ::;;n - k, then by Theorem 3.2 there are

(n - k - 2)(n _ k _ I)n-k-t
t-2

ways to form a tree on the n - k nodes not in T*. The node y in T* that
is joined to the root x can be chosen in k ways and this node y could have
been anyone of the t nodes joined to x. Hence,

n-k

( k) = _1_ '" !(n - I) (n - k - 2)kk-1(n _ k _ I)n-k-tp n, nn-2 L... t k t - 2
t=1

n-k

= kk-2 (n - I) '" (n - k)(t _ I)(n _ k _ l)n-k-t-1.nn - 2 k - I L... t
t=1

The lemma now follows by applying the binomial theorem (twice) to
replace the sum by (n - k - l)n-k-1.

THEOREM 7.13. Ifn ~ I, then

E(s) = 2(n : Ir-2
- I

(
n + 2)n-2 (n + l)n-2E(s(s - I» = 6 -n- - 8 -n- + 2.

COROLLARY 7.13.1. As n ~ 00, E(s) ~ 2e - I and a2(s) ~ 2e(e - I).

If 0 ::;;1 ::;;n - I, let pen, I) denote the probability that s(Tn) = I; we
adopt the convention that pen, 0) = I if n = I and zero otherwise.

Suppose we select one of the edges xy incident with the root x of a
random tree Tn and proceed along it to y; then s(Tn) = 1 if and only if
s(T*) = 1 - I, where T* is the subtree defined earlier. Hence, if I ::;;1 ::;;
n - 1 then it follows from Lemma 7.4 that

n-1

pen, I) = 2: pen, k)·P(k, 1 - I)
k=1

n-1

= _1_ '" (n - l)kk-2(n _ k _ W-k-1P(k, 1 - I).nn-2 L... k - I
k=1

n-1

/L(n) = 2: IP(n, I)
1=1

n-1

= ~ '" (n - l)kk-2(n _ k _ l)n-k-1{p,(k) + I}nn 2 L... k - I
k=1

for n = 2, 3, ... , if we substitute the formula for pen, I) and interchange
the order of summation (/L(I) = 0 by definition). We can now prove the



formula for ",(n) by induction. If we assume ",(k) + 1 =2(1 + l/k)k-2and
apply the second identity in Table 1 with x = 2, y = - 1 and nand k
replaced by n - 1 and k - 1, we find that

2 ~ (n - 1)",(n) = nn-2 ~ k _ 1 (k + l)k-2(n - k - l)n-k-l
1=1

= nn~2 {-tnn-2 + (n + l)n-2} = 2(n ~ lr-2
- 1,

as required.
Similarly, if T(n) = E(s(s - 1» then

n-l

T(n) = L 1(1- I)P(n, I)
1=1

1 ~ (n - 1)= nn-2 ~ k _ 1 kk-2(n - k - l)n-k-l{T(k) + 2",(k)}.
k=1

If we assume, as our induction hypothesis, that

T(k) + 2",(k) = 6(k t 2r-2
- 4(k t lr-2

and apply the second identity in Table 1 twice, we find that

n-l

T(n) = n}-2 L (~= D{6(k + 2)k-2 - 4(k + l)k-2}(n - k - l)n-k-l
k=1

1
= nn-2 {6[ -j{n + l)n-2 + (n + 2)n-2] - 4[ -tnn-2 + (n + l)n-2])

(
n + 2)n-2 (n + l)n-2=6-- -8-- +2n n '

as required. The corollary follows immediately from the theorem and the
fact that 0'2(S) = E(s(s - 1» + E(s) - E2(S).

Theorem 7.13 can also be proved by expressing the generating functions
of the numbers ",(n) and T(n) in terms of the function Y = 2::'=1 nn-lxn/n!
and then applying formula (4.2) (see Moon (1970b». It can be shown that
if 1 :::;I :::;n - 1, then

1-1

I ~ (/- 1)pen, I) = nn-2 ~ . (-I)!(n - 2 _ j)n-2.
!=o ]

PI = Jim pen, I) = Ip2ql-l
n...•'"

fori = 0, 1, ... ; where p = 1 - q = e - \ and the distribution of s(Tn) - 1
tends to the negative binomial distribution of order two as n -+ 00.

If 1 :::; t :::;n - 1 and ",(n, t) and T(n, t) denote the expected value of
sand s(s - 1) over the set of trees Tn in which the root x has degree t, then
the preceding arguments can be extended to show that

t + 1 ( n )n-t-2Il.(n t) = -- --
r' -t n-l

2 { (n + l)n-t-2 ( n )n-t-2}T(n, t) = t (t + 2) n _ 1 - (t + 1) n _ 1 .

by Theorem 3.2 and the binomial theorem.
D. A. Klamer pointed out, in a letter dated March, 1969, that there are

n(n - l)n-l ways to select a tree Tn, choose a root node x, and then
proceed along a path from x to some endnode; hence, the average number
of ways of rooting a tree Tn and then proceeding from the root to some
endnode is

Perhaps it should be emphasized that E(s) is not the same as the average
distance between the root x and a node u given that u is an endnode. The
second proof of Theorem 3.2 and the proof of Theorem 7.8 can be modified
to show that if u is an endnode then the expected distance between x and
u is

n-l
1 ~ t2 (n - l)t.

n - 1~ (n - I)"
t=1

if x and u are both endnodes the expected distance between them is

if n ~ 3. Both of these quantities are asymptotic to the expected distance
between two arbitrary nodes in a random tree Tn as n -+ 00.



7.8. Cutting Down Random Trees. Suppose the tree Tn where n ~ 2
is rooted at a given node x. If we remove some edge e of Tn the tree falls
into two subtrees one of which, Tk say, contains the root x; if k ~ 2 we
can remove some edge of Tk and obtain an even smaller subtree containing
x. If we repeat this process as long as possible, let A = A(Tn) denote the
number of edges removed before we obtain the subtree consisting of the
root x itself. In this section we shall determine the mean JL(n) and variance
a2(n) of A(Tn) under the assumptions that (I) Tn is chosen at random from
the nn-2 trees Tn that are rooted at node x, and (2) at each stage the edge
removed is chosen at random from edges of the remaining subtree con-
taining x; it will follow that JL(n) '" (trrn)1/2 and a2(n) '" (2 - trr)n as
n -+ 00. These and some related results are due to Meir and Moon (l970b).
(The average values of A(Tn) for the different trees T4 are indicated in
Figure 13; it can be shown that if Tn is a path rooted at an endnode. for
example, then E(A(Tn» = I + Ij2 + ... + Ij(n - I).)

T4: j tv y \V
x x x x

E(>'(T4)):
11 5

2 36 2

311353 1 3
JL(4) = -. - + -. - + -·2 + -·3 = 2-8 6 8 2 16 16 16

n-1
JL(n) = '" j ~ I . (n - 1)/.

~ } n'1=1

COROLLARY 7.14.1. As n -+ 00,

JL(n) = (t7Tn)1/2 + t log n + O«log n)1/2).

If 0 ::;;I ::;;n - I, let P(n, I) denote the probability that A(Tn) equals I;
we adopt the convention that P(n, 0) equals one if n = I and zero other-
wise.

Suppose we remove one of the n - I edges of a random tree Tn and

obtain a subtree Tk containing the root x. There are (~ := D possible

choices for the k - 1 nodes of Tk other than x and, having chosen these
nodes, there are kk-2 possible trees Tko There are (n - k)n-k-2 trees that
could be formed on the remaining n - k nodes and the removed edge
could have joined any of the k nodes of Tk to any of the remaining n - k
nodes. Since A(Tn) = I if and only if A(Tk) = I - I, it follows that

n-1
(7.10) P(n I) = I '" (n - I)P(k 1- I)P-1(n _ k)n-k-1

, (n - l)nn-2 ~ k - I '
k=!

for I ::;;I ::;;n - 1.
If JL(n) denotes the expected value of A(Tn), then

n-1
JL(n) = L lP(n, I)

!=1 n-1
= I _ '" (n - l)kk-1(n _ k)n-k-1fp,(k) + I}

(n - I)nn 2 ~ k - I
k=l

for n = 2, 3, ... (JL(l)= 0 by definition). Let

M = M(x) = i JL(n)nn-2 (n ~n I)!
n=2

~ xn
Y = Y(x) = ~ nn-2 (n _ I)!

n=l
satisfies the relations

Y d Y' YY = xe an = x(1 _ Y)'

(SinceJL(n)::;;n - I,M(x)certainlyconvergesiflxl < e-1.)Ifwemultiply
equation (7.11) by (n - l)nn-2xnj(n - I)! and sum over n, we obtain the
relation

between M and Y. This may be rewritten as

(MjY)' = Y'(I - Y)-\

from which it follows that
'"

(7.12) M = - Yln (1 - Y) = L~yf+1.
l=lJ

(The constant of integration must be zero since JL(l) = 0.) If we use
relation (4.2) to equate the coefficients of xn in this equation, we obtain the
required formula for JL(n).

4*



Instead of determining the variance of Adirectly, it is more convenient
to determine T(n), the expected value of A(A - 1); the variance 172(n) is then
given by the formula 172(n) = T(n) + I-'-(n) - 1-'-2(n).

THEOREM7.15. Ifn ;:::2 and

for j = 2,3, ... (0:1 = 0), Ihen

n-1
T(n) = 2 2: (1 - ~ + ~)(j+ 1) (n ~1 1)1.

1=1 J J

COROLLARY7.15.1. As n-+ 00,

172(n) = (2 - Pr)n + O«n log n)1/2).

It follows from equation (7.10) that

n-1

T(n) = 2: 1(1- I)P(n, I)
1=1

n-1

= (n _ ~)nn-2 2: (~:= Dkk-1(n - k)n-k-1{T(k) + 21-'-(k)}
k=l

for n = 2,3, ... (T(I) = 0 by definition). If we let
00

S = S(x) = 2: T(n)nn-2 (n ~n I)!'
n=2

then it follows from the recurrence relation for T(n) that

xS' - S = xS'Y + 2xM'Y.

(SlY), = 1 2 yM' = 2Y'{Y(1 - y)-2 - In(1 - Y)·(1 - y)-1};

consequently,

S = Y{2Y(1 - y)-1 + 21n(1 - Y) + In2(1 - Y)}
00

= 2 2: (1 - ~ + ~) yi+1.
1=2 J J

If we equate the coefficients of xn in this equation we obtain the required
formula for T(n).

The recurrence relation (7.10) can be used to express the generating
functions of the numbers P(n, I) in terms of Y also, but the resulting
expressions seem too complicated in general to be particularly useful; it
can be shown, for example, that

P(n, 1) = (n - l)n-3Inn-2,
P(n,2) = (5n + l)(n - 2)(n - l)n-s/2nn-2,

Theorem 3.3 states that if 1 ;:5; 1 ;:5; n, then there are Inn-t-1 forests Fn

of 1 trees with a total of n labelled nodes such that 1 given nodes, say the
nodes 1,2, ... , I, belong to different trees; we may consider these 1nodes
as the roots of the trees in Fn. Let I-'-(n, I) and T(n, I) denote the expected
value of Aand A(A - 1) where A = A(Fn) is the number of edges that must
be removed from a random forest Fn of 1 rooted trees before isolating the
1roots; at each stage the edge removed is chosen at random from the edges
of the remaining subtrees containing the 1 roots.

If
00

M - ~ ( 1)1 n-t-1 xn
t - L.., I-'- n, n (n _ I)!

n=t+1

00

~ ( 1)1 n-t-1 xn
L.., Tn, n (n _ I)!'

n=t+1
then the argument used earlier in the case 1 = 1 can be extended to show
that

00

Mt = -IYttn(1 - Y) = 12:~ yi+t
1=1J

St = IYt{2Y(1 - y)-1 + 21n (1 - Y) + 1In2 (1 - Y)}

= 21i (1 - ~ + 1~1)yi+t
1=2 J J

for 1 = 1,2, .... If we equate the coefficients of xn in these equations we
obtain the following formulas for I-'-(n, I) and T(n, I).

THEOREM7.16. If 1 ;:5; 1 ;:5; n - 1, Ihen

n-t

( I) _ ~ j + 1 (n - 1)1I-'- n, - L.., -.- . 1

1=1 J n



n-t

T(n, t) = 2"" (1 - ~ + t~I)U + t) (n - t)1.L. J J nl
1=1

Notice that Mt = tyt-1M1 and St = tyt-1Sh so the numbers p.(n, t)
and T(n, t) can be expressed in terms of the numbers p.(m) = p.(m, 1) and
T(m) = T(m, 1) for 2 :::;;m :::;;n - t + 1.

Theorem 3.2 states that if 1 :::;;t :::;;n - 1, then there are

(n-2) (n - l)n-t-1
t - 1

trees Tn in which the root x has degree t; let D(n, t) and U(n, t) denote the
expected value of ,\ and ,\(,\ - 1) for such trees. The argument used to
establish equation (7.11) can be extended to show that

1
D(n, t) = (n _ 2)

(n - l)n-t
t - 1

n-1

X {2: (~::::D(~~ D(k - l)k-t(n - k)n-k-1(D(k, t) + 1)
k=t+1

n-1

+ 6 (~::::D(~~ i)(k - l)k-t(n - k)n-k-1(D(k, t - 1) +l)}

if 1 :::;;t :::;;n - 1 (otherwise D(n, t) = 0); the main difference is that now
we must consider two possibilities when removing an edge e from a random
tree Tn (in which d(x) = t) to obtain a subtree Tk containing the root x.
If e is not incident with x then d(x) = tin T k and e joins one of the k - 1
nodes of Tk other than x to one of the n - k nodes not in Tk; if e is incident
with x then d(x) = t - 1 in Tk and e joins x to one of the n - k nodes not
in Tk• The two sums in the right hand side of equation (7.13) correspond
to these two possibilities.

If
00

Dt = 2: D(n, t)(; ~ D(n - l)n-t-1 (nx~-~)!,
n=t+1

then it follows from equation (7.13) that

xD; = xD;Y + Dt-1Y + x(yt),. Y/t! + yt-1. Y/(t - I)!,

or equivalently, that

D' = 1 yt-1. Y'(l - y)-1 + Dt-1Y'
t (t - I)!

for t = 1,2, .... The result

-I yt-11 (1 y) = 1 ~ !yHt-1
Dt=(t_I)! n - (t-l)!L.j

1=1

can now be established by induction if we use the fact that Dt(O) = 0 for
all t and Do = O. This implies the following formula.

n-t

D(n + I,t + I) = 2:j~ t. (n - 1
1
=-1t)f-1.

1=1 J n

COROLLARY 7.17.1. Ifl :::;;t :::;;n - I, then

p.(n, t) = (I - ~)D(n + I, t + I).

This corollary follows from Theorems 7.16 and 7.17; for fixed values of
n, D(n + I, t + 1) increases to n as t increases while p.(n, t) eventually
decreases to 1.

If

then similar arguments can be used to show that

1
Ut = (t - I)!

x {2Yt(1 - y)-1 + 2yt-1In(1 - Y) + (t - l)yt-2In2(1- Y)}

00

= 2 "" (I __ 1_ (t - 1)1Xi+2) yHt
(t - I)! L. .+ 1 + . + 21=0 J J

for t = I, 2, .... This implies the following result.

THEOREM 7.18. If 1 :::;;t :::;;n - I, then

n-1-t
U( ) = 2 "" (I __ 1_ (t - 1)1Xi+2) (n - 1 - t)f.

n, t L. j + 1 + j + 2 (n - I)f
f=O

Notice that (t - I)!· Dt = yt-1 D1 and (t - I)!· Ut = yt-1U1 +
(t - I) yt-2ln2 (1 - Y), so the numbers D(n, t) and U(n, t) can be ex-
pressed in terms of the numbers D(m, 1) and U(m, I) for 2 :::;;m :::;;n -
t + 1.



THEOREM7.19. /fO ~ t ~ (n/log n)1/2, then

D(n + 1, t + 1) = (!-1Tn)1/2+ !t(Iog n + O(log log n) + O((log n)1/2)

as n -+ 00.

n-t-1

D(n + 1, t + 1) = L (1 + k ~ l)Ck

k=O

k( t+')Ck = TI 1 - ---"l .
1=1

n-t-1L Ck ~ 1 + n1/2 rco
e-x2/2 dx = 1 + (bn)l/2.

k=O Jo

n-t-1 [Kl-l
~ t ~ 1 t n
~ k + 1 Ck ~ t ~ k + 1 + n2 • K
k=O k=O

~ !t(log n + log log n + 4)

for sufficiently large n. Therefore,

D(n + 1, t + 1) ~ (bn)1/2 + !t(log n + log log n + 4) + 1

if 0 ~ t ~ n - 1 and n is sufficiently large.
It can also be shown that if 0 ~ t ~ (n/log n)1/2 and n is sufficiently

large, then

D(n + 1, t + 1) ~ (bn)1/2 + ft(log n - log log n - 5) - (log n)1/2.

The theorem now follows upon combining these two inequalities (see Meir
and Moon (1970b) for the missing details). It follows from Corollary
7.17.1 that if 1 ~ t ~ (n/log n)1/2 the conclusion of Theorem 7.19 remains
valid if D(n + 1, t + 1) is replaced by f1-(n, t); in particular, Corollary
7.14.1 holds. The average degree of the root in a random tree Tn is 2 - 2/n
so perhaps it is not too surprising that f1-(n) = f1-(n, 1) is asymptotically
equal to D(n, 2) for large n.

We now determine the asymptotic behaviour of the variance a2(n) of ,\
for ordinary rooted trees Tn. It follows from Theorems 7.14 and 7.15 and
the identity

n2: k(n)kjnk = n,
k=1

n-1
~ k + 1 (n - l)k

T(n) = 2(n - 1) - 2f1-(n) + 2 ~ CXk-k- . nk .
k=1

n-1

Sn = L {logk + O(1)} k t 1 (n ~k l)k
k=1

n-1
~ k + 1 (n - Ih

= {t log n + O(1)}f1-(n) + ~ log (kn-1/2) . -k- . nk .
k=1

Now (k + l)jk ~ 2 and (n - Ihjnk < exp (-k2j2n); if the last sum is
divided by n1/2 it is bounded by an approximate Riemann sum for
f:ii log x· e-x2

/2 dx. Therefore,

a2 = T(n) + f1-(n) - f1-2(n)
= 2n + {log n + O(I)}f1-(n) - f1-2(n) + O(n1/2)
= (2 - -!-,IT)n+ O((n log n)1/2)

as n -+ 00; this completes the proof of Corollary 7.15.1. More generally,
it can be shown that if 1 ~ t ~ (njlog n)1/2 then the variance of ,\ for
forests Fn of t rooted trees or for trees Tn in which d(x) = t also equals
(2 - b)n + o(n) as n -+ 00.

The entries in the following tables were computed by Mr. J. Hubert.

TABLE 5. Values of p.(n, t)

n 2 3 4 5 6 7 8 9 10
t

1 1.6667 2.1875 2.624 3.0046 3.3451 3.6551 3.9409 4.2072
2 1 1.75 2.36 2.8796 3.3357 3.7444 4.1163 4.4586
3 1 1.8 2.4722 3.0554 3.5728 4.0394 4.4656
4 1 1.8333 2.5510 3.1836 3.7508 4.2662
5 1 1.8571 2.6094 3.2812 3.8894
6 1 1.875 2.6543 3.358
7 1 1.8889 2.69
8 1 1.9
9 1
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TABLE6. Values of D(n, t) REFERENCES
n 2 3t 4 5 6 7 8 9 10

I 1.5 1.8889 2.2185 2.5104 2.7747 3.0181 3.2450 3.4583
2 2 2.5 2.9167 3.28 3.6056 3.9026 4.1772 4.4336
3 3 3.5 3.9333 4.3194 4.6700 4.9925 5.2923
4 4 4.5 4.9444 5.3469 5.7164 6.0591
5 5 5.5 5.9524 6.3672 6.7514
6 6 6.5 6.9583 7.3827
7 7 7.5 7.9630
8 8 8.5
9 9

Let y denote the number of edges that must be removed from a random
tree Tn before separating two given nodes u and v, where at each stage the
edge removed is chosen at random from the remaining subtree containing
u and v. The preceding argument can be modified to show that the ex-
pected value of y, given that the distance from u to v is d, is

n-l-It

1 + '" 1 + d + t en - 1 - d)t
L, d+t nt
t=l
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